Skip to main content

Alcohol and the Alveolar Macrophage

  • Chapter
  • First Online:
  • 1217 Accesses

Part of the book series: Respiratory Medicine ((RM,volume 14))

Abstract

Compared to nonalcoholics, patients with a history of alcohol-use disorders have increased susceptibility to lung infections, leading to sepsis and in a disproportionately high percentage of cases the development of the acute respiratory distress syndrome. A primary cause for increased risk of respiratory infections in alcoholics is impaired immune function of the alveolar macrophage. Macrophages are key components of innate immunity in various tissues and serve as a first line of defense against invading pathogens by generating pro-inflammatory responses to kill microbes and facilitate the clearance of foreign debris from tissues. Macrophages can be characterized into three phenotypes based on their mechanism of activation and functional characteristics: classical activation (pro-inflammatory), alternative activation, and deactivation (the latter two are anti-inflammatory). Alcohol induces an alternatively activated phenotype in alveolar macrophages, which is characterized by increased oxidative stress, via up-regulation of transforming growth factor beta and NADPH oxidases and phagocytic dysfunction. A range of treatments that increase glutathione and zinc bioavailability, granulocyte–macrophage colony-stimulating factor signaling, or activation of nuclear factor erythroid 2-related factor 2 for the attenuation of alcohol-induced oxidative stress have been identified as strategies that can restore alveolar macrophage immune function in the alcoholic lung.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AUD:

Alcohol-use disorder

ARDS:

Acute respiratory distress syndrome

TGFβ:

Transforming growth factor beta

Noxes:

NADPH oxidases

GM-CSF:

Granulocyte/macrophage colony-stimulating factor

Nrf2:

Nuclear factor erythroid 2-related factor 2

ARDI:

Alcohol-Related Disease Impact

SA:

Small aggregate

LA:

Large aggregate

GBS:

Group B Streptococcus pneumoniae

IFNγ:

Interferon gamma

IL:

Interleukin

LPS:

Lipopolysaccharide

SOCS:

Suppressor of cytokine signaling

JAK:

Janus-associated kinase

TLR:

Toll-like receptor

ATF:

Activating transcription factor

TNFα:

Tumor necrosis factor alpha

PPARγ:

Peroxisome proliferator-activated receptor gamma

TZD:

Thiazolidinediones

iNOS:

Inducible nitric oxide synthase

COPD:

Chronic obstructive pulmonary disease

MRC1:

Mannose receptor 1

MHC:

Major histocompatibility complex

MT:

Metallothionine

Arg1:

Arginase 1

ARE:

Antioxidant response element

References

  1. Mokdad AH, Marks JS, Stroup DF, Gerberding JL. Actual causes of death in the United States, 2000. JAMA. 2004;291(10):1238–45.

    Article  PubMed  Google Scholar 

  2. Bouchery EE, Harwood HJ, Sacks JJ, Simon CJ, Brewer RD. Economic costs of excessive alcohol consumption in the U.S., 2006. Am J Prev Med. 2011;41(5):516–24.

    Article  PubMed  Google Scholar 

  3. Erickson SE, Martin GS, Davis JL, Matthay MA, Eisner MD, Network NNA. Recent trends in acute lung injury mortality: 1996–2005. Crit Care Med. 2009;37(5):1574–9.

    Article  PubMed  Google Scholar 

  4. Moss M. Epidemiology of sepsis: race, sex, and chronic alcohol abuse. Clin Infect Dis. 2005; 41 Suppl 7:S490–7.

    Article  PubMed  Google Scholar 

  5. Jong GM, Hsiue TR, Chen CR, Chang HY, Chen CW. Rapidly fatal outcome of bacteremic Klebsiella pneumoniae pneumonia in alcoholics. Chest. 1995;107(1):214–7.

    Article  PubMed  CAS  Google Scholar 

  6. Joshi PC, Guidot DM. The alcoholic lung: epidemiology, pathophysiology, and potential therapies. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L813–23.

    Article  PubMed  CAS  Google Scholar 

  7. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000; 342(18):1334–49.

    Article  PubMed  CAS  Google Scholar 

  8. Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289(16):2104–12.

    Article  PubMed  Google Scholar 

  9. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282(1):54–61.

    Article  PubMed  CAS  Google Scholar 

  10. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997; 99(5):944–52.

    Article  PubMed  CAS  Google Scholar 

  11. Network ARDS. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  12. Kamat PP, Slutsky A, Zhang H, Bechara RI, Brown LA, Garcia RC, et al. Mechanical ventilation exacerbates alveolar macrophage dysfunction in the lungs of ethanol-fed rats. Alcohol Clin Exp Res. 2005;29(8):1457–65.

    Article  PubMed  Google Scholar 

  13. Velasquez A, Bechara RI, Lewis JF, Malloy J, McCaig L, Brown LA, et al. Glutathione replacement preserves the functional surfactant phospholipid pool size and decreases sepsis-mediated lung dysfunction in ethanol-fed rats. Alcohol Clin Exp Res. 2002;26(8):1245–51.

    Article  PubMed  CAS  Google Scholar 

  14. Holguin F, Moss I, Brown LA, Guidot DM. Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats. J Clin Invest. 1998;101(4):761–8.

    Article  PubMed  CAS  Google Scholar 

  15. Guidot DM, Brown LA. Mitochondrial glutathione replacement restores surfactant synthesis and secretion in alveolar epithelial cells of ethanol-fed rats. Alcohol Clin Exp Res. 2000; 24(7):1070–6.

    Article  PubMed  CAS  Google Scholar 

  16. Guidot DM, Modelska K, Lois M, Jain L, Moss IM, Pittet JF, et al. Ethanol ingestion via glutathione depletion impairs alveolar epithelial barrier function in rats. Am J Physiol Lung Cell Mol Physiol. 2000;279(1):L127–35.

    PubMed  CAS  Google Scholar 

  17. Gauthier TW, Young PA, Gabelaia L, Tang SM, Ping XD, Harris FL, et al. In utero ethanol exposure impairs defenses against experimental group B streptococcus in the term Guinea pig lung. Alcohol Clin Exp Res. 2009;33(2):300–6.

    Article  PubMed  CAS  Google Scholar 

  18. Thomsen JL, Sogaard P. Bacteria in lung tissue from an autopsy population of alcoholics. Forensic Sci Int. 1999;99(1):53–9.

    Article  PubMed  CAS  Google Scholar 

  19. Tang SM, Gabelaia L, Gauthier TW, Brown LA. N-acetylcysteine improves group B streptococcus clearance in a rat model of chronic ethanol ingestion. Alcohol Clin Exp Res. 2009; 33(7):1197–201.

    Article  PubMed  CAS  Google Scholar 

  20. Mehta AJ, Guidot DM. Alcohol abuse, the alveolar macrophage and pneumonia. Am J Med Sci. 2012;343(3):244–7.

    Article  PubMed  Google Scholar 

  21. Mehta AJ, Joshi PC, Fan X, Brown LA, Ritzenthaler JD, Roman J, et al. Zinc supplementation restores PU.1 and Nrf2 nuclear binding in alveolar macrophages and improves redox balance and bacterial clearance in the lungs of alcohol-fed rats. Alcohol Clin Exp Res. 2011;35(8): 1519–28.

    PubMed  CAS  Google Scholar 

  22. Brown SD, Gauthier TW, Brown LA. Impaired terminal differentiation of pulmonary macrophages in a Guinea pig model of chronic ethanol ingestion. Alcohol Clin Exp Res. 2009;33(10):1782–93.

    Article  PubMed  CAS  Google Scholar 

  23. Laskin DL, Weinberger B, Laskin JD. Functional heterogeneity in liver and lung macrophages. J Leukoc Biol. 2001;70(2):163–70.

    PubMed  CAS  Google Scholar 

  24. Joshi PC, Applewhite L, Mitchell PO, Fernainy K, Roman J, Eaton DC, et al. GM-CSF receptor expression and signaling is decreased in lungs of ethanol-fed rats. Am J Physiol Lung Cell Mol Physiol. 2006;291(6):L1150–8.

    Article  PubMed  CAS  Google Scholar 

  25. Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science. 1994; 264(5159):713–6.

    Article  PubMed  CAS  Google Scholar 

  26. Lundahl J, Hallden G, Skold CM. Human blood monocytes, but not alveolar macrophages, reveal increased CD11b/CD18 expression and adhesion properties upon receptor-dependent activation. Eur Respir J. 1996;9(6):1188–94.

    Article  PubMed  CAS  Google Scholar 

  27. Trapnell BC, Whitsett JA. Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol. 2002;64:775–802.

    Article  PubMed  CAS  Google Scholar 

  28. Gordon S, Fraser I, Nath D, Hughes D, Clarke S. Macrophages in tissues and in vitro. Curr Opin Immunol. 1992;4(1):25–32.

    Article  PubMed  CAS  Google Scholar 

  29. Nusrat AR, Wright SD, Aderem AA, Steinman RM, Cohn ZA. Properties of isolated red pulp macrophages from mouse spleen. J Exp Med. 1988;168(4):1505–10.

    Article  PubMed  CAS  Google Scholar 

  30. Gordon S. The macrophage. Bioessays. 1995;17(11):977–86.

    Article  PubMed  CAS  Google Scholar 

  31. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12): 1796–808.

    PubMed  CAS  Google Scholar 

  32. Brown LA, Ping XD, Harris FL, Gauthier TW. Glutathione availability modulates alveolar macrophage function in the chronic ethanol-fed rat. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L824–32.

    Article  PubMed  CAS  Google Scholar 

  33. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.

    Article  PubMed  CAS  Google Scholar 

  34. Goerdt S, Orfanos CE. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity. 1999;10(2):137–42.

    Article  PubMed  CAS  Google Scholar 

  35. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.

    Article  PubMed  CAS  Google Scholar 

  36. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    Article  PubMed  CAS  Google Scholar 

  37. Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity. 2002;17(5):583–91.

    Article  PubMed  CAS  Google Scholar 

  38. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3(11):900–11.

    Article  PubMed  CAS  Google Scholar 

  39. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature. 2006;441(7090):173–8.

    Article  PubMed  CAS  Google Scholar 

  40. van oud Alblas AB, van Furth R. Origin, kinetics, and characteristics of pulmonary macrophages in the normal steady state. J Exp Med. 1979;149(6):1504–18.

    Article  Google Scholar 

  41. Marriott HM, Dockrell DH. The role of the macrophage in lung disease mediated by bacteria. Exp Lung Res. 2007;33(10):493–505.

    Article  PubMed  CAS  Google Scholar 

  42. Franke-Ullmann G, Pfortner C, Walter P, Steinmuller C, Lohmann-Matthes ML, Kobzik L. Characterization of murine lung interstitial macrophages in comparison with alveolar macrophages in vitro. J Immunol. 1996;157(7):3097–104.

    PubMed  CAS  Google Scholar 

  43. Denis M. Human monocytes/macrophages: NO or no NO? J Leukoc Biol. 1994;55(5):682–4.

    PubMed  CAS  Google Scholar 

  44. Hickman-Davis JM, O'Reilly P, Davis IC, Peti-Peterdi J, Davis G, Young KR, et al. Killing of Klebsiella pneumoniae by human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2002;282(5):L944–56.

    PubMed  CAS  Google Scholar 

  45. Marriott HM, Ali F, Read RC, Mitchell TJ, Whyte MK, Dockrell DH. Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB J. 2004;18(10):1126–8.

    PubMed  CAS  Google Scholar 

  46. Lekstrom-Himes JA, Gallin JI. Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med. 2000;343(23):1703–14.

    Article  PubMed  CAS  Google Scholar 

  47. Jennings JH, Linderman DJ, Hu B, Sonstein J, Curtis JL. Monocytes recruited to the lungs of mice during immune inflammation ingest apoptotic cells poorly. Am J Respir Cell Mol Biol. 2005;32(2):108–17.

    Article  PubMed  CAS  Google Scholar 

  48. Malur A, McCoy AJ, Arce S, Barna BP, Kavuru MS, Malur AG, et al. Deletion of PPAR gamma in alveolar macrophages is associated with a Th-1 pulmonary inflammatory response. J Immunol. 2009;182(9):5816–22.

    Article  PubMed  CAS  Google Scholar 

  49. Boe DM, Richens TR, Horstmann SA, Burnham EL, Janssen WJ, Henson PM, et al. Acute and chronic alcohol exposure impair the phagocytosis of apoptotic cells and enhance the pulmonary inflammatory response. Alcohol Clin Exp Res. 2010;34(10):1723–32.

    Article  PubMed  CAS  Google Scholar 

  50. Gonzalez-Rothi RJ, Harris JO. Effects of low-yield-cigarette smoke inhalation on rat lung macrophages. J Toxicol Environ Health. 1986;17(2–3):221–8.

    Article  PubMed  CAS  Google Scholar 

  51. Ortega E, Barriga C, Rodriguez AB. Decline in the phagocytic function of alveolar macrophages from mice exposed to cigarette smoke. Comp Immunol Microbiol Infect Dis. 1994; 17(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  52. Chawla A. Control of macrophage activation and function by PPARs. Circ Res. 2010; 106(10):1559–69.

    Article  PubMed  CAS  Google Scholar 

  53. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.

    Article  PubMed  CAS  Google Scholar 

  54. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23(4): 344–6.

    Article  PubMed  CAS  Google Scholar 

  55. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  PubMed  CAS  Google Scholar 

  56. Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76(3):509–13.

    Article  PubMed  CAS  Google Scholar 

  57. Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73(2):209–12.

    Article  PubMed  CAS  Google Scholar 

  58. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 1993; 259(5102):1739–42.

    Article  PubMed  CAS  Google Scholar 

  59. Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, et al. Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med. 2001;194(8):1123–40.

    Article  PubMed  CAS  Google Scholar 

  60. Odegaard JI, Chawla A. Mechanisms of macrophage activation in obesity-induced insulin resistance. Nat Clin Pract Endocrinol Metab. 2008;4(11):619–26.

    Article  PubMed  CAS  Google Scholar 

  61. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104(4):503–16.

    Article  PubMed  CAS  Google Scholar 

  62. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.

    Article  PubMed  CAS  Google Scholar 

  63. Abramson SL, Gallin JI. IL-4 inhibits superoxide production by human mononuclear phagocytes. J Immunol. 1990;144(2):625–30.

    PubMed  CAS  Google Scholar 

  64. Standiford TJ, Strieter RM, Chensue SW, Westwick J, Kasahara K, Kunkel SL. IL-4 inhibits the expression of IL-8 from stimulated human monocytes. J Immunol. 1990;145(5):1435–9.

    PubMed  CAS  Google Scholar 

  65. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–92.

    Article  PubMed  CAS  Google Scholar 

  66. Cao H, Wolff RG, Meltzer MS, Crawford RM. Differential regulation of class II MHC determinants on macrophages by IFN-gamma and IL-4. J Immunol. 1989;143(11):3524–31.

    PubMed  CAS  Google Scholar 

  67. Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol. 2001;53(4):386–92.

    Article  PubMed  CAS  Google Scholar 

  68. Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol. 2002;3:7.

    Article  PubMed  Google Scholar 

  69. Nair MG, Gallagher IJ, Taylor MD, Loke P, Coulson PS, Wilson RA, et al. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun. 2005;73(1):385–94.

    Article  PubMed  CAS  Google Scholar 

  70. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177(10):7303–11.

    PubMed  CAS  Google Scholar 

  71. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A. 2003;100(9):5336–41.

    Article  PubMed  CAS  Google Scholar 

  72. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh GG. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol. 2002;71(4):597–602.

    PubMed  CAS  Google Scholar 

  73. Raes G, Brys L, Dahal BK, Brandt J, Grooten J, Brombacher F, et al. Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol. 2005; 77(3):321–7.

    Article  PubMed  CAS  Google Scholar 

  74. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    Article  PubMed  CAS  Google Scholar 

  75. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol. 2001; 167(11):6533–44.

    PubMed  CAS  Google Scholar 

  76. Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol. 2001;166(4):2173–7.

    PubMed  CAS  Google Scholar 

  77. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5(4):e1000371.

    Article  PubMed  Google Scholar 

  78. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  PubMed  CAS  Google Scholar 

  79. Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D, et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007; 447(7140):92–6.

    Article  PubMed  CAS  Google Scholar 

  80. Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 2001;22(6):328–36.

    Article  PubMed  CAS  Google Scholar 

  81. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997;390(6658):350–1.

    Article  PubMed  CAS  Google Scholar 

  82. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002;2(12):965–75.

    Article  PubMed  CAS  Google Scholar 

  83. Fadok VA, Bratton DL, Henson PM. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest. 2001;108(7):957–62.

    PubMed  CAS  Google Scholar 

  84. Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell. 2005;122(5): 707–21.

    Article  PubMed  CAS  Google Scholar 

  85. Zhou L, Nazarian AA, Smale ST. Interleukin-10 inhibits interleukin-12 p40 gene transcription by targeting a late event in the activation pathway. Mol Cell Biol. 2004;24(6):2385–96.

    Article  PubMed  CAS  Google Scholar 

  86. Reichardt HM, Tuckermann JP, Gottlicher M, Vujic M, Weih F, Angel P, et al. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J. 2001;20(24):7168–73.

    Article  PubMed  CAS  Google Scholar 

  87. Brown SD, Brown LA. Ethanol induced TGF-β1 and ROS production are necessary for ethanol induced alveolar macrophage dysfunction and induction of alternative activation. Alcohol Clin Exp Res. 2012;36(11):1952–62.

    Article  PubMed  CAS  Google Scholar 

  88. Burnham EL, Moss M, Ritzenthaler JD, Roman J. Increased fibronectin expression in lung in the setting of chronic alcohol abuse. Alcohol Clin Exp Res. 2007;31(4):675–83.

    PubMed  CAS  Google Scholar 

  89. Brown LA, Harris FL, Ping XD, Gauthier TW. Chronic ethanol ingestion and the risk of acute lung injury: a role for glutathione availability? Alcohol. 2004;33(3):191–7.

    Article  PubMed  CAS  Google Scholar 

  90. Moss M, Guidot DM, Wong-Lambertina M, Ten Hoor T, Perez RL, Brown LA. The effects of chronic alcohol abuse on pulmonary glutathione homeostasis. Am J Respir Crit Care Med. 2000;161(2 Pt 1):414–9.

    Article  PubMed  CAS  Google Scholar 

  91. Yeligar SM, Harris FL, Hart CM, Brown LA. Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases. J Immunol. 2012;188(8):3648–57.

    Article  PubMed  CAS  Google Scholar 

  92. Strand TA, Hollingshead SK, Julshamn K, Briles DE, Blomberg B, Sommerfelt H. Effects of zinc deficiency and pneumococcal surface protein a immunization on zinc status and the risk of severe infection in mice. Infect Immun. 2003;71(4):2009–13.

    Article  PubMed  CAS  Google Scholar 

  93. Joshi PC, Mehta A, Jabber WS, Fan X, Guidot DM. Zinc deficiency mediates alcohol-induced alveolar epithelial and macrophage dysfunction in rats. Am J Respir Cell Mol Biol. 2009; 41(2):207–16.

    Article  PubMed  CAS  Google Scholar 

  94. Berclaz PY, Shibata Y, Whitsett JA, Trapnell BC. GM-CSF, via PU.1, regulates alveolar macrophage Fcgamma R-mediated phagocytosis and the IL-18/IFN-gamma-mediated molecular connection between innate and adaptive immunity in the lung. Blood. 2002;100(12): 4193–200.

    Article  PubMed  CAS  Google Scholar 

  95. Joshi PC, Applewhite L, Ritzenthaler JD, Roman J, Fernandez AL, Eaton DC, et al. Chronic ethanol ingestion in rats decreases granulocyte-macrophage colony-stimulating factor receptor expression and downstream signaling in the alveolar macrophage. J Immunol. 2005; 175(10):6837–45.

    PubMed  CAS  Google Scholar 

  96. Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 2009; 47(9):1239–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lou Ann S. Brown Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yeligar, S.M., Liang, Y., Brown, L.A.S. (2014). Alcohol and the Alveolar Macrophage. In: Guidot, D., Mehta, A. (eds) Alcohol Use Disorders and the Lung. Respiratory Medicine, vol 14. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8833-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8833-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8832-3

  • Online ISBN: 978-1-4614-8833-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics