Skip to main content

B Fragment of Cholera Toxin Conjugated to Saporin

  • Chapter
  • 491 Accesses

Abstract

Saporin conjugates have proven extremely versatile and valuable in the selective destruction of a variety of cell types. In the nervous system, the use of saporin-conjugated toxins has generally been directed toward neurons. We were interested in whether saporin conjugates could be used to target other nervous tissue cell types, particularly the myelin-forming cells. Taking advantage of the fact that myelin is rich in GM1 ganglioside and that the B fragment of cholera toxin has a high affinity for GM1, we used a conjugate of the B fragment of cholera toxin and saporin (CTB-sap) to target myelin-producing cells (oligodendrocytes) in the central nervous system (CNS) (Fig. 1). We found that CTB-sap is effective in removing oligodendrocytes in addition to other glial cells and largely leaves neurons intact. We successfully used CTB-sap to study demyelination and remyelination in the spinal cord (1), and our preliminary results suggest that CTB-sap will be useful for inducing demyelinating lesions in other parts of the CNS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jasmin L, Janni G, Moallem TM, Lappi DA, Ohara PT. Schwann cells are removed from the spinal cord after effecting recovery from paraplegia. J Neurosci 2000;20:9215–9223.

    PubMed  CAS  Google Scholar 

  2. Cuatrecasas P. Gangliosides and membrane receptors for cholera toxin. Biochemistry 1973;12:3558–3566.

    Article  PubMed  CAS  Google Scholar 

  3. Czerkinsky C, Sun JB, Lebens M, et al. Cholera toxin B subunit as transmucosal carrier-delivery and immunomodulating system for induction of antiinfectious and antipathological immunity. Ann NY Acad Sci 1996;778:185–193.

    Article  PubMed  CAS  Google Scholar 

  4. Svennerholm L. Interaction of cholera toxin and ganglioside G(M1). 1976;71:191–204.

    CAS  Google Scholar 

  5. Dederen PJ, Gribnau AA, Curfs MH. Retrograde neuronal tracing with cholera toxin B subunit: comparison of three different visualization methods. Histochem J 1994;26:856–862.

    Article  PubMed  CAS  Google Scholar 

  6. Horikawa K, Powell EW. Comparison of techniques for retrograde labeling using the rat’s facial nucleus. J Neurosci Methods 1986;17:287–296.

    Article  PubMed  CAS  Google Scholar 

  7. Gaupp S, Hartung HP, Toyka K, Jung S. Modulation of experimental autoimmune neuritis in Lewis rats by oral application of myelin antigens. J Neuroimmunol 1997;79:129–137.

    Article  PubMed  CAS  Google Scholar 

  8. Holmgren J, Czerkinsky C, Lycke N, Svennerholm AM. Strategies for the induction of immune responses at mucosal surfaces making use of cholera toxin B subunit as immunogen, carrier, and adjuvant. Am J Trop Med Hyg 1994;50:42–54.

    PubMed  CAS  Google Scholar 

  9. Schwerer B, Lassmann H, Kitz K, Bernheimer H. Ganglioside GM1, a molecular target for immunological and toxic attacks: similarity of neuropathological lesions induced by ganglioside-antiserum and cholera toxin. Acta Neuropathol (Berl) 1986;72:55–61.

    Article  CAS  Google Scholar 

  10. Xiao BG, Link H. Mucosal tolerance: a two-edged sword to prevent and treat autoimmune diseases. Clin Immunol Immunopathol 1997;85:119–128.

    Article  PubMed  CAS  Google Scholar 

  11. Cochran FB Jr, Yu RK, Ledeen RW. Myelin gangliosides in vertebrates. J Neurochem 1982;39:773–779.

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki K, Poduslo JF, Poduslo SE. Further evidence for a specific ganglioside fraction closely associated with myelin. Biochim Biophys Acta 1968;152:576–586.

    PubMed  CAS  Google Scholar 

  13. Yu RK, Iqbal K. Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: gangliosides of human myelin, oligodendroglia and neurons. J Neurochem 1979;32:293–300.

    Article  PubMed  CAS  Google Scholar 

  14. Byrne MC, Farooq M, Sbaschnig-Agler M, Norton WT, Ledeen RW. Ganglioside content of astroglia and neurons isolated from maturing rat brain: consideration of the source of astroglial gangliosides. Brain Res 1988;461:87–97.

    Article  PubMed  CAS  Google Scholar 

  15. Jasmin L, Ohara PT. Long-term intrathecal catheterization in the rat. J Neurosci Methods 2001;110:81–89.

    Article  PubMed  CAS  Google Scholar 

  16. Hansson HA, Lange S, Lonnroth I. Internalization in vivo of cholera toxin in the small intestinal epithelium of the rat. Acta Pathol Microbiol Immunol Scand A 1984;92:15–21.

    PubMed  CAS  Google Scholar 

  17. Jasmin L, Ohara PT. Recurrent paraplegia after remyelination of the spinal cord. J Neurosci Res 2004;77:277–284.

    Article  PubMed  CAS  Google Scholar 

  18. Abe T, Norton WT. The characterization of sphingolipids from neurons and astroglia of immature rat brain. J Neurochem 1974;23:1025–1036.

    Article  PubMed  CAS  Google Scholar 

  19. Ledeen RW. Ganglioside structures and distribution: are they localized at the nerve ending? J Supramol Struct 1978;8:1–17.

    Article  PubMed  CAS  Google Scholar 

  20. Raff MC, Fields KL, Hakomori SI, Mirsky R, Pruss RM, Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 1979;174:283–308.

    Article  PubMed  CAS  Google Scholar 

  21. Robertson B, Grant G. Immunocytochemical evidence for the localization of the GM1 ganglioside in carbonic anhydrase-containing and RT 97-immunoreactive rat primary sensory neurons. J Neurocytol 1989;18:77–86.

    Article  PubMed  CAS  Google Scholar 

  22. Sofer A, Schwarzmann G, Futerman AH. The internalization of a short acyl chain analogue of ganglioside GM1 in polarized neurons. J Cell Sci 1996;109(pt 8):2111–2119.

    PubMed  CAS  Google Scholar 

  23. Gilson JM, Blakemore WF. Schwann cell remyelination is not replaced by oligodendrocyte remyelination following ethidium bromide induced demyelination. Neuroreport 2002;13:1205–1208.

    Article  PubMed  CAS  Google Scholar 

  24. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ohara, P.T., Kelley, K., Jasmin, L. (2005). B Fragment of Cholera Toxin Conjugated to Saporin. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics