Skip to main content

Transport: A Nonequilibrium Process

  • Chapter
  • 509 Accesses

Abstract

So far, the focus of this book has been on systems at equilibrium, where they experience no net flux of heat, work, or matter. Classical thermodynamics treats these systems easily. As we pointed out earlier, the greatest value of thermodynamics is that the behavior of a system can be predicted, even when the mechanistic details are not known. Homogeneous systems, at constant temperature and pressure, such as the solutions of electrolytes and macromolecules described so far, are composed of molecules that individually experience a variety of forces, both orienting and randomizing. On an instantaneous time scale, this might lead to net movements of mass or energy; however, the time average of the forces leads to the steady-state condition of equilibrium. The activity of a component is the reflection of the time-average molecular forces acting in a system at equilibrium. There are cases in which the time average of a force or forces acting on a system results in the flow of material. When these events occur, transport phenomena result. Transport phenomena and the principles associated with non-equilibrium behavior are extremely important in biological systems because, as we have already suggested, true equilibrium states are achieved only in death. Steady-state systems, which have constant fluxes, are common. These systems are treated by nonequilibrium methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Haase R. (1969) Thermodynamics of Irreversible Processes. Dover Publications, Inc., New York.

    Google Scholar 

  • Waldram, J. R. (1985) The Theory of Thermodynamics. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergethon, P.R. (1998). Transport: A Nonequilibrium Process. In: The Physical Basis of Biochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2963-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2963-4_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2965-8

  • Online ISBN: 978-1-4757-2963-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics