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Transport: A Nonequilibrium Process 

27.1 Transport: An Irreversible 
Process 

So far, the focus of this book has been on systems 
at equilibrium, where they experience no net flux 
of heat, work, or matter. Classical thermodynamics 
treats these systems easily. As we pointed out ear­
lier, the greatest value of thermodynamics is that 
the behavior of a system can be predicted, even 
when the mechanistic details are not known. Ho­
mogeneous systems, at constant temperature and 
pressure, such as the solutions of electrolytes and 
macromolecules described so far, are composed of 
molecules that individually experience a variety of 
forces, both orienting and randomizing. On an in­
stantaneous time scale, this might lead to net move­
ments of mass or energy; however, the time average 
of the forces leads to the steady-state condition of 
eqUilibrium. The activity of a component is the re­
flection of the time-average molecular forces acting 
in a system at eqUilibrium. There are cases in which 
the time average of a force or forces acting on a 
system results in the flow of material. When these 
events occur, transport phenomena result. Transport 
phenomena and the principles associated with non­
equilibrium behavior are extremely important in 
biological systems because, as we have already 
suggested, true equilibrium states are achieved only 
in death. Steady-state systems, which have constant 
fluxes, are common. These systems are treated by 
nonequilibrium methods. 

There are four phenomena associated with trans­
port. These include diffusion, electrical conduction, 
heat flow (conduction) and fluid flow (convection). 
Each of these represents net movement in the di­
rection of a gradient from a higher to a lower po­
tential. The gradients are due to differences in 
chemical potential, electrical potential, tempera­
ture, or pressure, respectively. All ofthese phenom­
ena are important in biological systems although 
our primary focus will be on diffusion and electrical 

conduction. The general equation that applies to all 
forms of transport events is written: 

aA 
1 = -B- = -BF 

x ax A 
(27.1) 

This equation states that the flow of material in the 
x direction, lx, is proportional by some constant B 
to the gradient of force of type A in the x direction. 
Similar equations could be written for each coor­
dinate, x,y, or z. 

Transport phenomena do not fall in the realm of 
classical thermodynamics. It is possible to analyze 
and study these nonequilibrium processes mecha­
nistically, that is, to calculate the forces on each 
molecule and then relate the combined actions of 
each and every molecule to the properties of the 
system. This approach can provide a qualitative 
picture of the events that lead to transport. There 
are substantial problems with a strict mechanistic 
approach. The first problem lies in defining the ac­
tual forces that may be acting on a particular mol­
ecule. As we will see, the dimensions of molecules 
are important parameters in calculating transport 
properties mechanistically. In a system of macro­
molecules, this can be a significant difficulty. In 
many cases, biochemists and biophysicists do not 
even know all the components that go into making 
a system, much less their dimensions. Furthermore, 
the approximations for studying the forces on mov­
ing objects, such as Stokes's law, which is a main­
stay of this approach, assume that the transport oc­
curs in a medium that is a continuum. Such an 
assumption, especially in the case of aqueous me­
dia, ignores the forces that act between a compo­
nent and its solvent and other components, leading 
to approximations that can be drastically at variance 
with reality. Ideally, a set of laws and equations 
parallel (or complementary) to those applied in the 
eqUilibrium studies already described can be found 
for cases where eqUilibrium is approached but not 
yet reached. Such a macroscopic set of empirically 
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(or phenomenologically) derived descriptions of 
properties (such as transport or kinetic rates) could 
complement the molecular-mechanistic approach. 
The study of nonequilibrium or irreversible ther­
modynamics provides this effective phenomeno­
logical approach. The subject of irreversible 
thermodynamics is a detailed and relatively com­
plicated subject, and we will only touch on the gen­
eral ideas and vocabulary here. Details can be 
found in the references listed at the end of the chap­
ter. 

27.2 Principles of Nonequilibrium 
Thermodynamics 

We have stated that the principles of thermodynam­
ics are universally valid. It was never stipulated that 
only systems at eqUilibrium could be treated. The 
reason that only eqUilibrium systems have been 
treated to this point has been one of definition and 
convenience. This occurred because some of the 
fundamental variables of state, namely, tempera­
ture, pressure, and entropy, were defined at equilib­
rium. They are more difficult to define during an 
irreversible or nonequilibrium process. Other vari­
ables of state do not suffer from this limitation and 
can be successfully used under any circumstances; 
these include volume, mass, energy, and amount of 
a component. Recognizing that variables like tem­
perature and pressure are intensive, whereas vol­
ume, mass, and energy are extensive can help ex­
plain this difference. An intensive property was 
defined as one in whose evaluation a small sample 
was representative of the entire system. This has 
meaning only if a system is at equilibrium. Con­
sider the example of two heat reservoirs of different 
temperature connected by a metal bar through 
which heat travels by thermal conduction. The flow 
of heat will be irreversible from the reservoir of 
greater temperature to the one of lower tempera­
ture. Choosing small samples at points along the 
bar will give different measurements for the tem­
perature. Clearly, this does not fit the requirement 
for an intensive variable. Consequently, the method 
used to define the temperature parameter must be 
different in this system because it is not equilib­
rium. A similar argument could be made for pres­
sure or entropy. Until the variables such as tem-
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perature and pressure can be defined in an 
irreversible system, thermodynamic calculations 
will not be successful. 

Through the use of a new postulate, local equi­
librium, this problem can be overcome. The system 
is divided into small cells, small enough that effec­
tively each point in the system is treated, but large 
enough so that each cell contains thousands of mol­
ecules. At a specific time, t, the cells are isolated 
from the system and allowed to come to equilib­
rium in time dt. Therefore, at time t + dt, mea­
surements can be made that give an equilibrium 
temperature or pressure. The variable of state at 
time t is then considered to be equal to the mea­
surable variable at time t + dt. The relationships 
derived by this postulate are then considered to be 
equivalent to the relationships derived from equi­
librium states. It must be realized that this postulate 
has its limitations. The presumption is that the vari­
ables in the system are not changing too rapidly. If 
the time, dt, necessary for the cell to achieve local 
equilibrium, approximates the time during which a 
change for the whole system may be measured, 
then the postulate cannot be reasonably applied. 

Entropy plays an important role in our systems 
of interest and will be seen as a driving force in 
transport phenomena. How does the treatment of 
irreversible systems work in the case of entropy? 
Instead of employing the relationship I1S = qrejT, 
it is more convenient to determine I1S from another 
relationship, for example: 

(27.2) 

Once the entropy of each cell is determined, the 
free energy for each cell can be determined: 

dG = V dP - S dT + ~ J.1, dn; (27.3) 

We know that reversible processes take an infinite 
amount of time to complete but do not lead to the 
production of entropy. Irreversible processes, on 
the other hand, occur in a finite time and create 
entropy. The rate of a process therefore can be de­
fined in terms of the rate of entropy production with 
respect to time, dS/dt. This means that, as a reaction 
or process proceeds in an isothermal system, there 
will be heat flow into and out of the surroundings 
and system. The differential change in entropy will 
be given by: 
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(27.4) 

where d,S is the entropy change in the system, and 
d,s is that in the surroundings. Further, dS will al­
ways be zero or greater. 

Historically, the formulation of irreversible ther­
modynamics started when Thomson (Lord Kelvin) 
was investigating the relationship between the flow 
of electricity and heat flow in thermocouples. If two 
dissimilar metal wires are twisted together at one 
end and a voltmeter is used to complete the circuit 
between the two, a voltage can be demonstrated 
arising from the contact of the two phases. This is 
the contact potential. If both ends are connected, 
there will be two junctions in the circuit. If these 
two junctions are isothermal and an electric current 
is passed between them, heat will be absorbed from 
the surroundings at one junction, and an equal 
amount of heat will be released at the other junc­
tion. This heat flow is reversible in that when the 
direction of the current is changed, the direction of 
heat flow also changes. This reversible heat is 
called the Peltier heat. A second source of heat is 
also produced during this process due to the resis­
tance of the metal to the flow of charge, and this 
heat is called the louie heat. Joule heat is irrevers­
ible. If the two junctions are now placed at two 
different temperatures, an electromotive force will 
exist between them. The electromotive force be­
tween the two junctions is called the Seebeck emf. 
If a charge is allowed to move around the circuit 
because of the Seebeck emf, experiment will dem­
onstrate that the Peltier heat appearing at the junc­
tions is not sufficient to account for the work ac­
complished. Thomson therefore proposed a second 
reversible heat associated with the flow of current, 
the Thomson heat. The Thomson and the Peltier 
heats are reversible and are accompanied by two 
irreversible heats in this system, one due to Joule 
heating and one due to heat conduction. Thomson 
treated the thermocouple as if it were a reversible 
heat engine in which only the Thomson and Peltier 
heats circulated. He described a series of relation­
ships that showed there was no entropy production, 
that is, that the two heats were equal and reversible. 
Thomson's theoretical treatment of this system was 
experimentally validated even though he ignored 
the two irreversible terms. Thomson himself rec­
ognized that the treatment was incomplete because 
the process described is an irreversible one; hence 
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the total entropy of the process must be positive. 
However, his analysis assumed that the entropy in­
crease associated with the Joule heating and the 
heat conduction would be positive and constant and 
therefore tested the hypothesis that the Peltier and 
Thomson heats did not add to the entropy genera­
tion of the process, that is, that they were indeed 
reversible. His result demonstrated that in transport 
phenomena there are reversible and irreversible 
processes. 

A unifying method for generally treating irre­
versible systems was given by Onsager in 1931. 
Onsager based his formulation on the principle of 
microscopic reversibility, which says that at equi­
librium any process and its reverse process are tak­
ing place on average at the same rate. He further 
assumed that for a process near equilibrium, equa­
tions may be written for the transport process in 
which the fluxes are linearly proportional to the 
forces. The theory is valid only for deviations from 
equilibrium where this linear relationship exists. 
Processes like the one just described can be gen­
erally treated by considering that in a transport 
process there are a number of flows that occur si­
multaneously. For example, in the case of thermo­
electricity, there is a flux of heat, 11, and one of 
current, 12, The two flux equations take the general 
form: 

(27.5) 

The term X" represents the force gradient, Ll} are the 
phenomenological coefficients, and L" are the direct 
coefficients. In this case, XI represents the tempera­
ture gradient and X2 the electrical gradient. The 
forces represented by Xx are thermodynamic driv­
ing forces and have the form: 

as = F 
axx x (27.6) 

This type of analysis indicates that when more than 
one gradient is causing flux, there will be a cou­
pling of the flows. The direct coefficients represent 
the fluxes due to the directly related gradient, that 
is, the flow of heat due to a thermal gradient. These 
always increase the entropy of the reservoirs. The 
cross terms, L,J' are the coupled flows caused by the 
gradient that is not directly related, that is, the flux 
of heat caused by the flow of electricity. Onsager 
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showed that the phenomenological coefficients are 
equal: 

(27.7) 

This equality is called the Onsager reciprocity re­
lation. The coupling between the flows indicates 
the interaction of one flow with another. The idea 
that some fluxes are independent while others oc­
curring simultaneously are interacting and reversi­
bly coupled is an important one in transport phe­
nomena. 

In mechanistic terms, transport can be thought of 
as the balance between the motion of a particle 
moving directly down a gradient of force and the 
scattering of the particle away from this direct path 
because of interactions between other forces or par­
ticles. Although the relationships of irreversible 
thermodynamics are probably the most accurate ex­
pression of the balance between direct and scatter-
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ing forces, there are two mechanistic models fre­
quently considered. One is the concept of the mean 
free path, and the other is based on relaxation time. 
In the next chapter we will focus on the concept of 
the mean free path and see how this approach can 
be used to examine diffusion in a solution. 

Further Reading 

Haase R. (1969) Thermodynamics of Irreversible Pro­
cesses. Dover Publications, Inc., New York. 

Waldram, J. R. (1985) The Theory of Thermodynamics. 
Cambridge University Press, Cambridge. 

Problems 

1. Explain in qualitative but succinct terms the 
following statement: "Entropy is the primary driv­
ing force in transport phenomena." What does this 
imply about the time scale of transport phenomena? 


