Skip to main content

Abstract

Prebiotics are nondigestible dietary fibers that benefit the host health by stimulating the growth of probiotic microorganisms in the colon. Lactulose, galacto-oligosaccharides, fructo-oligosaccharides, xylo-oligosaccharide, malto-oligosaccharides, inulin, and its hydrolysates are some commonly used prebiotics comprising of two to ten sugar moieties. The end products of these prebiotics, i.e., acetate, butyrate, and propionate, act as energy sources for host organisms. Naturally, these can be obtained in small amounts through plant sources, such as chicory, onion, garlic, asparagus, artichoke, bananas, and tomatoes. These can also be produced at large scale by using microorganisms and their enzymes. Besides refined sugar molecules, these can also be synthesized by using agro-industrial waste/by-products, such as whey, wheat and rice straw, and sugarcane bagasse, making the production process more economical. Prebiotics have bifidus-stimulating ability, immunomodulatory effect, and antioxidant properties besides their role in reducing risks of cancer, acute gastroenteritis, osteoporosis, and hyperlipidemia. The prebiotic compounds can be employed for the fortification of different food products for the development of functional foods with high nutritional and therapeutic properties. This chapter provides a comprehensive overview on common prebiotics, enzyme involved, and their production by biotechnological strategies besides potential benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczak M, Charubin D, Bednarski W (2009) Influence of reaction medium composition on enzymatic synthesis of galacto-oligosaccharides and lactulose from lactose concentrates prepared from whey permeate. Chem Pap 63:111–116

    CAS  Google Scholar 

  • Aider M, de Halleux D (2007) Isomerization of lactose and lactulose production: review. Trends Food Sci Technol 187:356–364

    Google Scholar 

  • Akiyama K, Takase M, Horikoshi K et al (2001) Production of galactooligosaccharides from lactose using a beta-glucosidase from Thermus sp Z-1. Biosci Biotechnol Biochem 65:438–441

    CAS  Google Scholar 

  • Akpinar O, Erdogan K, Bostanci S (2009) Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr Res 344:660–666

    CAS  Google Scholar 

  • Albayrak N, Yang ST (2002) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77:8–19

    CAS  Google Scholar 

  • Amarowicz R (1999) Nutritional importance of oligosaccharides. Rocz Panstw Zakl Hig 50(1):89–95

    CAS  Google Scholar 

  • Angus F, Smart S, Shortt C (2005) Prebiotic ingredients with emphasis on galactooligosaccharides and fructo-oligosaccharides. In: Tamime AY (ed) Probiotic dairy products. Blackwell, Oxford, UK

    Google Scholar 

  • Aslana Y, Tanriseven A (2007) Immobilization of Penicillium lilacinum dextranase to produce isomaltooligosaccharides from dextran. Biochem Eng J 34(1):8–12

    Google Scholar 

  • Babu KR, Satyanarayana T (1995) α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochem 30:305–309

    CAS  Google Scholar 

  • Bali V, Panesar PS, Bera MB (2012) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr (accepted manuscript)

    Google Scholar 

  • Barreteau H, Delattre C, Michaud P (2006) Production of oligosaccharides as promising new food additive generation. Food Technol Biotechnol 44:323–333

    CAS  Google Scholar 

  • Bastawde KB, Puntambekar US, Gokhale DV (1994) Optimization of cellulase free xylanase production by a novel yeast strain. J Ind Microbiol 13:220–224

    CAS  Google Scholar 

  • Baysal Z, Uyar F, Aytekin C (2003) Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem 38:1665–1668

    CAS  Google Scholar 

  • Beker M, Laukevics J, Upite D et al (2002) Fructooligosaccharide and levan producing activity of Zymomonas mobilis and extracellular levan sucrase. Process Biochem 38:701–706

    Google Scholar 

  • Beylot M (2005) Effects of inulin-type fructans on lipid metabolism in man and in animal models. Br J Nutr 93:63–68

    Google Scholar 

  • Boon MA, van der Oost J, de Vos WM et al (1998) Synthesis of oligosaccharides catalyzed by thermostable beta-glucosidase from Pyrococcus furiosus. Appl Biochem Biotechnol 75:269–278

    CAS  Google Scholar 

  • Bornet FRJ, Brouns F, Tashiro Y et al (2002) Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Dig Liver Dis 34(2):111–120

    Google Scholar 

  • Brienzo M, Carvalho W, Milagres AMF (2010) Xylooligosaccharides production from alkali pretreated sugarcane bagasse using xylanase from Thermoascus aurantiacus. Appl Biochem Biotechnol 162:1195–1205

    CAS  Google Scholar 

  • Cardelle-Cobas A, Villamiel M, Olano A et al (2008) Study of galacto-oligosaccharide formation from lactose using pectinex ultra SP-L. J Sci Food Agric 88:954–961

    CAS  Google Scholar 

  • Chen HQ, Chen XM, Li Y et al (2009) Purification and characterisation of exo- and endo-inulinase from Aspergillus ficuum JNSP5-06. Food Chem 115:1206–1212

    CAS  Google Scholar 

  • Cheng CY, Duan KJ, Sheu DC et al (1996) Production of fructooligosaccharides by immobilized mycelium of Aspergillus japonicas. J Chem Technol Biotechnol 66(2):135–138

    CAS  Google Scholar 

  • Choi JJ, Oh EJ, Lee YJ et al (2003) Enhanced expression of the gene for beta-glycosidase of Thermus caldophilus GK24 and synthesis of galacto-oligosaccharides by the enzyme. Biotechnol Appl Biochem 38:131–136

    CAS  Google Scholar 

  • Choi H-J, Kim CS, Kim P et al (2004) Lactosucrose bioconversion from lactose and sucrose by whole cells of paenibacillus polymyxa harboring levansucrase activity. Biotechnol Prog 20:1876–1879

    CAS  Google Scholar 

  • Chonan O, Matsumoto K, Watanuki M (1995) Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59:236–239

    CAS  Google Scholar 

  • Clydesdale FM (1997) A proposal for the establishment of scientific criteria for health claims for functional foods. Nutr Res 55:413–423

    CAS  Google Scholar 

  • Conway PL (2001) Prebiotics and human health: the state-of-the-art and future perspectives. Scand J Nutr 45:13–21

    Google Scholar 

  • Cruz R, Cruz VD, Belote JG et al (1999) Production of transgalactosylated oligosaccharides (TOS) by galactosyltransferase activity from Penicillium simplicissimum. Bioresour Technol 70:165–171

    CAS  Google Scholar 

  • De Harr WT, Pluim H (1991) Method of preparing lactulose. European patent 0339749

    Google Scholar 

  • Dorta C, Cruz R, de Oliva-Neto P et al (2006) Sugarcane molasses and yeast powder used in the fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611. J Ind Microbiol Biotechnol 33(12):1003–1009

    CAS  Google Scholar 

  • Doukyu N, Yamagishi W, Kuwahara H et al (2007) Purification and characterization of a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25. Extremophiles 11(6):781–788

    CAS  Google Scholar 

  • Fernández-Arrojo L, Marín D, De Segura AG et al (2007) Transformation of maltose into prebiotic isomaltooligosaccharides by a novel α-glucosidase from Xanthophyllomyces dendrorhous. Process Biochem 42(11):1530–1536

    Google Scholar 

  • Foda MI, Lopez-Leiva M (2000) Continuous production of oligosaccharides from whey using a membrane reactor. Process Biochem 35:581–587

    CAS  Google Scholar 

  • Franck A (2002) Technological functionality of inulin and oligofructose. Br J Nutr 87:287–291

    Google Scholar 

  • Gänzle MG (2011) Lactose galacto-oligosaccharides. In: Fuquay JW, Fox PF, McSweeney P (eds) Encyclopedia of dairy science, 2nd edn. Elsevier, Oxford, UK

    Google Scholar 

  • Gänzle MG, Haase G, Jelen P (2008) Lactose: crystallization, hydrolysis and value-added derivatives. Int Dairy J 18:685–694

    Google Scholar 

  • Ghazi I, Fernandez-Arrojo L, Gomez De Segura A et al (2006) Beet sugar syrup and molasses as low-cost feedstock for the enzymatic production of fructo-oligosaccharides. J Agric Food Chem 54(8):2964–2968

    CAS  Google Scholar 

  • Gill PK, Manhas RK, Singh P (2006) Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigates. J Food Eng 76:369–375

    CAS  Google Scholar 

  • Godshall MA (2007) Future directions for the sugar industry. http://www.spriinc.org/buton10bftpp.html

  • Goulas AK, Kapasakalidis PG, Sinclair HR et al (2002) Purification of oligosaccharides by nanofiltration. J Membr Sci 209:321–335

    CAS  Google Scholar 

  • Guimaraes LHS, Terenzi HF, Polizeli ML et al (2007) Production and characterization of a thermostable extracellular β-D-fructofuranosidase produced by Aspergillus ochraceus with agroindustrial residues as carbon sources. Enzyme Microb Technol 42:52–57

    CAS  Google Scholar 

  • Han W-C, Byun S-H, Kim M-H et al (2009) Production of lactosucrose from sucrose and lactose by a levansucrase from Zymomonas mobilis. J Microbiol Biotechnol 19:1153–1160

    CAS  Google Scholar 

  • Hang YD, Woodams EE, Jang KY (1995) Enzymatic conversion of sucrose to ketose by fungal extracellular fructosyltransferase. Biotechnol Lett 17:295–298

    CAS  Google Scholar 

  • Hayashi S, Matsuzaki K, Kawahara T et al (1992) Utilisation of soybean residue for the production of β-fructofuranosidase. Bioresour Technol 41(3):231–233

    CAS  Google Scholar 

  • Heaney RP (1996) Calcium. In: Raisz LG, Rodan GA, Bilezikian JP (eds) Principle of bone biology. Academic, San Diego, CA

    Google Scholar 

  • HelleroVá K, Čurda L (2009) Influence of type of substrate and enzyme concentration on formation of galacto-oligosaccharides. Czech J Food Sci 27:327–374

    Google Scholar 

  • Hernalsteens S, Maugeri F (2008) Purification and characterisation of a fructosyltransferase from Rhodotorula sp. Appl Microbiol Biotechnol 79(4):589–596

    CAS  Google Scholar 

  • Hicks KB, Raupp DL, Smith PW (1984) Preparation and purification of lactulose from sweet cheese whey ultrafiltrate. J Agric Food Chem 32:288–292

    CAS  Google Scholar 

  • Hijum SV, van Geel-Schutten GH, Rahouri H et al (2002) Characterization of a novel fructosyl transferase from Lactobacillus reuteri that synthesizes high molecular weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68:4390–4398

    Google Scholar 

  • Hsu CK, Liao JW, Chung YC et al (2004) Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134:1523–1528

    CAS  Google Scholar 

  • Jaindl K, Schuster-Wolff-Bühring R, Fischer L et al (2009) Enzymic synthesis of prebiotic lactulose in milk and whey products. DMZ Lebensmittelindustrie und Milchwirtschaft 130:24–27

    CAS  Google Scholar 

  • Jovanovic-Malinovska R, Fernandes P, Winkelhausen E et al (2012) Galacto-oligosaccharides synthesis from lactose and whey by β-galactosidase immobilized in PVA. Appl Biochem Biotechnol. doi:10.1007/s12010-012-9850-1

    Google Scholar 

  • Jung KH, Bang SH, OH TK et al (2011) Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor. Biotechnol Lett 33(8):1621–1624

    CAS  Google Scholar 

  • Kawase M, Pilgrim A, Araki T et al (2001) Lactosucrose production using a simulated moving bed reactor. Chem Eng Sci 56:453–458

    CAS  Google Scholar 

  • Kazumitsu S, Boseki I, Norio S et al (1997) Production of food and drink. Japanese Patent JP 9248153

    Google Scholar 

  • Kim Y-S, Park C-S, Oh D-K (2006) Lactulose production from lactose and fructose by a thermostable β-galactosidase from Sulfolobus solfataricus. Enzyme Microb Technol 39:903–908

    CAS  Google Scholar 

  • Kim HC, Kim HJ, Choi WB et al (2008) Inulo-oligosaccharide production from inulin by Saccharomyces cerevisiae strain displaying cell surface endoinulases. J Microbiol Biotechnol 16(3):360–367

    Google Scholar 

  • Kim DY, Han MKY, Lee JS et al (2009) Isolation and characterization of a cellulase-free endo-β-1, 4-xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13. Process Biochem 44:1055–1059

    CAS  Google Scholar 

  • Kumar S, Khare SK (2012) Purification and characterization of maltooligosaccharide-forming α-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresour Technol 116:247–251

    CAS  Google Scholar 

  • Ladero M, Perez MT, Santos A et al (2003) Hydrolysis of lactose by free and immobilized β-galactosidase from Thermus sp. strain T2. Biotechnol Bioeng 81:241–252

    CAS  Google Scholar 

  • Lateef A, Gueguim kana EB (2012) Utilization of cassava wastes in the production of fructosyltransferase by Rhizopus stolonifer LAU 07. Rom Biotechnol Lett 17(3):7309–7316

    CAS  Google Scholar 

  • Lee YJ, Kim CS, Oh DK (2004) Lactulose production by β-galactosidase in permeabilized cells of Kluyveromyces lactis. Appl Microbiol Biotechnol 64:787–793

    CAS  Google Scholar 

  • Lee JH, Lim JS, Park C et al (2007) Continuous production of lactosucrose by immobilized Sterigmatomyces elviae mutant. J Microbiol Biotechnol 17:1533–1537

    Google Scholar 

  • Li W, Xiang X, Tang S et al (2009) Effective enzymatic synthesis of lactosucrose and its analogues by β-D-galactosidase from Bacillus circulans. J Agric Food Chem 57:3927–3933

    CAS  Google Scholar 

  • Lin YS, Tsengb MJ, Lee WC (2011) Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochem 46:2117–2121

    CAS  Google Scholar 

  • Liu X-Y, Chi Z, Liu G-L et al (2010) Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng 2(5):469–476

    Google Scholar 

  • López Leiva MHL, Guzman M (1995) Formation of oligosaccharides during enzymic hydrolysis of milk whey permeates. Process Biochem 30:757–762

    Google Scholar 

  • Mahoney RR (1998) Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chem 63:147–154

    CAS  Google Scholar 

  • Maugeri F, Hernalsteens S (2007) Screening of yeast strains for transfructosylating activity. J Mol Catal B Enzym 49:43–49

    CAS  Google Scholar 

  • Mayer J, Kranz B, Fischer L (2010) Continuous production of lactulose by immobilized thermostable β-glycosidase from Pyrococcus furiosus. J Biotechnol 145:387–393

    CAS  Google Scholar 

  • Mazutti M, Bender JP, Treichel H et al (2006) Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate. Enzyme Microb Technol 39(1):56–59

    CAS  Google Scholar 

  • Méndez A, Olano A (1979) Lactulose: a review on some chemical properties and applications in infant nutrition and medicine. Dairy Sci Abstr 41:531–535

    Google Scholar 

  • Molis C, Flourie B, Ouarne F et al (1996) Digestion, excretion, and energy value of fructooligosaccharides in healthy humans. Am J Clin Nutr 64(3):324–328

    CAS  Google Scholar 

  • Murosaki S, Muroyama K, Yamamoto Y et al (1999) Immunopotentiating activity of nigerooligosaccharides for the T helper 1-like immune response in mice. Biosci Biotechnol Biochem 63(2):373–378

    CAS  Google Scholar 

  • Mussatto SI, Teixeira JA (2010) Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agroindustrial residues as support and nutrient source. Biochem Eng J 53:154–157

    CAS  Google Scholar 

  • Nagarajan DR, Rajagopalan G, Krishnan C (2006) Purification and characterization of a maltooligosaccharide forming α-amylase from a new Bacillus subtilis KCC103. Appl Microbiol Biotechnol 73:591–597

    CAS  Google Scholar 

  • Nagendra R, Viswanatha S et al (1995) Effect of feeding milk formula containing lactulose to infants on faecal bifidobacterial flora. Nutr Res 15:15–24

    Google Scholar 

  • Nakkharat P, Kulbe KD, Yamabhai M et al (2006) Formation of galacto-oligosaccharides during lactose hydrolysis by a novel β-galactosidase from the moderately thermophilic fungus Talaromyces thermophilus. Biotechnol J 1:633–638

    CAS  Google Scholar 

  • Neagu C, Bahrim G (2011) Inulinases—a versatile tool for biotechnology. Innovat Rom Food Biotechnol 9:1–11

    CAS  Google Scholar 

  • Neutraceuticals World (2010) Report finds significant potential in prebiotics market. http://www.nutraceuticalsworld. com/contents/view_breaking-news/2010-02-23/report- finds-significant-potential-in-prebiotics-m/

  • Nguyen TH, Splechtna B, Krasteva S et al (2007) Characterization and molecular cloning of a heterodimeric β-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiol Lett 269:136–144

    CAS  Google Scholar 

  • Niness KR (1999) Inulin and oligofructose: what are they? J Nutr 129:1402–1406

    Google Scholar 

  • Nishimura T, Ishihara M, Tadashi I et al (1998) Alkaline xylanases from Bacillus mojavensis A21: production and generation of xylooligosaccharides. Carbohydr Res 308:117–122

    CAS  Google Scholar 

  • Onishi N, Tanaka T (1997) Purification and characterization of galacto-oligosaccharide producing β-galactosidase from Sirobasidium magnum. Lett Appl Microbiol 24:82–86

    CAS  Google Scholar 

  • Ota M, Okamoto T, Wakabayashi H (2009) Action of transglucosidase from Aspergillus niger on maltoheptaose and [U–13C] maltose. Carbohydr Res 344:460–465

    CAS  Google Scholar 

  • Panesar PS, Panesar R, Singh RS et al (2006) Microbial production, immobilization and applications of β-D-galactosidase. J Chem Technol Biotechnol 81:530–543

    CAS  Google Scholar 

  • Parajo JC, Garrote G, Cruz JM et al (2004) Effects of xylooligosaccharides and sugars on the functionality of porcine myofibrillar proteins during heating and frozen storage. Trends Food Sci Technol 15:115–120

    CAS  Google Scholar 

  • Park K (1992) Development of new carbohydrate materials. Food Sci Ind 25:73–82

    CAS  Google Scholar 

  • Park YK, Pastore GM (2006) Process for preparing β-fructofuranosidase enzyme and a process for producing fructooligosaccharides. US Patent 7063976

    Google Scholar 

  • Park J, Oh T, Yun JW (2001) Purification and characterization of a novel transfructosylating enzyme from Bacillus macerans EG-6. Process Biochem 37:471–476

    Google Scholar 

  • Park N-H, Choi H-J, Oh D-K (2005) Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnol Lett 27:495–497

    CAS  Google Scholar 

  • Petzelbauer I, Zeleny R, Reiter A et al (2000) Development of an ultrahigh- temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases. Biotechnol Bioeng 69:140–149

    CAS  Google Scholar 

  • Pierre F, Perrin P, Champ M et al (1997) Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Res 57(2):225–228

    CAS  Google Scholar 

  • Placier G, Watzlawick H, Rabiller C et al (2009) Evolved β-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharides production. Appl Environ Microbiol 75:6312–6321

    CAS  Google Scholar 

  • Puchart V, Biely P (2008) Simultaneous production of endo-β-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus. J Biotechnol 137:34–43

    CAS  Google Scholar 

  • Rajagopalan G, Krishnan C (2008) α-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour Technol 99:3044–3050

    CAS  Google Scholar 

  • Rajoka MI, Yasmeen A (2005) Improved productivity of β-fructofuranosidase by a derepressed mutant of Aspergillus niger from conventional and non-conventional substrates. World J Microbiol Biotechnol 21:471–478

    CAS  Google Scholar 

  • Reddy BS (1999) Possible mechanisms by which pro- and prebiotics influence colon carcinogenesis and tumor growth. J Nutr 129:1478–1482

    Google Scholar 

  • Roberfroid MB (1993) Dietary fibre, inulin and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33:103–148

    CAS  Google Scholar 

  • Roberfroid MB (1997) Health benefits of non-digestible oligosaccharides. Adv Exp Med Biol 427:211–219

    CAS  Google Scholar 

  • Roller M, Rechkemmer G, Watzl B (2004) Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune function in rats. J Nutr 134:153–156

    CAS  Google Scholar 

  • Rude RK (1996) Magnesium homeostasis. In: Raisz LG, Rodan GA, Bilezikian JP (eds) Principle of bone biology. Academic, San Diego, CA

    Google Scholar 

  • Ryan SE, Nolan K, Thompson R et al (2003) Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum. Enzyme Microb Technol 33:775–785

    CAS  Google Scholar 

  • Sakai T, Tsuji H, Shibata S et al (2008) Repeated-batch production of galactooligosaccharides from lactose at high concentration by using alginate-immobilized cells of Sporobolomyces singularis YIT 10047. J Gen Appl Microbiol 54:285–293

    CAS  Google Scholar 

  • Sako T, Matsumoto K, Tanaka R (1999) Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int Dairy J 9:69–80

    CAS  Google Scholar 

  • Samanta AK, Jayapal N, Kolte AP et al (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 112:199–205

    CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2004) Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl Microbiol Biotechnol 65:530–537

    CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005a) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457

    CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005b) Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochem 40:1085–1088

    CAS  Google Scholar 

  • Schley PD, Field CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 87:221–230

    Google Scholar 

  • Schumann C (2002) Medical, nutritional and technological properties of lactulose. An update. Eur J Nutr 41:17–25

    Google Scholar 

  • Sharma M, Chadha BS, Saini HS (2010) Purification and characterization of two thermostable xylanases from Malbranchea flava active under alkaline conditions. Bioresour Technol 101:8834–8842

    CAS  Google Scholar 

  • Sheu DC, Li SY et al (1998) Production of galactooligosaccharides by β-galactosidase immobilized on glutaraldehyde-treated chitosan beads. Biotechnol Tech 12:273–276

    CAS  Google Scholar 

  • Shimoda K, Hamada H (2010) Synthesis of β-maltooligosaccharides of glycitein and daidzein and their anti-oxidant and anti-allergic activities. Molecules 15:5153–5161

    CAS  Google Scholar 

  • Shimoda K, Akagi M, Hamada H (2009) Production of β-maltooligosaccharides of α- and δ-tocopherols by Klebsiella pneumoniae and cyclodextrin glucanotransferase as anti-allergic agents. Molecules 14:3106–3114

    CAS  Google Scholar 

  • Shin HT, Baig SY, Lee SW et al (2004) Production of fructo-oligosaccharides from molasses by Aureobasidium pullulans cells. Bioresour Technol 93:59–62

    CAS  Google Scholar 

  • Singh RS, Singh RP (2010) Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technol Biotechnol 48:435–450

    CAS  Google Scholar 

  • Sodhi HK, Sharma K, Gupta JK et al (2005) Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochem 40:525–534

    CAS  Google Scholar 

  • Splechtna B, Petzelbauer I, Baminger U et al (2001) Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme Microb Technol 29:434–440

    CAS  Google Scholar 

  • Splechtna B, Nguyen TH, Steinbock M et al (2006) Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54:4999–5006

    CAS  Google Scholar 

  • Stanton C, Gardiner G, Meehan H et al (2001) Market potential for probiotics. Am J Clin Nutr 73:476–483

    Google Scholar 

  • Sun HJ, Yoshida S, Park NH et al (2002) Enzymatic preparation of wheat bran xylooligosaccharides and their stability during pasteurization and autoclave sterilization at low pH. Carbohydr Res 337:657–661

    CAS  Google Scholar 

  • Tang L, Li ZA, Dong XX et al (2011) Lactulose biosynthesis by β-galactosidase from a newly isolated Arthrobacter sp. J Ind Microbiol Biotechnol 38:471–476

    CAS  Google Scholar 

  • Torres DPM, Goncalves MDPF, Teixeira JA et al (2010) Galacto-oligosaccharides: production, properties, applications, and significance as probiotics. Compr Rev Food Sci Food Saf 9:438–454

    CAS  Google Scholar 

  • Toshio I, Noriyoshi I, Toshiaki K et al (1990) Production of xylobiose. Japanese Patent JP 2119790

    Google Scholar 

  • Tzortzis G, Goulas AK, Gibson GR (2005) Synthesis of probiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl Microbiol Biotechnol 68:412–416

    CAS  Google Scholar 

  • Van LJ, Coussement P, De Leenheer L et al (1995) On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35:525–552

    Google Scholar 

  • Vankova K, Onderková Z, Antošová M et al (2008) Design and economics of industrial production of fructooligosaccharides. Chem Pap 62(4):3753–3781

    Google Scholar 

  • Vazquez MJ, Garrote G, Alonso JL et al (2002) Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresour Technol 96:889–896

    Google Scholar 

  • Vranesic D, Kurtanjek Z, Santos AMP et al (2002) Optimisation of inulinase production by Kluyveromyces bulgaricus. Food Technol Biotechnol 40(1):7–73

    Google Scholar 

  • Waterhouse AL, Chatterton NJ (1993) Glossary of fructan terms. In: Chatterton NJ, Suzuki M (eds) Science and technology of fructans. CRC, Boca Raton, FL

    Google Scholar 

  • Watson E (2011) Frost & Sullivan: US prebiotics market to double in five years. Prebiotics. http://www.nutraingredients-usa.com/Industry/Frost-Sullivan-US-prebiotics-market-to-double-in-five-years

  • Watzl B, Girrbach S, Roller M (2005) Inulin, oligofructose and immunomodulation. Br J Nutr 93:49–55

    Google Scholar 

  • Xiao H, Ruijin Y, Wenbin Z et al (2010) Dual-enzymatic synthesis of lactulose in organic-aqueous two-phase media. Food Res Int 43:716–722

    Google Scholar 

  • Xu ZW, Li YQ, Wang YH et al (2009) Production of β-fructofuranosidase by Arthrobacter sp. and its application in the modification of stevioside and rebaudioside A. Food Technol Biotechnol 47(2):137–143

    CAS  Google Scholar 

  • Yang H, Wang H, Song X et al (2011) Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populus tomentosa. Bioresour Technol 102:7171–7176

    CAS  Google Scholar 

  • Yang R, Xu S, Wang Z, Yang W (2005) Aqueous extraction of corn cob xylan and production of xylooligosaccharides. LWT-Food Sci Technol 38:677–682

    CAS  Google Scholar 

  • Yuan X, Wang J, Yao H (2005) Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chem 90:759–764

    CAS  Google Scholar 

  • Yun JW, Kim DH, Kim BW et al (1997a) Production of inulo-oligosaccharides from inulin by immobilized endoinulinase from Pseudomonas sp. J Ferment Bioeng 84:369–371

    CAS  Google Scholar 

  • Yun JW, Kim DH, Yoon HB et al (1997b) Effect of inulin concentration on the production of inulo-oligosaccharides by soluble and immobilized endoinulinase. J Ferment Bioeng 84(4):365–368

    CAS  Google Scholar 

  • Yun JW, Park JP, Song CH et al (2000) Continuous production of inulo-oligosaccharides from chicory juice by immobilized endoinulinase. Bioprocess Eng 22(3):189–194

    CAS  Google Scholar 

  • Zhang L, Su Y, Zheng Y et al (2010) Sandwich-structured enzyme membrane reactor for efficient conversion of maltose into isomaltooligosaccharides. Bioresour Technol 101(23):9144–9149

    CAS  Google Scholar 

  • Zhengyu J, Jing W, Bo J et al (2005) Production of inulooligosaccharides by endoinulinases from Aspergillus ficuum. Food Res Int 38:301–308

    Google Scholar 

  • Zokaee F, Kaghazchi T, Zare A et al (2002) Isomerization of lactose to lactulose-study and comparison of three catalytic systems. Process Biochem 37:629–635

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Panesar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Panesar, P.S., Bali, V., Kumari, S., Babbar, N., Oberoi, H.S. (2014). Prebiotics. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_10

Download citation

Publish with us

Policies and ethics