Skip to main content

Phased Antenna Array Based on Nonlinear Delay Line Technology

  • Chapter
  • 726 Accesses

Abstract

True time delay(TTD) technology is necessary when beam scanning capability over broad bandwidth is required. The use of transmission lines periodically loaded with diodes, which is referred to as nonlinear delay line(NDL) technology, has been studied at UC-Davis and has been successfully demonstrated in phased antenna arrays, both in hybrid and monolithic embodiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Mailloux, Phased Array Antenna Handbook, Norwood, MA: Artech House, 1994.

    Google Scholar 

  2. Y. Ayasli, “Microwave switching with GaAs FETs,” Microwave J., vol.25, no.11, pp.61–74, Nov. 1982.

    Google Scholar 

  3. I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theory Tech., vol.43, no.9, pp.2378–2386, Sept. 1995.

    Article  Google Scholar 

  4. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” IEEE J. Lightwave Tech., vol.9, no.9, pp.1124–1131, 1991.

    Article  Google Scholar 

  5. D. Dolfi, M. Labeyrie, P. Joffre, and J. P. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett., vol.29, no.10, 1993.

    Google Scholar 

  6. W. M. Zhang, R. P. Hsia, C. Liang, G. Song, C. W. Domier, and N. C. Luhmann Jr., “Novel low-loss delay line for broadband phased antenna array applications,” IEEE Microwave Guided Wave Lett., vol.6, no.11, pp.395–397, 1996.

    Article  Google Scholar 

  7. R. P. Hsia, W. M. Zhang, C. W. Domier, and N. C. Luhmann Jr., “A hybrid nonlinear delay line-based broad-band phased antenna array system,” IEEE Microwave Guided Wave Lett., vol.8, no.5, pp.182–184, 1998.

    Article  Google Scholar 

  8. T. Yun and K. Chang, “A low-cost 8 to 26.5 GHz phased array antenna using a piezoelectric transducer controlled phase shifter,” IEEE Trans. Antennas Propagat., vol.49, no.9, pp.1290–98, Sept. 2001.

    Article  Google Scholar 

  9. D. Jeger and J. P. Becker, “Distributed variable-capacitance microstrip lines for microwave applications,” Appl. Phys., vol.9, no.9, pp.1124–1131, 1977.

    Google Scholar 

  10. C. J. Madden, M. J. W. Rodwell, R. A. Marsland, Y. C. Pao, and D. M. Bloom, “Generation of 3.5 ps fall time shock-waves on a monolithic GaAs nonlinear transmission line,” IEEE Electron. Dev. Lett., vol.9, pp.303–305, June 1988.

    Article  Google Scholar 

  11. C. J. Madden, R. A. Marsland, M. J. W. Rodwell, and D. M. Bloom, “Hyperabrupt-doped GaAs nonlinear transmission line for picosecond Shockwave generation,” Appl. Phys. Lett., vol.54, no.13, Mar. 1989.

    Google Scholar 

  12. M. J. W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman, and K. S. Giboney, “GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling,” IEEE Trans. Microwave Theory Tech., vol.39, no.7, 1991.

    Google Scholar 

  13. W. M. Zhang, “Nonlinear transmission lines and applications,” Ph.D. thesis, UCLA, 1996.

    Google Scholar 

  14. A. S. Nagra, J. Xu, E. Erker, and R. A. York, “Monolithic GaAs phase shifter circuit with low insertion loss and continuous 0–360° phase shift at 20 GHz,” IEEE Microwave Guided Wave Lett., vol.9, no.1, pp.31–33, Jan. 1999.

    Article  Google Scholar 

  15. W. Birk, H. Kibbel, C. Warns, A. Trasser, and H. Schumacher, “Efficient transient compression using an all-Silicon nonlinear transmission line,” IEEE Microwave Guided Wave Lett., vol.8, no.5, pp. 196–198, May 1998.

    Article  Google Scholar 

  16. I. Bahl and P. Bhartia, Microwave Solid State Circuit Design, Wiley-Interscience, 1988.

    Google Scholar 

  17. R. P. Hsia, “Microwave and millimeter wave radar and imaging technology and applications,” Ph.D. thesis, UCLA, 1998.

    Google Scholar 

  18. C. Liang, “Novel microwave and millimeterwave technologies for radar applications,” Ph.D. thesis, UCD, 2001.

    Google Scholar 

  19. R. Williams, Modern GaAs Processing Methods, Artech House, 1990.

    Google Scholar 

  20. C. C. Chang, C. Liang, R. P. Hsia, C. W. Domier, and N.C. Luhmann Jr., “True time phased antenna array system based on nonlinear delay line technology,” Asia-Pacific Microwave Conf., pp.795–800, Taiwan, 2001.

    Google Scholar 

  21. N. S. Barker and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microwave Theory Tech., vol.46, no.11, pp.1881–1998, Nov. 1998.

    Article  Google Scholar 

  22. A. Borgioli, Y. Liu, A. S. Nagra, and R. A. York, “Low-loss distributed MEMS phase shifter,” IEEE Microwave Guided Wave Lett., vol.10, no.1, pp.7–9, Jan. 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, CC., Liang, C., Luhmann, N.C. (2004). Phased Antenna Array Based on Nonlinear Delay Line Technology. In: Novel Technologies for Microwave and Millimeter — Wave Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4156-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4156-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5401-5

  • Online ISBN: 978-1-4757-4156-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics