Skip to main content

Bioinformatic Approaches to Identifying and Classifying Rab Proteins

  • Protocol
Book cover Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1298))

  • 3098 Accesses

Abstract

The bioinformatic annotation of Rab GTPases is important, for example, to understand the evolution of the endomembrane system. However, Rabs are particularly challenging for standard annotation pipelines because they are similar to other small GTPases and form a large family with many paralogous subfamilies. Here, we describe a bioinformatic annotation pipeline specifically tailored to Rab GTPases. It proceeds in two steps: first, Rabs are distinguished from other proteins based on GTPase-specific motifs, overall sequence similarity to other Rabs, and the occurrence of Rab-specific motifs. Second, Rabs are classified taking either a more accurate but slower phylogenetic approach or a slightly less accurate but much faster bioinformatic approach. All necessary steps can either be performed locally or using the referenced online tools. An implementation of a slightly more involved version of the pipeline presented here is available at RabDB.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cygwin.com/

  2. 2.

    http://supfam.org/SUPERFAMILY/downloads.html

  3. 3.

    hmmer.org

  4. 4.

    http://www.perl.org/get.html

  5. 5.

    http://supfam.org/SUPERFAMILY/hmm.html

  6. 6.

    http://pfam.xfam.org/

  7. 7.

    http://supfam.org/SUPERFAMILY/howto_use_models.html

  8. 8.

    http://supfam.org/SUPERFAMILY/cgi-bin/scop.cgi?sunid = 52592

  9. 9.

    http://pfam.xfam.org/family/PF00071.17

  10. 10.

    http://www.rabdb.org/about/

  11. 11.

    http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE = Proteins&PROGRAM = blastp&BLAST_PROGRAMS = blastp&PAGE_TYPE = BlastSearch&BLAST_SPEC = blast2seq&QUERY = &SUBJECTS=

  12. 12.

    http://meme.nbcr.net/meme/cgi-bin/mast.cgi

  13. 13.

    http://www.rabdb.org/about/RabF_motifs.meme

  14. 14.

    http://www.ebi.ac.uk/goldman-srv/webprank/

  15. 15.

    http://mafft.cbrc.jp/alignment/server/

  16. 16.

    http://atgc.lirmm.fr/phyml/

  17. 17.

    http://genome.nci.nih.gov/tools/reformat.html

  18. 18.

    http://tree.bio.ed.ac.uk/software/figtree/

  19. 19.

    http://supfam.org/SUPERFAMILY/cgi-bin/scop.cgi?sunid = 52592

  20. 20.

    http://pfam.xfam.org/family/PF00071.17

  21. 21.

    http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM = blastp&PAGE_TYPE = BlastSearch&LINK_LOC = blasthome

  22. 22.

    http://www.prf.or.jp/index-e.html

  23. 23.

    http://www.rabdb.org/about/rabs.fasta

  24. 24.

    http://www.rabdb.org/media/files/on_rabs.fasta

  25. 25.

    http://www.rabdb.org/media/files/rabF_motifs.meme

References

  1. Diekmann Y, Seixas E, Gouw M et al (2011) Thousands of Rab GTPases for the cell biologist. PLoS Comput Biol 7:e1002217. doi:10.1371/journal.pcbi.1002217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kloepper TH, Kienle N, Fasshauer D, Munro S (2012) Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 10:71. doi:10.1186/1741-7007-10-71

    Article  Google Scholar 

  3. Eliáš M, Brighouse A, Gabernet-Castello C et al (2012) Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci 125:2500–2508. doi:10.1242/jcs.101378

    Article  PubMed Central  PubMed  Google Scholar 

  4. Pereira-Leal JB (2008) The Ypt/Rab family and the evolution of trafficking in fungi. Traffic 9:27–38. doi:10.1111/j.1600-0854.2007.00667.x

    Article  CAS  PubMed  Google Scholar 

  5. Shintani M, Tada M, Kobayashi T et al (2007) Characterization of Rab45/RASEF containing EF-hand domain and a coiled-coil motif as a self-associating GTPase. Biochem Biophys Res Commun 357:661–667. doi:10.1016/j.bbrc.2007.03.206

    Article  CAS  PubMed  Google Scholar 

  6. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72. doi:10.1006/jmbi.2001.5378

    Article  CAS  PubMed  Google Scholar 

  7. Pereira-Leal JB, Seabra MC (2000) The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301:1077–1087. doi:10.1006/jmbi.2000.4010

    Article  CAS  PubMed  Google Scholar 

  8. de Lima Morais DA, Fang H, Rackham OJL et al (2011) SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Res 39:D427–D434. doi:10.1093/nar/gkq1130

    Article  PubMed Central  PubMed  Google Scholar 

  9. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14:48–54. doi:10.1093/bioinformatics/14.1.48

    Article  CAS  PubMed  Google Scholar 

  11. Bailey TL, Bodén M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. doi:10.1093/nar/gkp335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. PNAS 102:10557–10562. doi:10.1073/pnas.0409137102

    Article  PubMed Central  PubMed  Google Scholar 

  14. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi:10.1371/journal.pone.0009490

    Article  PubMed Central  PubMed  Google Scholar 

  15. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  16. Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. doi:10.1093/nar/gkt1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Andreeva A, Howorth D, Chandonia J-M et al (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36:D419–D425. doi:10.1093/nar/gkm993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Löytynoja A, Goldman N (2010) webprank: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics 11:579. doi:10.1186/1471-2105-11-579

    Article  PubMed Central  PubMed  Google Scholar 

  19. Cock PJA, Antao T, Chang JT et al (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423. doi:10.1093/bioinformatics/btp163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Stajich JE, Block D, Boulez K et al (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618. doi:10.1101/gr.361602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763. doi:10.1093/bioinformatics/14.9.755

    Article  CAS  PubMed  Google Scholar 

  22. Gough J, Chothia C (2002) SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res 30:268–272. doi:10.1093/nar/30.1.268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Benson DA, Clark K, Karsch-Mizrachi I et al (2014) GenBank. Nucleic Acids Res 42:D32–D37. doi:10.1093/nar/gkt1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198. doi:10.1093/nar/gkt1140

    Article  Google Scholar 

  26. Wu CH, Yeh L-SL, Huang H et al (2003) The protein information resource. Nucleic Acids Res 31:345–347. doi:10.1093/nar/gkg040

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  28. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152. doi:10.1146/annurev.genet.39.073003.112240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Moore I, Schell J, Palme K (1995) Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci 20:10–12

    Article  CAS  PubMed  Google Scholar 

  30. Pfeffer SR (2005) Structural clues to Rab GTPase functional diversity. J Biol Chem 280:15485–15488. doi:10.1074/jbc.R500003200

    Article  CAS  PubMed  Google Scholar 

  31. Khan AR, Ménétrey J (2013) Structural biology of Arf and Rab GTPases’ effector recruitment and specificity. Structure 21:1284–1297. doi:10.1016/j.str.2013.06.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mark Gouw for including the links to the sequence and motif files on the Rabifier website. This work was supported by a grant from Fundação para a Ciência e Tecnologia (PTDC/EBB-BIO/119006/2010)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José B. Pereira-Leal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Diekmann, Y., Pereira-Leal, J.B. (2015). Bioinformatic Approaches to Identifying and Classifying Rab Proteins. In: Li, G. (eds) Rab GTPases. Methods in Molecular Biology, vol 1298. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2569-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2569-8_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2568-1

  • Online ISBN: 978-1-4939-2569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics