Skip to main content

Maternal Alcohol Use and the Neonate

  • Chapter
  • First Online:
Alcohol Use Disorders and the Lung

Abstract

Maternal alcohol use and abuse can have devastating consequences to fetal development and outcomes. Although there is widespread societal pressure, particularly within developed countries, against the ingestion of any alcohol during pregnancy, many women may drink heavily before they recognize they are pregnant or may continue to do so despite their awareness. Much of the focus among healthcare professionals and biomedical investigators has been on the fetal alcohol syndrome (FAS), more commonly now referred to as the fetal alcohol spectrum disorder (FASD), which in its most advanced form is manifested by craniofacial abnormalities and severe neurocognitive deficits. However, FAS and FASD are disorders in term infants, and it is now being recognized that maternal alcohol ingestion appears to impact the risk for both premature delivery as well as medical complications associated with neonatal prematurity. In particular, experimental and clinical evidence is beginning to elucidate the mechanisms by which maternal alcohol ingestion can increase the already significant oxidative stress within the neonatal lung and impair host immune functions. As a consequence, the premature neonate with significant exposure to alcohol in utero appears to be at an even greater risk of developing serious infectious complications. Further, experimental models suggest that maternal alcohol ingestion can impair prenatal lung development and, if these findings translate to the human condition, could thereby render the premature infant at increased risk for adverse complications including bronchopulmonary dysplasia and late-onset sepsis. This chapter provides a brief overview of the epidemiology of maternal alcohol use during pregnancy and highlights some of the experimental and clinical evidence that show that such use can have devastating effects on neonatal outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lester BM, ElSohly M, Wright LL, Smeriglio VL, Verter J, Bauer CR, et al. The Maternal Lifestyle Study: drug use by meconium toxicology and maternal self-report. Pediatrics. 2001; 107(2):309–17.

    PubMed  CAS  Google Scholar 

  2. Gauthier TW, Drews-Botsch C, Falek A, Coles C, Brown LA. Maternal alcohol abuse and neonatal infection. Alcohol Clin Exp Res. 2005;29(6):1035–43.

    PubMed  Google Scholar 

  3. Hutchinson D, Moore EA, Breen C, Burns L, Mattick RP. Alcohol use in pregnancy: Prevalence and predictors in the Longitudinal Study of Australian Children. Drug Alcohol Rev. 2013 May 15. doi:10.1111/dar.12027 [Epub ahead of print].

    Google Scholar 

  4. de Wit M, Goldberg A, Chelmow D. Alcohol use disorders and hospital-acquired infections in women undergoing cesarean delivery. Obstet Gynecol. 2013;122(1):72–8.

    PubMed  Google Scholar 

  5. Bearer CF, Jacobson JL, Jacobson SW, Barr D, Croxford J, Molteno CD, et al. Validation of a new biomarker of fetal exposure to alcohol. J Pediatr. 2003;143(4):463–9.

    PubMed  CAS  Google Scholar 

  6. Szabo G, Bakhireva LN, Savage DD. Focus on: biomarkers of fetal alcohol exposure and fetal alcohol effects. Alcohol Res Health. 2011;34(1):56–63.

    PubMed  Google Scholar 

  7. Bradley KA, Boyd-Wickizer J, Powell SH, Burman ML. Alcohol screening questionnaires in women: a critical review. JAMA. 1998;280(2):166–71.

    PubMed  CAS  Google Scholar 

  8. Maisto SA, Connors GJ, Allen JP. Contrasting self-report screens for alcohol problems: a review. Alcohol Clin Exp Res. 1995;19(6):1510–6.

    PubMed  CAS  Google Scholar 

  9. Sarkola T, Eriksson CJ, Niemela O, Sillanaukee P, Halmesmaki E. Mean cell volume and gamma-glutamyl transferase are superior to carbohydrate-deficient transferrin and hemoglobin-acetaldehyde adducts in the follow-up of pregnant women with alcohol abuse. Acta Obstet Gynecol Scand. 2000;79(5):359–66.

    PubMed  CAS  Google Scholar 

  10. Stoler JM, Huntington KS, Peterson CM, Peterson KP, Daniel P, Aboagye KK, et al. The prenatal detection of significant alcohol exposure with maternal blood markers. J Pediatr. 1998;133(3):346–52.

    PubMed  CAS  Google Scholar 

  11. Bakhireva LN, Cano S, Rayburn WF, Savich RD, Leeman L, Anton RF, et al. Advanced gestational age increases serum carbohydrate-deficient transferrin levels in abstinent pregnant women. Alcohol Alcohol. 2012;47(6):683–7. PMCID: 3472616.

    PubMed  CAS  Google Scholar 

  12. Chang G, Goetz MA, Wilkins-Haug L, Berman S. Identifying prenatal alcohol use: screening instruments versus clinical predictors. Am J Addict. 1999;8(2):87–93.

    PubMed  CAS  Google Scholar 

  13. Russell M, Martier SS, Sokol RJ, Mudar P, Jacobson S, Jacobson J. Detecting risk drinking during pregnancy: a comparison of four screening questionnaires. Am J Public Health. 1996;86(10):1435–9.

    PubMed  CAS  Google Scholar 

  14. Bearer CF, Lee S, Salvator AE, Minnes S, Swick A, Yamashita T, et al. Ethyl linoleate in meconium: a biomarker for prenatal ethanol exposure. Alcohol Clin Exp Res. 1999;23(3): 487–93.

    PubMed  CAS  Google Scholar 

  15. Lange LG, Bergmann SR, Sobel BE. Identification of fatty acid ethyl esters as products of rabbit myocardial ethanol metabolism. J Biol Chem. 1981;256(24):12968–73.

    PubMed  CAS  Google Scholar 

  16. Laposata M. Fatty acid ethyl esters: nonoxidative ethanol metabolites with emerging biological and clinical significance. Lipids. 1999;34(Suppl):S281–5.

    PubMed  CAS  Google Scholar 

  17. Best CA, Laposata M. Fatty acid ethyl esters: toxic non-oxidative metabolites of ethanol and markers of ethanol intake. Front Biosci. 2003;8:e202–17.

    PubMed  CAS  Google Scholar 

  18. Kaphalia BS, Cai P, Khan MF, Okorodudu AO, Ansari GA. Fatty acid ethyl esters: markers of alcohol abuse and alcoholism. Alcohol. 2004;34(2–3):151–8.

    PubMed  CAS  Google Scholar 

  19. Bearer CF. Markers to detect drinking during pregnancy. Alcohol Res Health. 2001;25(3):210–8.

    PubMed  CAS  Google Scholar 

  20. Klein J, Karaskov T, Korent G. Fatty acid ethyl esters: a novel biologic marker for heavy in utero ethanol exposure: a case report. Ther Drug Monit. 1999;21(6):644–6.

    PubMed  CAS  Google Scholar 

  21. Refaai MA, Nguyen PN, Cluette-Brown JE, Laposata M. Ethyl arachidonate is the predominant fatty acid ethyl ester in the brains of alcohol-intoxicated subjects at autopsy. Lipids. 2003;38(3):269–73.

    PubMed  CAS  Google Scholar 

  22. Refaai MA, Nguyen PN, Steffensen TS, Evans RJ, Cluette-Brown JE, Laposata M. Liver and adipose tissue fatty acid ethyl esters obtained at autopsy are postmortem markers for premortem ethanol intake. Clin Chem. 2002;48(1):77–83.

    PubMed  CAS  Google Scholar 

  23. Caprara DL, Klein J, Koren G. Baseline measures of fatty acid ethyl esters in hair of neonates born to abstaining or mild social drinking mothers. Ther Drug Monit. 2005;27(6):811–5.

    PubMed  CAS  Google Scholar 

  24. Kulaga V, Pragst F, Fulga N, Koren G. Hair analysis of fatty acid ethyl esters in the detection of excessive drinking in the context of fetal alcohol spectrum disorders. Ther Drug Monit. 2009;31(2):261–6.

    PubMed  CAS  Google Scholar 

  25. Peterson J, Kirchner HL, Xue W, Minnes S, Singer LT, Bearer CF. Fatty acid ethyl esters in meconium are associated with poorer neurodevelopmental outcomes to two years of age. J Pediatr. 2008;152(6):788–92. PMCID: 2452987.

    PubMed  CAS  Google Scholar 

  26. Kwak HS, Han JY, Ahn HK, Kim MH, Ryu HM, Kim MY, et al. Blood levels of phosphatidylethanol in pregnant women reporting positive alcohol ingestion, measured by an improved LC-MS/MS analytical method. Clin Toxicol (Phila). 2012;50(10):886–91.

    CAS  Google Scholar 

  27. Bakhireva LN, Savich RD, Raisch DW, Cano S, Annett RD, Leeman L, et al. The feasibility and cost of neonatal screening for prenatal alcohol exposure by measuring phosphatidylethanol in dried blood spots. Alcohol Clin Exp Res. 2013;37(6):1008–15. PMCID: 3661684.

    PubMed  CAS  Google Scholar 

  28. Abel EL, Sokol RJ. A revised conservative estimate of the incidence of FAS and its economic impact. Alcohol Clin Exp Res. 1991;15(3):514–24.

    PubMed  CAS  Google Scholar 

  29. Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet. 1973;302(7836):999–1001.

    PubMed  CAS  Google Scholar 

  30. Little BB, Snell LM, Rosenfeld CR, Gilstrap 3rd LC, Gant NF. Failure to recognize fetal alcohol syndrome in newborn infants. Am J Dis Child. 1990;144(10):1142–6.

    PubMed  CAS  Google Scholar 

  31. Mattson SN, Riley EP, Gramling L, Delis DC, Jones KL. Heavy prenatal alcohol exposure with or without physical features of fetal alcohol syndrome leads to IQ deficits. J Pediatr. 1997;131(5):718–21.

    PubMed  CAS  Google Scholar 

  32. O’Leary CM, Jacoby PJ, Bartu A, D’Antoine H, Bower C. Maternal alcohol use and sudden infant death syndrome and infant mortality excluding SIDS. Pediatrics. 2013;131(3):e770–8.

    PubMed  Google Scholar 

  33. Sokol RJ, Janisse JJ, Louis JM, Bailey BN, Ager J, Jacobson SW, et al. Extreme prematurity: an alcohol-related birth effect. Alcohol Clin Exp Res. 2007;31(6):1031–7.

    PubMed  Google Scholar 

  34. Martinelli P, Sarno L, Maruotti GM, Paludetto R. Chorioamnionitis and prematurity: a critical review. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:29–31.

    PubMed  Google Scholar 

  35. Aly H, Alhabashi G, Hammad TA, Owusu-Ansah S, Bathgate S, Mohamed M. ABO phenotype and other risk factors associated with chorioamnionitis. J Pediatr. 2008;153(1):16–8.

    PubMed  CAS  Google Scholar 

  36. Rickert VI, Wiemann CM, Hankins GD, McKee JM, Berenson AB. Prevalence and risk factors of chorioamnionitis among adolescents. Obstet Gynecol. 1998;92(2):254–7.

    PubMed  CAS  Google Scholar 

  37. Han CS, Schatz F, Lockwood CJ. Abruption-associated prematurity. Clin Perinatol. 2011;38(3):407–21. PMCID: 3175371.

    PubMed  Google Scholar 

  38. Tikkanen M, Nuutila M, Hiilesmaa V, Paavonen J, Ylikorkala O. Clinical presentation and risk factors of placental abruption. Acta Obstet Gynecol Scand. 2006;85(6):700–5.

    PubMed  Google Scholar 

  39. Hardy G, Benjamin A, Abenhaim HA. Effect of induced abortions on early preterm births and adverse perinatal outcomes. J Obstet Gynaecol Can. 2013;35(2):138–43.

    PubMed  Google Scholar 

  40. Henriet L, Kaminski M. Impact of induced abortions on subsequent pregnancy outcome: the 1995 French national perinatal survey. BJOG. 2001;108(10):1036–42.

    PubMed  CAS  Google Scholar 

  41. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443–56. PMCID: 2982806.

    PubMed  Google Scholar 

  42. Alarcon A, Pena P, Salas S, Sancha M, Omenaca F. Neonatal early onset Escherichia coli sepsis: trends in incidence and antimicrobial resistance in the era of intrapartum antimicrobial prophylaxis. Pediatr Infect Dis J. 2004;23(4):295–9.

    PubMed  Google Scholar 

  43. Cordero L, Rau R, Taylor D, Ayers LW. Enteric gram-negative bacilli bloodstream infections: 17 years’ experience in a neonatal intensive care unit. Am J Infect Control. 2004;32(4):189–95.

    PubMed  Google Scholar 

  44. Benjamin Jr DK, Stoll BJ, Fanaroff AA, McDonald SA, Oh W, Higgins RD, et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics. 2006;117(1):84–92.

    PubMed  Google Scholar 

  45. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110(2 Pt 1):285–91.

    PubMed  Google Scholar 

  46. Stoll BJ, Holman RC, Schuchat A. Decline in sepsis-associated neonatal and infant deaths in the United States, 1979 through 1994. Pediatrics. 1998;102(2):e18.

    PubMed  CAS  Google Scholar 

  47. Adams-Chapman I, Stoll BJ. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr Opin Infect Dis. 2006;19(3):290–7.

    PubMed  Google Scholar 

  48. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. Jama. 2004;292(19):2357–65.

    PubMed  CAS  Google Scholar 

  49. Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, Staat MA, et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med. 2009;360(6):588–98.

    PubMed  CAS  Google Scholar 

  50. From the American Academy of Pediatrics. Policy statements—modified recommendations for use of palivizumab for prevention of respiratory syncytial virus infections. Pediatrics. 2009;124(6):1694–701.

    Google Scholar 

  51. Izurieta HS, Thompson WW, Kramarz P, Shay DK, Davis RL, DeStefano F, et al. Influenza and the rates of hospitalization for respiratory disease among infants and young children. N Engl J Med. 2000;342(4):232–9.

    PubMed  CAS  Google Scholar 

  52. Louie JK, Schechter R, Honarmand S, Guevara HF, Shoemaker TR, Madrigal NY, et al. Severe pediatric influenza in California, 2003–2005: implications for immunization recommendations. Pediatrics. 2006;117(4):e610–8.

    PubMed  Google Scholar 

  53. Johnson S, Knight R, Marmer DJ, Steele RW. Immune deficiency in fetal alcohol syndrome. Pediatr Res. 1981;15(6):908–11.

    PubMed  CAS  Google Scholar 

  54. Wang X, Ho WZ. Drugs of abuse and HIV infection/replication: implications for mother-fetus transmission. Life Sci. 2011;88(21–22):972–9. PMCID: 3100448.

    PubMed  CAS  Google Scholar 

  55. Gauthier TW, Manar MH, Brown LAS. Is maternal alcohol use a risk factor for early-onset sepsis in the premature newborn? Alcohol. 2004;33:139–45.

    PubMed  CAS  Google Scholar 

  56. Bustani P, Kotecha S. Role of cytokines in hyperoxia mediated inflammation in the developing lung. Front Biosci. 2003;8:s694–704.

    PubMed  CAS  Google Scholar 

  57. De Dooy JJ, Mahieu LM, Van Bever HP. The role of inflammation in the development of chronic lung disease in neonates. Eur J Pediatr. 2001;160(8):457–63.

    PubMed  Google Scholar 

  58. Jobe AH, Ikegami M. Mechanisms initiating lung injury in the preterm. Early Hum Dev. 1998;53(1):81–94.

    PubMed  CAS  Google Scholar 

  59. Jobe AH, Ikegami M. Prevention of bronchopulmonary dysplasia. Curr Opin Pediatr. 2001;13(2):124–9.

    PubMed  CAS  Google Scholar 

  60. Lyon A. Chronic lung disease of prematurity. The role of intra-uterine infection. Eur J Pediatr. 2000;159(11):798–802.

    PubMed  CAS  Google Scholar 

  61. McGill J, Meyerholz DK, Edsen-Moore M, Young B, Coleman RA, Schlueter AJ, et al. Fetal exposure to ethanol has long-term effects on the severity of influenza virus infections. J Immunol. 2009;182(12):7803–8. PMCID: 2692078.

    PubMed  CAS  Google Scholar 

  62. Zhang X, Sliwowska JH, Weinberg J. Prenatal alcohol exposure and fetal programming: effects on neuroendocrine and immune function. Exp Biol Med (Maywood). 2005;230(6): 376–88.

    CAS  Google Scholar 

  63. Lazic T, Wyatt TA, Matic M, Meyerholz DK, Grubor B, Gallup JM, et al. Maternal alcohol ingestion reduces surfactant protein A expression by preterm fetal lung epithelia. Alcohol. 2007;41(5):347–55.

    PubMed  CAS  Google Scholar 

  64. Sozo F, O’Day L, Maritz G, Kenna K, Stacy V, Brew N, et al. Repeated ethanol exposure during late gestation alters the maturation and innate immune status of the ovine fetal lung. Am J Physiol Lung Cell Mol Physiol. 2009;296(3):L510–8.

    PubMed  CAS  Google Scholar 

  65. Sorensen GL, Husby S, Holmskov U. Surfactant protein A and surfactant protein D variation in pulmonary disease. Immunobiology. 2007;212(4–5):381–416.

    PubMed  CAS  Google Scholar 

  66. Fels AO, Cohn ZA. The alveolar macrophage. J Appl Physiol. 1986;60(2):353–69.

    PubMed  CAS  Google Scholar 

  67. Standiford TJ, Kunkel SL, Lukacs NW, Greenberger MJ, Danforth JM, Kunkel RG, et al. Macrophage inflammatory protein-1 alpha mediates lung leukocyte recruitment, lung capillary leak, and early mortality in murine endotoxemia. J Immunol. 1995;155(3):1515–24.

    PubMed  CAS  Google Scholar 

  68. Bellanti JA, Zeligs BJ. Developmental aspects of pulmonary defenses in children. Pediatr Pulmonol Suppl. 1995;11:79–80.

    PubMed  CAS  Google Scholar 

  69. Hall SL, Sherman MP. Intrapulmonary bacterial clearance of type III group B streptococcus is reduced in preterm compared with term rabbits and occurs independent of antibody. Am Rev Respir Dis. 1992;145(5):1172–7.

    PubMed  CAS  Google Scholar 

  70. Prieto J, Eklund A, Patarroyo M. Regulated expression of integrins and other adhesion molecules during differentiation of monocytes into macrophages. Cell Immunol. 1994;156(1):191–211.

    PubMed  CAS  Google Scholar 

  71. Bonfield TL, Raychaudhuri B, Malur A, Abraham S, Trapnell BC, Kavuru MS, et al. PU.1 regulation of human alveolar macrophage differentiation requires granulocyte-macrophage colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol. 2003;285(5):L1132–6.

    PubMed  CAS  Google Scholar 

  72. Kramer BW, Ikegami M, Moss TJ, Nitsos I, Newnham JP, Jobe AH. Antenatal betamethasone changes cord blood monocyte responses to endotoxin in preterm lambs. Pediatr Res. 2004; 55(5):764–8.

    PubMed  CAS  Google Scholar 

  73. Kramer BW, Ikegami M, Moss TJ, Nitsos I, Newnham JP, Jobe AH. Endotoxin-induced chorioamnionitis modulates innate immunity of monocytes in preterm sheep. Am J Respir Crit Care Med. 2005;171(1):73–7.

    PubMed  Google Scholar 

  74. Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL. Influence of copper on early development: prenatal and postnatal considerations. Biofactors. 2010;36(2):136–52.

    PubMed  CAS  Google Scholar 

  75. Chandra RK. Nutrition and the immune system from birth to old age. Eur J Clin Nutr. 2002;56 Suppl 3:S73–6.

    PubMed  CAS  Google Scholar 

  76. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60.

    PubMed  Google Scholar 

  77. Mori R, Ota E, Middleton P, Tobe-Gai R, Mahomed K, Bhutta ZA. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev. 2012;7, CD000230.

    PubMed  Google Scholar 

  78. Chaffee BW, King JC. Effect of zinc supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:118–37.

    PubMed  Google Scholar 

  79. Knoell DL, Liu MJ. Impact of zinc metabolism on innate immune function in the setting of sepsis. Int J Vitam Nutr Res. 2010;80(4–5):271–7. PMCID: 3279174.

    PubMed  CAS  Google Scholar 

  80. Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007;98 Suppl 1:S29–35.

    PubMed  CAS  Google Scholar 

  81. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4(2):176–90.

    PubMed  CAS  Google Scholar 

  82. Picciano MF. Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr. 2003;133(6):1997S–2002.

    PubMed  Google Scholar 

  83. Keen CL, Uriu-Adams JY, Skalny A, Grabeklis A, Grabeklis S, Green K, et al. The plausibility of maternal nutritional status being a contributing factor to the risk for fetal alcohol spectrum disorders: the potential influence of zinc status as an example. Biofactors. 2010;36(2): 125–35. PMCID: 2927848.

    PubMed  CAS  Google Scholar 

  84. Finer LB, Henshaw SK. Disparities in rates of unintended pregnancy in the United States, 1994 and 2001. Perspect Sex Reprod Health. 2006;38(2):90–6.

    PubMed  Google Scholar 

  85. Kvigne VL, Leonardson GR, Borzelleca J, Neff-Smith M, Welty TK. Hospitalizations of children who have fetal alcohol syndrome or incomplete fetal alcohol syndrome. S D Med. 2009;62(3):97. 99, 101–3.

    PubMed  Google Scholar 

  86. Mehta AJ, Guidot DM. Alcohol abuse, the alveolar macrophage and pneumonia. Am J Med Sci. 2012;343(3):244–7. PMCID: 3288531.

    PubMed  Google Scholar 

  87. Mehta AJ, Joshi PC, Fan X, Brown LA, Ritzenthaler JD, Roman J, et al. Zinc supplementation restores PU.1 and Nrf2 nuclear binding in alveolar macrophages and improves redox balance and bacterial clearance in the lungs of alcohol-fed rats. Alcohol Clin Exp Res. 2011;35(8):1519–28. PMCID: 3128659.

    PubMed  CAS  Google Scholar 

  88. Brocardo PS, Gil-Mohapel J, Christie BR. The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res Rev. 2011;67(1–2):209–25.

    PubMed  CAS  Google Scholar 

  89. Gemma S, Vichi S, Testai E. Individual susceptibility and alcohol effects:biochemical and genetic aspects. Ann Ist Super Sanita. 2006;42(1):8–16.

    PubMed  CAS  Google Scholar 

  90. Gemma S, Vichi S, Testai E. Metabolic and genetic factors contributing to alcohol induced effects and fetal alcohol syndrome. Neurosci Biobehav Rev. 2007;31(2):221–9.

    PubMed  CAS  Google Scholar 

  91. Brzezinski MR, Boutelet-Bochan H, Person RE, Fantel AG, Juchau MR. Catalytic activity and quantitation of cytochrome P-450 2E1 in prenatal human brain. J Pharmacol Exp Ther. 1999;289(3):1648–53.

    PubMed  CAS  Google Scholar 

  92. Rasheed A, Hines RN, McCarver-May DG. Variation in induction of human placental CYP2E1: possible role in susceptibility to fetal alcohol syndrome? Toxicol Appl Pharmacol. 1997;144(2):396–400.

    PubMed  CAS  Google Scholar 

  93. Gundogan F, Elwood G, Mark P, Feijoo A, Longato L, Tong M, et al. Ethanol-induced oxidative stress and mitochondrial dysfunction in rat placenta: relevance to pregnancy loss. Alcohol Clin Exp Res. 2010;34(3):415–23.

    PubMed  CAS  Google Scholar 

  94. Wentzel P, Rydberg U, Eriksson UJ. Antioxidative treatment diminishes ethanol-induced congenital malformations in the rat. Alcohol Clin Exp Res. 2006;30(10):1752–60.

    PubMed  CAS  Google Scholar 

  95. Ojeda ML, Nogales F, Jotty K, Barrero MJ, Murillo ML, Carreras O. Dietary selenium plus folic acid as an antioxidant therapy for ethanol-exposed pups. Birth Defects Res B Dev Reprod Toxicol. 2009;86(6):490–5.

    PubMed  CAS  Google Scholar 

  96. Coyle P, Martin SA, Carey LC, Summers BL, Rofe AM. Ethanol-mediated fetal dysmorphology and its relationship to the ontogeny of maternal liver metallothionein. Alcohol Clin Exp Res. 2009;33(6):1051–8.

    PubMed  CAS  Google Scholar 

  97. Yan D, Dong J, Sulik KK, Chen SY. Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol-induced apoptosis in cranial neural crest cells. Biochem Pharmacol. 2010;80(1):144–9.

    PubMed  CAS  Google Scholar 

  98. Sari Y. Activity-dependent neuroprotective protein-derived peptide, NAP, preventing alcohol-induced apoptosis in fetal brain of C57BL/6 mouse. Neuroscience. 2009;158(4):1426–35.

    PubMed  CAS  Google Scholar 

  99. Cherian PP, Schenker S, Henderson GI. Ethanol-mediated DNA damage and PARP-1 apoptotic responses in cultured fetal cortical neurons. Alcohol Clin Exp Res. 2008;32(11):1884–92. PMCID: 2588483.

    PubMed  CAS  Google Scholar 

  100. Dong J, Sulik KK, Chen SY. Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: implications for the prevention of fetal alcohol spectrum disorders. Antioxid Redox Signal. 2008;10(12):2023–33.

    PubMed  CAS  Google Scholar 

  101. Green CR, Watts LT, Kobus SM, Henderson GI, Reynolds JN, Brien JF. Effects of chronic prenatal ethanol exposure on mitochondrial glutathione and 8-iso-prostaglandin F2alpha concentrations in the hippocampus of the perinatal guinea pig. Reprod Fertil Dev. 2006; 18(5):517–24.

    PubMed  CAS  Google Scholar 

  102. Grisel JJ, Chen WJ. Antioxidant pretreatment does not ameliorate alcohol-induced Purkinje cell loss in the developing rat cerebellum. Alcohol Clin Exp Res. 2005;29(7):1223–9.

    PubMed  CAS  Google Scholar 

  103. Gauthier TW, Ping XD, Harris FL, Wong M, Elbahesh H, Brown LA. Fetal alcohol exposure impairs alveolar macrophage function via decreased glutathione availability. Pediatr Res. 2005;57(1):76–81.

    PubMed  CAS  Google Scholar 

  104. Gauthier TW, Young PA, Gabelaia L, Tang SM, Ping XD, Harris FL, et al. In utero ethanol exposure impairs defenses against experimental group B streptococcus in the term Guinea pig lung. Alcohol Clin Exp Res. 2009;33(2):300–6.

    PubMed  CAS  Google Scholar 

  105. Chu J, Tong M, de la Monte SM. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol. 2007;113(6):659–73.

    PubMed  CAS  Google Scholar 

  106. Maffi SK, Rathinam ML, Cherian PP, Pate W, Hamby-Mason R, Schenker S, et al. Glutathione content as a potential mediator of the vulnerability of cultured fetal cortical neurons to ethanol-induced apoptosis. J Neurosci Res. 2008;86(5):1064–76.

    PubMed  CAS  Google Scholar 

  107. Ozolins TR, Siksay DL, Wells PG. Modulation of embryonic glutathione peroxidase activity and phenytoin teratogenicity by dietary deprivation of selenium in CD-1 mice. J Pharmacol Exp Ther. 1996;277(2):945–53.

    PubMed  CAS  Google Scholar 

  108. Wells PG, Kim PM, Laposa RR, Nicol CJ, Parman T, Winn LM. Oxidative damage in chemical teratogenesis. Mutat Res. 1997;396(1–2):65–78.

    PubMed  CAS  Google Scholar 

  109. Jones DP. Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res. 2006;9(2):169–81.

    PubMed  CAS  Google Scholar 

  110. Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade Jr JM, Kirlin WG. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. Faseb J. 2004;18(11):1246–8.

    PubMed  CAS  Google Scholar 

  111. Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med. 2008;44(6):921–37. PMCID: 2587159.

    PubMed  CAS  Google Scholar 

  112. Dou X, Menkari CE, Shanmugasundararaj S, Miller KW, Charness ME. Two alcohol binding residues interact across a domain interface of the L1 neural cell adhesion molecule and regulate cell adhesion. J Biol Chem. 2011;286(18):16131–9. PMCID: 3091222.

    PubMed  CAS  Google Scholar 

  113. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    PubMed  CAS  Google Scholar 

  114. Dong J, Sulik KK, Chen SY. The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol Lett. 2010;193(1):94–100. PMCID: 2822117.

    PubMed  CAS  Google Scholar 

  115. Al Ghouleh I, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, et al. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med. 2011;51(7):1271–88. PMCID: 3205968.

    PubMed  CAS  Google Scholar 

  116. Reyes E, Ott S, Robinson B. Effects of in utero administration of alcohol on glutathione levels in brain and liver. Alcohol Clin Exp Res. 1993;17(4):877–81.

    PubMed  CAS  Google Scholar 

  117. Siler-Marsiglio KI, Pan Q, Paiva M, Madorsky I, Khurana NC, Heaton MB. Mitochondrially targeted vitamin E and vitamin E mitigate ethanol-mediated effects on cerebellar granule cell antioxidant defense systems. Brain Res. 2005;1052(2):202–11.

    PubMed  CAS  Google Scholar 

  118. Ping XD, Harris FL, Brown LA, Gauthier TW. In vivo dysfunction of the term alveolar macrophage after in utero ethanol exposure. Alcohol Clin Exp Res. 2007;31(2):308–16.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa W. Gauthier M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gauthier, T.W., Giliberti, D., Mohan, S.S., Konomi, J., Brown, L.A.S. (2014). Maternal Alcohol Use and the Neonate. In: Guidot, D., Mehta, A. (eds) Alcohol Use Disorders and the Lung. Respiratory Medicine, vol 14. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8833-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8833-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8832-3

  • Online ISBN: 978-1-4614-8833-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics