Skip to main content

Role of Gut Microbes in Celiac Disease Risk and Pathogenesis

  • Chapter
  • First Online:

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

Celiac disease (CD) is an autoimmune disorder for which the main genetic determinant (HLA-DQ2/8) and environmental trigger (gluten) are identified, although these do not fully explain the onset of the disease. In recent years, research has been made into the role intestinal microbiota play in CD via interactions with the diet and the host immune system. The intestinal colonization of the newborn’s intestine seems to be a particularly important process since it constitutes a major stimulus for adequate development of the immune system and oral tolerance. Evidence from prospective studies in infants at risk of developing CD suggests that both breast-feeding and the HLA-DQ genotype influence the microbiota composition early in life, which could partly explain the protective role attributed to breast milk in CD development. In most studies, the microbiota of CD patients (both untreated CD and CD treated with a gluten-free diet) has also been associated with alterations in microbiota composition. The isolation of clones belonging to different bacterial groups, including bacteroides, enterobacteria, and staphylococci, has also demonstrated that the isolates from CD patients harbored higher virulence-related genes, increasing their potential pathogenicity. In addition, in vitro studies as well as animal models suggest that specific bacteria could activate pathogenic mechanisms that aggravate the deleterious effects of gluten, while others can exert a protective role. Altogether, findings indicate that gut microbiota composition and function could be one of the missing links that could help explain CD pathogenesis and risk, and thus deserve further investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 2009;137(6):1912–33.

    Article  CAS  PubMed  Google Scholar 

  2. Ludvigsson J, Lebwohl B, Kämpe O, Murray J, Green PH, Ekbom A. Risk of thyroid cancer in a nationwide cohort of patients with biopsy-verified celiac disease. Thyroid. 2013. doi:10.1089/thy.2012.0306.

    PubMed  Google Scholar 

  3. Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, Paparo F, et al. The first large population based twin study of coeliac disease. Gut. 2002;50:624–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bahia M, Penna FJ, Del Castillo DM, Hassegawa MG, Vieira AC, Orlando VR. Discrepancy of celiac disease presentation in monozygotic twins. Arq Gastroenterol. 2010;47(1):56–60.

    PubMed  Google Scholar 

  5. Sanz Y, De Palma G, Laparra M. Unraveling the ties between celiac disease and intestinal microbiota. Int Rev Immunol. 2011;30(4):207–18.

    Article  PubMed  Google Scholar 

  6. De Palma G, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, Garrote JA, et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. PLoS One. 2012;7(2):e30791.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Pozo-Rubio T, Capilla A, Mujico JR, De Palma G, Marcos A, Sanz Y, et al. Influence of breastfeeding versus formula feeding on lymphocyte subsets in infants at risk of coeliac disease: the PROFICEL study. Eur J Nutr. 2012. doi:10.1007/s00394-012-0367-8.

    PubMed  Google Scholar 

  8. Mårild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case–control study. Gastroenterology. 2012;142(1):39–45.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sandberg-Bennich S, Dahlquist G, Källén B. Coeliac disease is associated with intrauterine growth and neonatal infections. Acta Paediatr. 2002;91(1):30–3.

    Article  CAS  PubMed  Google Scholar 

  10. Jabri B, Sollid LM. Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol. 2009;9(12):858–70.

    Article  CAS  PubMed  Google Scholar 

  11. Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol. 2006;101(10):2333–40.

    Article  CAS  PubMed  Google Scholar 

  12. Sánchez E, De Palma G, Capilla A, Nova E, Pozo T, Castillejo G, et al. Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol. 2011;77(15):5316–23.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Daum S, Cellier C, Mulder CJ. Refractory coeliac disease. Best Pract Res Clin Gastroenterol. 2005;19(3):413–24.

    Article  PubMed  Google Scholar 

  14. Mooney PD, Evans KE, Singh S, Sanders DS. Treatment failure in coeliac disease: a practical guide to investigation and treatment of non-responsive and refractory coeliac disease. J Gastrointestin Liver Dis. 2012;21(2):197–203.

    PubMed  Google Scholar 

  15. Malamut G, Murray JA, Cellier C. Refractory celiac disease. Gastrointest Endosc Clin N Am. 2012 Oct;22(4):759–72.

    Article  PubMed  Google Scholar 

  16. Toivanen P, Vaahtovuo J, Eerola E. Influence of major histocompatibility complex on bacterial composition of fecal flora. Infect Immun. 2001;69(4):2372–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69(1):1–10.

    Article  PubMed  Google Scholar 

  18. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–21.

    Article  PubMed  Google Scholar 

  19. Salminen S, Isolauri E. Intestinal colonization, microbiota, and prebiotics. J Pediatr. 2006;149:S115–20.

    Article  CAS  Google Scholar 

  20. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17(6):478–82.

    Article  PubMed  Google Scholar 

  21. Plot L, Amital H, Barzilai O, Ram M, Nicola B, Shoenfeld Y. Infections may have a protective role in the etiopathogenesis of celiac disease. Ann N Y Acad Sci. 2009;1173:670–84.

    Article  CAS  PubMed  Google Scholar 

  22. Kagnoff MF, Paterson YJ, Kumar PJ, Kasarda DD, Carbone FR, Unsworth DJ, et al. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut. 1987;28(8):995–1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lähdeaho ML, Lehtinen M, Rissa HR, Hyöty H, Reunala T, Mäki M. Antipeptide antibodies to adenovirus E1b protein indicate enhanced risk of celiac disease and dermatitis herpetiformis. Int Arch Allergy Immunol. 1993;101(3):272–86.

    Article  PubMed  Google Scholar 

  24. Howdle PD, Blair Zajdel ME, Smart CJ, Trejdosiewicz LK, Blair GE, Losowky MS. Lack of a serologic response to an E1B protein of adenovirus 12 in coeliac disease. Scand J Gastroenterol. 1989;24(3):282–96.

    Article  CAS  PubMed  Google Scholar 

  25. Lindgren S, Sjöberg K, Eriksson S. Unsuspected coeliac disease in chronic cryptogenic liver disease. Scand J Gastroenterol. 1994;29(7):661–74.

    Article  CAS  PubMed  Google Scholar 

  26. Volta U, De Franceschi L, Molinaro N, Cassani F, Muratori L, Lenzi M, et al. Frequency and significance of anti-gliadin and anti-endomysial antibodies in autoimmune hepatitis. Dig Dis Sci. 1998;43(10):2190–5.

    Article  CAS  PubMed  Google Scholar 

  27. Hernández L, Johnson TC, Naiyer AJ, Kryszak D, Ciaccio EJ, Min A, et al. Chronic hepatitis C virus and celiac disease, is there an association? Dig Dis Sci. 2008;53(1):256–61.

    Article  PubMed  Google Scholar 

  28. Verdú EF, Mauro M, Bourgeois J, Armstrong D. Clinical onset of celiac disease after an episode of Campylobacter jejuni enteritis. Can J Gastroenterol. 2007;21(7):453–65.

    PubMed Central  PubMed  Google Scholar 

  29. Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol. 2007;56:1669–74.

    Article  CAS  PubMed  Google Scholar 

  30. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62(3):264–9.

    Article  CAS  PubMed  Google Scholar 

  31. Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, et al. A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiol. 2010;10:175.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, Hammarström ML. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol. 2004;99(5):894–904.

    Article  PubMed  Google Scholar 

  33. Ou G, Hedberg M, Hörstedt P, Baranov V, Forsberg G, Drobni M, et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol. 2009;104(12):3058–67.

    Article  PubMed  Google Scholar 

  34. Nistal E, Caminero A, Vivas S, de Morales JM R, de Miera LE S, Rodríguez-Aparicio LB, et al. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012;94(8):1724–9.

    Article  CAS  PubMed  Google Scholar 

  35. Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011;11:219.

    Article  PubMed Central  PubMed  Google Scholar 

  36. De Palma G, Nadal I, Collado MC, Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr. 2009;102(8):1154–60.

    Article  PubMed  Google Scholar 

  37. Kalliomäki M, Satokari R, Lähteenoja H, Vähämiko S, Grönlund J, Routi T, Salminen S. Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr. 2012;54(6):727–32.

    Article  PubMed  Google Scholar 

  38. de Meij TG, Budding AE, Grasman ME, Kneepkens CM, Savelkoul PH, Mearin ML. Composition and diversity of the duodenal mucosa-associated microbiome in children with untreated coeliac disease. Scand J Gastroenterol. 2013;48(5):530–6.

    Article  PubMed  Google Scholar 

  39. Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis. 2013;19(5):934–41.

    Article  PubMed  Google Scholar 

  40. Sánchez E, Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children. BMC Gastroenterol. 2008;8:50.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Sánchez E, Laparra JM, Sanz Y. Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl Environ Microbiol. 2012;78(18):6507–15.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Sánchez E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol. 2012;65(9):830–4.

    Article  PubMed  Google Scholar 

  43. Chang MS, Green PH. A review of rifaximin and bacterial overgrowth in poorly responsive celiac disease. Therap Adv Gastroenterol. 2012;5(1):31–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10(5):323–35.

    CAS  PubMed  Google Scholar 

  45. Vecchi M, Torgano G, Tronconi S, Agape D, Ronchi G. Evidence of altered structural and secretory glycoconjugates in the jejunalmucosa of patients with gluten sensitive enteropathy and subtotal villous atrophy. Gut. 1989;30:804–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Cinova J, De Palma G, Stepankova R, Kofronova O, Kverka M, Sanz Y, et al. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS One. 2011;6(1):e16169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Clemente MG, Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut. 2003;52(2):218–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135(1):194–204. e3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ma D, Forsythe P, Bienenstock J. Live lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect Immun. 2004;72(9):5308–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Victoni T, Coelho FR, Soares AL, de Freitas A, Secher T, Guabiraba R, et al. Local and remote tissue injury upon intestinal ischemia and reperfusion depends on the TLR/MyD88 signaling pathway. Med Microbiol Immunol. 2010;199(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  51. De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal advance: bifidobacteria and gram negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leuko Biol. 2010;87:765–78.

    Article  PubMed  Google Scholar 

  52. Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Inflamm. 2008;5:19.

    Article  Google Scholar 

  53. Frei R, Steinle J, Birchler T, Loeliger S, Roduit C, Steinhoff D, et al. MHC class II molecules enhance Toll-like receptor mediated innate immune responses. PLoS One. 2010;5(1):e8808.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.

    Article  CAS  PubMed  Google Scholar 

  55. Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Bokodi G, et al. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007;45(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  56. Cseh Á, Vásárhelyi B, Szalay B, Molnár K, Nagy-Szakál D, Treszl A, et al. Immune phenotype of children with newly diagnosed and gluten-free diet-treated celiac disease. Dig Dis Sci. 2011;56(3):792–8.

    Article  CAS  PubMed  Google Scholar 

  57. Eiró N, González-Reyes S, González L, González LO, Altadill A, Andicoechea A, et al. Duodenal expression of Toll-like receptors and interleukins are increased in both children and adult celiac patients. Dig Dis Sci. 2012;57(9):2278–85.

    Article  PubMed  Google Scholar 

  58. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–8.

    Article  CAS  PubMed  Google Scholar 

  59. Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med. 2012;209(13):2395–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. D’Arienzo R, Stefanile R, Maurano F, Mazzarella G, Ricca E, Troncone R, et al. Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy. Scand J Immunol. 2011;74(4):335–41.

    Article  PubMed  Google Scholar 

  61. Laparra JM, Olivares M, Gallina O, Sanz Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS One. 2012;7(2):e30744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem. 2010;109(4):801–7.

    CAS  PubMed  Google Scholar 

  63. Zamakhchari M, Wei G, Dewhirst F, Lee J, Schuppan D, Oppenheim FG, et al. Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS One. 2011;6(9):e24455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152(3):552–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salminen S. Probiotics: effects on immunity. Am J Clin Nutr. 2001;73:444S–50.

    CAS  PubMed  Google Scholar 

  66. D’Arienzo R, Maurano F, Lavermicocca P, Ricca E, Rossi M. Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokines. 2009;48:254–9.

    Article  Google Scholar 

  67. D’Arienzo R, Maurano F, Luongo D, Mazzarella G, Stefanile R, Troncone R, et al. Adjuvant effect of Lactobacillus casei in a mouse model of gluten sensitivity. Immunol Lett. 2008;119:78–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants AGL2011-25169 and Consolider Fun-C-Food CSD2007-00063 from the Spanish Ministry of Economy and Competitiveness. The scholarship to M. Olivares and the postdoctoral contract to J.M. Laparra from CSIC are fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Sanz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laparra, J.M., Olivares, M., Sanz, Y. (2014). Role of Gut Microbes in Celiac Disease Risk and Pathogenesis. In: Rampertab, S., Mullin, G. (eds) Celiac Disease. Clinical Gastroenterology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8560-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8560-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8559-9

  • Online ISBN: 978-1-4614-8560-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics