Skip to main content

Core–Shell Nanoarchitectures as Stable Nanocatalysts

  • Chapter
  • First Online:
Book cover Current Trends of Surface Science and Catalysis

Abstract

The recent merging of catalysis with colloidal chemistry has dramatically enhanced the molecular-scale design and synthesis of heterogeneous catalysts. The development of stable catalysts, along with their enhanced activity and selectivity, has been a key issue in catalysis research. In this chapter, we review the recent progress in nanochemistry-based approaches to stable nanocatalysts. We present synthesis strategies for core– and yolk–shell-structured stable nanocatalysts. We next summarize the enhanced catalytic properties of such nanocatalysts in terms of thermal and chemical stabilities, as well as their catalytic activity and selectivity and, finally, We highlight future challenges and perspectives for stable nanocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  CAS  Google Scholar 

  2. Schlögl R, Abd Hamid SB (2004) Nanocatalysis: mature science revisited or something really new? Angew Chem Int Ed 43:1628–1637

    Article  Google Scholar 

  3. Somorjai GA, Contreras AM, Montano M, Rioux RM (2006) Clusters, surfaces, and catalysis. Proc Natl Acad Sci U S A 103:10577–10583

    Article  CAS  Google Scholar 

  4. Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605

    Article  CAS  Google Scholar 

  5. Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295

    Article  CAS  Google Scholar 

  6. Narayanan R, El-Sayed M (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676

    Article  CAS  Google Scholar 

  7. Somorjai GA, Tao F, Park JY (2008) The nanoscience revolution: merging of colloid science, catalysis and nanoelectronics. Top Catal 47:1–14

    Article  CAS  Google Scholar 

  8. Lee K, Kim M, Kim H (2010) Catalytic nanoparticles being facet-controlled. J Mater Chem 20:3791–3798

    Article  CAS  Google Scholar 

  9. Jia CJ, Schuth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13:2457–2487

    Article  CAS  Google Scholar 

  10. Lee IK, Albiter MA, Zhang Q, Ge J, Yin YD, Zaera F (2011) New nanostructured heterogeneous catalysts with increased selectivity and stability. Phys Chem Chem Phys 13:2449–2456

    Article  CAS  Google Scholar 

  11. An K, Somorjai GA (2012) Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4:1512–1524

    Article  CAS  Google Scholar 

  12. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212:17–60

    Article  CAS  Google Scholar 

  13. De Rogatis L, Cargnello M, Gombac V, Lorenzut B, Montini T, Fornasiero P (2010) Embedded phases: a way to active and stable catalysts. ChemSusChem 3:24–42

    Article  Google Scholar 

  14. Cao A, Lu R, Veser G (2010) Stabilizing metal nanoparticles for heterogeneous catalysis. Phys Chem Chem Phys 12:13499–13510

    Article  CAS  Google Scholar 

  15. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  CAS  Google Scholar 

  16. Park JC, Song HJ (2010) Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res 4:33–49

    Article  Google Scholar 

  17. Zhang Q, Lee IK, Ge J, Zaera F, Yin YD (2010) Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv Funct Mater 20:2201–2214

    Article  CAS  Google Scholar 

  18. Liu J, Qiao SZ, Chen JS, Lou XW, Xing X, Lu GQ (2011) Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun 47:12578–12591

    Article  CAS  Google Scholar 

  19. Liu S, Bai SQ, Zheng Y, Shah KE, Han MY (2012) Composite metal-oxide nanocatalysts. ChemCatChem 4:1462–1484

    Article  CAS  Google Scholar 

  20. Guerrero-Martinez A, Perez-Juste J, Liz-Marzan LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22:1182–1195

    Article  CAS  Google Scholar 

  21. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Multifunctional composite core-shell nanoparticles. Nanoscale 3:4474–4502

    Article  CAS  Google Scholar 

  22. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  CAS  Google Scholar 

  23. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  24. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  25. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860

    Article  CAS  Google Scholar 

  26. Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131

    Article  CAS  Google Scholar 

  27. Park JN, Forman JA, Tang W, Cheng J, Hu YS, Lin H, McFarland EW (2008) Highly active and sinter-resistant Pd-nanoparticle catalysts encapsulated in silica. Small 10:1694–1697

    Article  Google Scholar 

  28. Park JN, Zhang P, Hu YS, McFarland EW (2010) Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 21:225708

    Article  Google Scholar 

  29. Feyen M, Weidenthaler C, Guttel R, Schlichte K, Holle U, Lu AH, Schüth F (2011) High-temperature stable, iron-based core–shell catalysts for ammonia decomposition. Chem Eur J 17:598–605

    Article  CAS  Google Scholar 

  30. Li Y, Yao L, Song Y, Liu S, Zhao J, Ji W, Au CT (2010) Core–shell structured microcapsular-like Ru@SiO2 reactor for efficient generation of COx-free hydrogen through ammonia decomposition. Chem Commun 46:5298–5300

    Article  CAS  Google Scholar 

  31. Yao LH, Li YX, Zhao J, Ji WJ, Au CT (2010) Core–shell structured nanoparticles (M@SiO2, Al2O3, MgO; M=Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition. Catal Today 158:401–408

    Article  CAS  Google Scholar 

  32. Li L, He S, Song Y, Zhao J, Ji W, Au CT (2012) Fine-tunable Ni@porous silica core–shell nanocatalysts: synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas. J Catal 288:54–64

    Article  CAS  Google Scholar 

  33. Li L, Lu P, Yao Y, Ji W (2012) Silica-encapsulated bimetallic Co–Ni nanoparticles as novel catalysts for partial oxidation of methane to syngas. Catal Commun 26:72–77

    Article  Google Scholar 

  34. Sarshar Z, Sun Z, Zhao D, Kaliguine S (2012) Development of sinter-resistant core–shell LaMnxFe1−xO3@mSiO2 oxygen carriers for chemical looping combustion. Energy Fuel 26:3091–3102

    Article  CAS  Google Scholar 

  35. Bernal S, Kaspar J, Trovarelli A (1999) Preface—recent progress in catalysis by ceria and related compounds. Catal Today 50:173

    Article  CAS  Google Scholar 

  36. Yeung CMY, Kai MK, Fu QJ, Thompsett D, Petch MI, Tsang SC (2005) Engineering Pt in ceria for a maximum metal-support interaction in catalysis. J Am Chem Soc 127:18010–18011

    Article  CAS  Google Scholar 

  37. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions group 8 noble metals supported on TiO2. J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  38. Cargnello M, Wider NL, Montini T, Gorte RJ, Fornasiero P (2010) Synthesis of dispersible Pd@CeO2 core-shell nanostructures by self-assembly. J Am Chem Soc 132:1402–1409

    Article  CAS  Google Scholar 

  39. Cargenllo M, Jaen DJJ, Garrido JCH, Bakhmutsky K, Montini T, Gamez JJC, Gorte RJ, Fornasiero P (2012) Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337:713–717

    Article  Google Scholar 

  40. Cargnello M, Gentilini C, Montini T, Fonda E, Mehraeen S, Chi M, Collado MH, Browning ND, Polizzi S, Pasquato L, Fornasiero P (2010) Active and stable embedded Au@CeO2 catalysts for preferential oxidation of CO. Chem Mater 22:4335–4345

    Article  CAS  Google Scholar 

  41. Bakhmutsky K, Wieder NL, Cargnello M, Galloway B, Fornasiero P, Gorte RJ (2012) A versatile route to core–shell catalysts: synthesis of dispersible M@Oxide (M=Pd, Pt; Oxide=TiO2, ZrO2) nanostructures by self-assembly. ChemSusChem 5:140–148

    Article  CAS  Google Scholar 

  42. Qi J, Chen J, Li G, Li S, Gao Y, Tang Z (2012) Facile synthesis of core–shell Au@CeO2nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ Sci 5:8937–8941

    Article  CAS  Google Scholar 

  43. Kayama T, Yamzaki K, Shinjoh H (2010) Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation. J Am Chem Soc 132:13154–13155

    Article  CAS  Google Scholar 

  44. Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K (2012) Design of a silver–cerium dioxide core–shell nanocomposite catalyst for chemoselective reduction reactions. Angew Chem Int Ed 51:136–139

    Article  CAS  Google Scholar 

  45. Yu K, Wu Z, Zhao Q, Li B, Xie Y (2008) High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. J Phys Chem C 112:2244–2247

    Article  CAS  Google Scholar 

  46. She ZW, Liu S, Zhang SY, Shah KW, Han MY (2011) Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts. ChemCommun 47:6689–6691

    Google Scholar 

  47. Kong L, Chen W, Ma D, Yang Y, Liu S, Huang S (2012) Size control of Au@Cu2O octahedra for excellent photocatalytic performance. J Mater Chem 22:719–724

    Article  CAS  Google Scholar 

  48. Aguirre ME, Rodriguez HB, San Roman E, Feldhoff A, Grela MA (2011) Ag@ZnO core-shell nanoparticles formed by the timely reduction of Ag+ ions and zinc acetate hydrolysis in N, N-dimethylformamide: mechanism of growth and photocatalytic properties. J Phys Chem C 115:24967–24974

    Article  CAS  Google Scholar 

  49. Lee J, Park JC, Song H (2008) A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv Mater 20:1523–1528

    Article  CAS  Google Scholar 

  50. Park JC, Bang JU, Lee J, Ko CH, Song H (2010) Ni@SiO2 yolk-shell nanoreactor catalysts: high temperature stability and recyclability. J Mater Chem 20:1239–1246

    Article  CAS  Google Scholar 

  51. Park JC, Lee HJ, Kim JY, Park KH, Song H (2010) Catalytic hydrogen transfer of ketones over Ni@SiO2 yolk-shell nanocatalysts with tiny metal cores. J Phys Chem C 114:6381–6388

    Article  CAS  Google Scholar 

  52. Park JC, Heo E, Kim A, Kim M, Park KH, Song H (2011) Extremely active Pd@pSiO2 yolk-shell nanocatalysts for Suzuki coupling reactions of aryl halides. J Phys Chem C 115:15772–15777

    Article  CAS  Google Scholar 

  53. Park JC, Lee HJ, Jung HS, Kim M, Kim HJ, Park KH, Song H (2011) Gram-scale synthesis of magnetically separable and recyclable Co@SiO2 yolk-shell nanocatalysts for phenoxycarbonylation reactions. ChemCatChem 3:755–760

    Article  CAS  Google Scholar 

  54. Zhang Q, Zhang T, Ge J, Yin Y (2008) Permeable silica shell through surface-protected etching. Nano Lett 8:2867–2871

    Article  CAS  Google Scholar 

  55. Arnal PM, Comotti M, Schüth F (2006) High-temperature-stable catalysts by hollow sphere encapsulation. Angew Chem Int Ed 45:8224–8227

    Article  CAS  Google Scholar 

  56. Guttel R, Paul M, Schüth F (2010) Ex-post size control of high-temperature–stable yolk–shell Au,@ZrO2 catalysts. Chem Commun 46:895–897

    Article  Google Scholar 

  57. Huang X, Guo C, Zuo J, Zheng N, Stucky GD (2009) An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties. Small 3:361–365

    Article  Google Scholar 

  58. Lee I, Joo JB, Yin Y, Zaera F (2011) A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew Chem Int Ed 50:10208–10211

    Article  CAS  Google Scholar 

  59. Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M, Ikeda S (2006) Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew Chem Int Ed 45:7063–7066

    Article  Google Scholar 

  60. Harada T, Ikeda S, Ng YH, Sakata T, Mori H, Torimoto T, Matsumura M (2008) Rhodium nanoparticle encapsulated in a porous carbon shell as an active heterogeneous catalyst for aromatic hydrogenation. Adv Funct Mater 18:2190–2196

    Article  CAS  Google Scholar 

  61. Ng YH, Ikeda S, Harada T, Higashida S, Sakata T, Mori H, Matsumura M (2007) Fabrication of hollow carbon nanospheres encapsulating platinum nanoparticles using a photocatalytic reaction. Adv Mater 19:597–601

    Article  CAS  Google Scholar 

  62. Wu SH, Tseng CT, Lin YS, Lin CH, Hung Y, Mou CY (2011) Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst. J Mater Chem 21:789–794

    Article  CAS  Google Scholar 

  63. Kuo CH, Tang Y, Chou LY, Sneed BT, Brodsky CN, Zhao Z, Tsung CK (2012) Yolk–shell nanocrystal@ZIF‑8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc 134:14345–14348

    Article  CAS  Google Scholar 

  64. Reddy AS, Kim SM, Jeong HY, Jin SY, Qadir K, Jung K, Jung CH, Yun JY, Cheon JY, Yang JM, Joo SH, Terasaki O, Park JY (2011) Ultrathin titania coating for high-temperature stable SiO2/Pt nanocatalysts. Chem Commun 47:8412–8414

    Article  Google Scholar 

  65. Ge J, Zhang Q, Zhang T, Yin Y (2008) Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew Chem Int Ed 47:8924–8928

    Article  CAS  Google Scholar 

  66. Wang Y, Biradar AV, Duncan CT, Asefa T (2010) Silica nanosphere-supported shaped Pd nanoparticles encapsulated with nanoporous silica shell: efficient and recyclable nanocatalysts. J Mater Chem 20:7834–7841

    Article  CAS  Google Scholar 

  67. Wang Y, Biradar AV, Asefa T (2012) Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell. ChemSusChem 5:132–139

    Article  CAS  Google Scholar 

  68. Lee I, Zhang Q, Ge J, Yin Y, Zaera F (2011) Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res 4:115–123

    Article  CAS  Google Scholar 

  69. Dai Y, Lim B, Yang Y, Cobley CM, Li W, Cho EC, Grayson B, Fanson PT, Campbell CT, Sun Y, Xia Y (2010) A Sinter-resistant catalytic system based on platinum nanoparticles supported on TiO2 nanofibers and covered by porous silica. Angew Chem Int Ed 49:8165–8168

    Article  CAS  Google Scholar 

  70. Sun Z, Zhang H, Zhao Y, Huang C, Tao R, Liu Z, Wu Z (2011) Thermal-stable carbon nanotube-supported metal nanocatalysts by mesoporous silica coating. Langmuir 27:6244–6251

    Article  CAS  Google Scholar 

  71. Lu J, Fu B, Kung MC, Xiao G, Elam JW, Kung HH, Stair PC (2012) Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335:1205–1208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education, Science and Technology (NRF-2010-0005341). S.H.J. is a TJ Park Junior Faculty Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hoon Joo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joo, S.H., Cheon, J.Y., Oh, J.Y. (2014). Core–Shell Nanoarchitectures as Stable Nanocatalysts. In: Park, J. (eds) Current Trends of Surface Science and Catalysis., vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8742-5_5

Download citation

Publish with us

Policies and ethics