Skip to main content

Targeted Gene Knockout and Essentiality Testing by Homologous Recombination

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1285))

Abstract

This chapter provides an updated experimental protocol for generating allelic exchange mutants of mycobacteria by two-step selection using the p2NIL/pGOAL system. The types of mutants that can be generated using this approach are targeted gene knockouts marked with a drug resistance gene, unmarked deletion mutants, or strains in which a point mutation/s has been introduced into the target gene. A method for assessing the essentiality of a gene for mycobacterial growth by means of allelic exchange is also described. This method, which utilizes a merodiploid strain carrying a second copy of the gene of interest on an integration vector, allows the exploration by means of complement switching of structure–function relationships in proteins that are essential for mycobacterial growth.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Muttucumaru DN, Parish T (2004) The molecular biology of recombination in Mycobacteria: what do we know and how can we use it? Curr Issues Mol Biol 6:145–158

    CAS  PubMed  Google Scholar 

  2. Lamrabet O, Drancourt M (2012) Genetic engineering of Mycobacterium tuberculosis: a review. Tuberculosis (Edinb) 92:365–376

    Article  CAS  Google Scholar 

  3. Machowski EE, Dawes S, Mizrahi V (2005) TB tools to tell the tale–molecular genetic methods for mycobacterial research. Int J Biochem Cell Biol 37:54–68

    Article  CAS  PubMed  Google Scholar 

  4. Nebenzahl-Guimaraes H, Jacobson KR, Farhat MR, Murray MB (2014) Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 69:331–342

    Article  CAS  PubMed  Google Scholar 

  5. Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, McAdam RA, Bloom BR, Hatfull GF, Jacobs WR (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94:10961–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bardarov S, Bardarov S, Pavelka MS, Sambandamurthy V, Larsen M, Tufariello J, Chan J, Hatfull G, Jacobs WR (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:3007–3017

    Article  CAS  PubMed  Google Scholar 

  7. Gordhan BG, Parish T (2001) Gene replacement using pretreated DNA. In: Parish T, Stoker NG (eds) Mycobacterium tuberculosis protocols, Methods in molecular medicine. Humana Press, NY, pp 77–92

    Chapter  Google Scholar 

  8. Kendall SL, Frita R (2009) Construction of targeted mycobacterial mutants by homologous recombination. In: Parish T, Brown AC (eds) Mycobacteria protocols, vol 465, 2nd edn, Methods in molecular biology. Humana Press, NY, pp 297–310

    Chapter  Google Scholar 

  9. Niederweis M (2009) Construction of unmarked deletion mutants in mycobacteria. In: Parish T, Brown AC (eds) Mycobacteria protocols, vol 465, 2nd edn, Methods in molecular biology. Humana Press, NY, pp 279–295

    Google Scholar 

  10. Parish T, Stoker NG (2000) Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975

    Article  CAS  PubMed  Google Scholar 

  11. Ioerger TR, Feng Y, Ganesula K, Chen X, Dobos KM, Fortune S, Jacobs WR, Mizrahi V, Parish T, Rubin E (2010) Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. J Bacteriol 192:3645–3653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cox JS, Chen B, McNeil M, Jacobs WR (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83

    Article  CAS  PubMed  Google Scholar 

  13. Domenech P, Reed MB (2009) Rapid and spontaneous loss of phthiocerol dimycocerosate (PDIM) from Mycobacterium tuberculosis grown in vitro: implications for virulence studies. Microbiology 155:3532–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107:9819–9824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pashley CA, Parish T (2003) Efficient switching of mycobacteriophage L5‐based integrating plasmids in Mycobacterium tuberculosis. FEMS Microbiol Lett 229:211–215

    Article  CAS  PubMed  Google Scholar 

  16. Springer B, Sander P, Sedlacek L, Ellrott K, Bottger EC (2001) Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int J Med Microbiol 290:669–675

    Article  CAS  PubMed  Google Scholar 

  17. Williams A, Guthlein C, Beresford N, Bottger EC, Springer B, Davis EO (2011) UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required. J Bacteriol 193:4487–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis EO, Springer B, Gopaul KK, Papavinasasundaram KG, Sander P, Bottger EC (2002) DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol Microbiol 46:791–800

    Article  CAS  PubMed  Google Scholar 

  19. Boshoff HI, Reed MB, Barry CE 3rd, Mizrahi V (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113:183–193

    Article  CAS  PubMed  Google Scholar 

  20. Warner DF, Ndwandwe DE, Abrahams GL, Kana BD, Machowski EE, Venclovas C, Mizrahi V (2010) Essential roles for imuA′- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:13093–13098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Warner DF, Savvi S, Mizrahi V, Dawes SS (2007) A riboswitch regulates expression of the coenzyme B12-independent methionine synthase in Mycobacterium tuberculosis: implications for differential methionine synthase function in strains H37Rv and CDC1551. J Bacteriol 189:3655–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD, Mizrahi V, Warner DF (2013) A vitamin B12 transporter in Mycobacterium tuberculosis. Open Biol 3:120175

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    Article  CAS  PubMed  Google Scholar 

  24. Parish T, Roberts G, Laval F, Schaeffer M, Daffé M, Duncan K (2007) Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but not Escherichia coli fabG. J Bacteriol 189:3721–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parish T, Stoker NG (2000) glnE is an essential gene in Mycobacterium tuberculosis. J Bacteriol 182:5715–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mowa MB, Warner DF, Kaplan G, Kana BD, Mizrahi V (2009) Function and regulation of class I ribonucleotide reductase-encoding genes in mycobacteria. J Bacteriol 191:985–995

    Article  CAS  PubMed  Google Scholar 

  27. Pena CE, Lee MH, Pedulla ML, Hatfull GF (1997) Characterization of the mycobacteriophage L5 attachment site, attP. J Mol Biol 266:76–92

    Article  CAS  PubMed  Google Scholar 

  28. Lydiate DJ, Ashby AM, Henderson DJ, Kieser HM, Hopwood DA (1989) Physical and genetic characterization of chromosomal copies of the Streptomyces coelicolor mini-circle. J Gen Microbiol 135:941–955

    CAS  Google Scholar 

  29. Dawes SS, Warner DF, Tsenova L, Timm J, McKinney JD, Kaplan G, Rubin H, Mizrahi V (2003) Ribonucleotide reduction in Mycobacterium tuberculosis: function and expression of genes encoding class Ib and class II ribonucleotide reductases. Infect Immun 71:6124–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Gaora P, Barnini S, Hayward C, Filley E, Rook G, Young D, Thole J (1997) Mycobacteria as immunogens. Development of expression vectors for use in multiple mycobacterial species. Med Princ Pract 6:91–96

    Google Scholar 

  31. Boshoff HI, Mizrahi V (2000) Expression of Mycobacterium smegmatis pyrazinamidase in Mycobacterium tuberculosis confers hypersensitivity to pyrazinamide and related amides. J Bacteriol 182:5479–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith AM, Klugman KP (1997) “Megaprimer” method of PCR-based mutagenesis: the concentration of megaprimer is a critical factor. Biotechniques 22:438–442

    CAS  PubMed  Google Scholar 

  33. Hinds J, Mahenthiralingam E, Kempsell KE, Duncan K, Stokes RW, Parish T, Stoker NG (1999) Enhanced gene replacement in mycobacteria. Microbiology 145:519–527

    Article  CAS  PubMed  Google Scholar 

  34. Wards BJ, Collins DM (1996) Electroporation at elevated temperatures substantially improves transformation efficiency of slow‐growing mycobacteria. FEMS Microbiol Lett 145:101–105

    Article  CAS  PubMed  Google Scholar 

  35. Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V, Dawes SS (2008) Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190:3886–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahenthiralingam E, Marklund BI, Brooks LA, Smith DA, Bancroft GJ, Stokes RW (1998) Site-directed mutagenesis of the 19-kilodalton lipoprotein antigen reveals no essential role for the protein in the growth and virulence of Mycobacterium intracellulare. Infect Immun 66:3626–3634

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown AC (2009) Gene switching and essentiality testing. In: Parish T, Brown AC (eds) Mycobacteria protocols, vol 465, 2nd edn, Methods in molecular biology. Humana Press, NY, pp 337–353

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from South African Medical Research Council (to V.M.), the National Research Foundation (to V.M.), and the Howard Hughes Medical Institute (Senior International Research Scholar’s grant to V.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Mizrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gopinath, K., Warner, D.F., Mizrahi, V. (2015). Targeted Gene Knockout and Essentiality Testing by Homologous Recombination. In: Parish, T., Roberts, D. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 1285. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2450-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2450-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2449-3

  • Online ISBN: 978-1-4939-2450-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics