Skip to main content

Abstract

Several saporin-containing targeted toxins have been used in studies of nociception/pain. This chapter reviews this exciting area, including some of our most recent work. Certainly, substance P-saporin (SP-sap), the first conjugate used for pain research, has generated the most data and interest, but a number of other saporin conjugates have been introduced, and others are on the way. A review discusses this topic (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiley RG, Lappi DA. Targeted toxins in pain. Adv Drug Deliv Rev 2003;55:1043–1054.

    Article  PubMed  CAS  Google Scholar 

  2. Yamamoto T, Sakashita Y. The role of the spinal opioid receptor like1 receptor, the NK-1 receptor, and cyclooxygenase-2 in maintaining postoperative pain in the rat. Anesth Analg 1999;89:1203–1208.

    Article  PubMed  CAS  Google Scholar 

  3. Quartara L, Maggi CA. The tachykinin NK1 receptor. Part II: distribution and pathophysiological. Neuropeptides 1998;32:1–49.

    Article  PubMed  CAS  Google Scholar 

  4. Mantyh PW, Allen CJ, Ghilardi JR, et al. Rapid endocytosis of a G protein-coupled receptor: substance P evoked internalization of its receptor in the rat striatum in vivo. Proc Natl Acad Sci USA 1995;92:2622–2626.

    Article  PubMed  CAS  Google Scholar 

  5. Mantyh PW, DeMaster E, Malhotra A, et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 1995;268:1629–1632.

    Article  PubMed  CAS  Google Scholar 

  6. Blackburn RE, Samson WK, Fulton RJ, Stricker EM, Verbalis JG. Central oxytocin and ANP receptors mediate osmotic inhibition of salt appetite in rats. Am J Physiol Regul Integr Comp Physiol 1995;269:R245–R251.

    CAS  Google Scholar 

  7. Blackburn RE, Samson WK, Fulton RJ, Stricker EM, Verbalis JG. Central oxytocin inhibition of salt appetite in rats: evidence for differential sensing of plasma sodium and osmolality. Proc Natl Acad Sci USA 1993;90:10,380–10,384.

    Article  PubMed  CAS  Google Scholar 

  8. Samson WK, Huang FL, Fulton RJ. C-type natriuretic peptide mediates the hypothalamic actions of the natriuretic peptides to inhibit luteinizing hormone secretion. Endocrinology 1993;132:504–509.

    Article  PubMed  CAS  Google Scholar 

  9. Samson WK, Alexander BD, Skala KD, Huang FL, Fulton RJ. Ricin-cytotoxin conjugate administration reveals a physiologically relevant role for oxytocin in the control of gonadotropin secretion. Ann NY Acad Sci 1992;652:411–422.

    Article  PubMed  CAS  Google Scholar 

  10. Samson WK, Alexander BD, Skala KD, Huang FL, Fulton RJ. Central peptidergic mechanisms controlling reproductive hormone secretion: novel methodology reveals a role for the natriuretic peptides. Can J Physiol Pharmacol 1992;70:773–778.

    PubMed  CAS  Google Scholar 

  11. Wiley RG, Lappi DA. Destruction of neurokinin-1 receptor expressing cells in vitro and in vivo using substance P-saporin in rats. Neurosci Lett 1997;230:97–100.

    Article  PubMed  CAS  Google Scholar 

  12. Mantyh PW, Rogers SD, Honore P, et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 1997;278:275–279.

    Article  PubMed  CAS  Google Scholar 

  13. Nichols ML, Allen BJ, Rogers SD, et al. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science 1999;286:1558–1561.

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki R, Morcuende S, Webber M, Hunt SP, Dickenson AH. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci 2002;5:1319–1326.

    Article  PubMed  CAS  Google Scholar 

  15. Khasabov SG, Rogers SD, Ghilardi JR, Peters CM, Mantyh PW, Simone DA. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J Neurosci 2002;22:9086–9098.

    PubMed  CAS  Google Scholar 

  16. Todd AJ. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp Physiol 2002;87:245–249.

    Article  PubMed  CAS  Google Scholar 

  17. Todd AJ, McGill MM, Shehab SA. Neurokinin 1 receptor expression by neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the brainstem. Eur J Neurosci 2000;12:689–700.

    Article  PubMed  CAS  Google Scholar 

  18. Vierck CJ, Kline RH, Wiley RG. Intrathecal substance p-saporin attenuates operant escape from nociceptive thermal stimuli. Neuroscience 2003;119:223–232.

    Article  PubMed  CAS  Google Scholar 

  19. Drapeau G, D’Orleans-Juste P, Dion S, Rhaleb N-E, Rouissi N-E, Regoli D. Selective agonists for substance P and neurokinin receptors. Neuropeptides 1987;10:43–54.

    Article  PubMed  CAS  Google Scholar 

  20. Tousignant C, Guillemette G, Drapeau G, Telemaque S, Dion S, Regoli D. 125-I[Sar9, Met(O2)11]-SP, a new selective ligand for the NK-1 receptor in the central nervous system. Brain Res 1990;524:263–270.

    Article  PubMed  CAS  Google Scholar 

  21. Wiley RG, Lappi DA. Targeting neurokinin-1 receptor-expressing neurons with [Sar9,Met(O2)11]substance P-saporin. Neurosci Lett 1999;277:1–4.

    Article  PubMed  CAS  Google Scholar 

  22. Martin JL, Sloviter RS. Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase-resistant analog of Substance P. J Comp Neurol 2001;436:127–152.

    Article  PubMed  CAS  Google Scholar 

  23. Wiley RG, Lappi DA, Vierck CJ. Inihibition of mustard oil-induced hyperalgesia in an operant escape task by substance P-saporin. Abstr Soc Neurosci 1999;25:1330.

    Google Scholar 

  24. Wiley RG, Kline RH, Lappi DA. Dose-dependent effects of intrathecal substance P-saporin and SSP-saporin. Abstr Soc Neurosci 2001;26:281.11.

    Google Scholar 

  25. Montecucchi PC, de Castiglione R, Erspamer V. Identification of dermorphin and Hyp6-dermorphin in skin extracts of the Brazilian frog Phyllomedusa rhodei. Int J Pept Protein Res 1981;17:316–321.

    Article  PubMed  CAS  Google Scholar 

  26. Porreca F, Burgess SE, Gardell LR, et al. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the µ-opioid receptor. J Neurosci 2001;21:5281–5288.

    PubMed  CAS  Google Scholar 

  27. Wiley RG, Miller SA, Kline RH. Selective destruction of MOR expressing dorsal horn neurons using intrathecal dermorphin-saporin. Abstr Soc Neurosci 2003;28:174.15.

    Google Scholar 

  28. Burgess SE, Gardell LR, Ossipov MH, et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci 2002;22:5129–5136.

    PubMed  CAS  Google Scholar 

  29. Gardell LR, Vanderah TW, Gardell SE, et al. Enhanced evoked excitatory transmitter release in experimental neuropathy requires descending facilitation. J Neurosci 2003;23:8370–8379.

    PubMed  CAS  Google Scholar 

  30. Wrenn CC, Picklo MJ, Lappi DA, Robertson D, Wiley RG. Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings. Brain Res 1996;740:175–184.

    Article  PubMed  CAS  Google Scholar 

  31. Picklo MJ, Wiley RG, Lonce S, Lappi DA, Robertson D. Anti-dopamine β-hydroxylase immunotoxin-induced sympathectomy in adult rats. J Pharmacol Exp Ther 1995;275:1003–1010.

    PubMed  CAS  Google Scholar 

  32. Picklo MJ, Wiley RG, Lappi DA, Robertson D. Noradrenergic lesioning with an anti-dopamine β-hydroxylase immunotoxin. Brain Res 1994;666:195–200.

    Article  PubMed  CAS  Google Scholar 

  33. Rohde DS, Basbaum AI. Activation of coeruleospinal noradrenergic inhibitory controls during withdrawal from morphine in the rat. J Neurosci 1998;18:4393–4402.

    PubMed  CAS  Google Scholar 

  34. Martin WJ, Gupta NK, Loo CM, Rohde DS, Basbaum AI. Differential effects of neurotoxic destruction of descending noradrenergic pathways on acute and persistent nociceptive processing. Pain 1999;80:57–65.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor BK, Roderick RE, Basbaum AI. Brainstem noradrenergic control of nociception is abnormal in the spontaneously hypertensive rat. Neurosci Lett 2000;291:139–142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wiley, R.G., Lappi, D.A. (2005). Saporin Conjugates and Pain. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics