Skip to main content

Olive Oil Authentication

  • Chapter
  • First Online:
Handbook of Olive Oil

Abstract

This chapter describes the application of consumer methodologies to the study of extra virgin olive oil (EVOO). Due to the multivariate nature of consumer behavior, both qualitative and quantitative methods were employed to provide a more holistic view of the consumption behavior. A focus group technique showed that the diversity of the participants’ experiences with olive oil resulted in differences in existing perceptions regarding what constitutes an EVOO and the meaning of ‘extra virgin’ and determined how the combination of considered factors influenced purchase and usage motivations. A two-stage sorting task was conducted to identify American consumers’ opinions of 25 EVOOs based on visual assessments of the bottles. The majority of the consumers perceived the EVOO bottles similarly; however the two-state sorting task allowed consumers to provide additional criteria of their perception of the products. Means-end chain analysis on the interview data revealed common grounds for consumption and buying motivations with three different consumer segments. As part of the quantitative research methods, survey research was employed to identify consumer preferences and attitudes regarding EVOO. Univariate and multivariate approaches were employed to understand how hedonic scores are related to descriptive analysis measurements. Three segments were identified using cluster analysis; the three segments agreed in the rejection of bitterness and pungency. In general, the positive drivers of liking are nutty, tea, green fruit, and green tomato. Some consumers are less sensitive to the presence of defects in EVOO and tend to like defective oils.

Before describing analytical solutions, this chapter first provides definitions of authenticity and describes the official methods supported by the European Communities, International Olive Council, and Codex Alimentarius.

The description of the current instrumental techniques has been split into two groups: (1) those based on contributions from almost all possible analytes (e.g., spectroscopy) and (2) those that rely on the measurement of more definite information obtained from fractionation of olive oil components (e.g., chromatography). In the first group, the chapter describes new applications of Fourier transform-Raman, Fourier transform-mid-infrared, fluorescence, and nuclear magnetic resonance (NMR), in addition to the traditional application of near-infrared (NIR) spectroscopy for determining trans fatty acids (FAs). The description of chromatographic techniques (high-performance liquid chromatography and HRGC), which are probably the most effective analytical approaches when the separation of olive oil components is required for authentication, includes a discussion about the methods for the individual quantification of FA methyl esters, triacylglycerols, diacylglycerols, FA alkyl esters, sterols, hydrocarbons, triterpene dialcohols and alcohols, aliphatic alcohols, waxes, and phenolic compounds. The chapter also analyzes new frontiers of research in the field of olive oil authenticity by means of the implementation of rapid methodologies or the identification and quantification of hitherto undetectable compounds with the help of sophisticated in-tandem techniques that have been developed recently. The next section, however, describes current problems with the official methods despite the arsenal of analytical techniques available at the moment.

Because analytical results are not exempt from errors, validated analytical methods are essential for the quality performance of analytical laboratories. Thus, the chapter has a special section devoted to method validation (Cochran and Grubbs tests, precision, repeatability, and reproducibility limits), the definition of validation characteristics (selectivity, sensitivity, robustness, linearity, LOD, LOQ), the use in practice of accuracy values by means of procedures for comparisons between laboratories, the measurement of uncertainty, and general requirements for the competence of laboratories to carry out analytical tests, calibrations, and sampling. The entire section is based on ISO standards.

The last section of the chapter, which is focused on future trends and perspectives, analyzes the global meaning of authenticity, genuine olive oils with a chemical composition that does not conform to international standards, and that the new trade standards prevent a casual relation between chemical compounds and authenticity can be interpreted as causal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albi T, Lanzón A, Cert A, Aparicio R (1990) Values of erythrodiol in samples of Andalusian virgin olive oils. Grasas Aceites 41:167–170

    CAS  Google Scholar 

  • Alexa E, Dragomirescu A, Pop G, Jianu C, Dragoş D (2009) The use of FT-IR spectroscopy in the identification of vegetable oils adulteration. J Food Agric Environ 7:20–24

    CAS  Google Scholar 

  • Al-Ismail KM, Alsaed AK, Ahmad R (2010) Detection of olive oil adulteration with some plant oils by GLC analysis of sterols using polar column. Food Chem 121:1255–1259

    Article  CAS  Google Scholar 

  • Alonso L, Fontecha J, Lozada L, Juarez M (1997) Determination of mixtures in vegetable oils and milk fat by analysis of sterol fraction by gas chromatography. J Am Oil Chem Soc 74:131–135

    Article  CAS  Google Scholar 

  • Amelio M, Rizzo R, Varazini F (1993) Separation of wax esters from olive oils by high-performance liquid chromatography. J Am Oil Chem Soc 70(8):793–796

    Article  CAS  Google Scholar 

  • Amelio M, Rizzo R, Varazini F (1998) Separation of stigmasta-3,5-diene, squalene isomers, and wax esters from olive oils by single high-performance liquid chromatography run. J Am Oil Chem Soc 75(4):527–530

    Article  CAS  Google Scholar 

  • Angerosa F, Camera L, Cumitini S, Gleixner G, Reniero F (1997) Carbon stable isotopes and olive oil adulteration with pomace oil. J Agric Food Chem 45:3044–3048

    Article  CAS  Google Scholar 

  • Angiuli M, Bussolino GC, Ferrari C, Matteoli E, Righetti MC, Salvetti G, Tombari E (2009) Calorimetry for fast authentication of edible oils. Int J Thermophys 30:1014–1024

    Article  CAS  Google Scholar 

  • Antoniosi Filho NR, Carrilho E, Lanças FM (1993) Fast quantitative analysis of soybean oil in olive oil by high temperature -capillary gas chromatography (HT-CGC). J Am Oil Chem Soc 70:1051–1053

    Article  CAS  Google Scholar 

  • Antoniosi Filho NR, Mendes OL, Lanças FM (1995) Computer prediction of triacylglycerol composition of vegetable oils by HRGC. Chromatographia 40:557–562

    Article  CAS  Google Scholar 

  • Aparicio R (1998) Oils and Fats. In: Lees M (ed) Food authenticity: issues and methodologies. Eurofins Scientific, Nantes

    Google Scholar 

  • Aparicio R (2002) Chemometrics as an aid in authentication. In: Jee M (ed) Oils and fats authentication. CRC, Oxford, UK, pp 156–180

    Google Scholar 

  • Aparicio R, Aparicio-Ruiz R (2000) Authentication of vegetable oils by chromatographic techniques. J Chromatogr A 881:93–104

    Article  CAS  Google Scholar 

  • Aparicio R, Aparicio-Ruiz R, García-González DL (2007) Rapid methods for testing authenticity: the case of olive oil. In: van Amerongen A, Barug DM, Lauwars M (eds) Rapid methods for food and feed quality determination. Wageningen Academic, Wageningen, pp 163–188

    Google Scholar 

  • Aramendía MA, Marinas A, Moreno JM, Moalem M, Rallo L, Urbano FJ (2007) Oxygen-18 measurement of Andalusian olive oils by continuous flow pyrolysis/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 21:487–496

    Article  CAS  Google Scholar 

  • Association of Official Analytical Chemistry International (AOAC) (1995) Official methods of analysis, 16th edn. Cunniff PA (ed). AOAC International, Arlington

    Google Scholar 

  • Association of Official Analytical Chemistry International (AOAC) (2002) AOAC official methods of analysis. Appendix D: guidelines for collaborative study procedures to validate characteristics of a method of analysis. AOAC International, Arlington

    Google Scholar 

  • Aued-Pimentel S, Almeida MI, Mancini J (1993) The application of derivative spectrophotometry to evaluation of olive oil. Cient Tecnol Aliment 13:121–131

    CAS  Google Scholar 

  • Baeten V, Aparicio R (1997) Possibilities offered by infrared and Raman spectroscopic techniques in virgin olive oil authentication. Olivae 69(12)

    Google Scholar 

  • Bailey GF, Horvat RJ (1972) Raman spectroscopic analysis of the cis/trans isomer compositions of edible oils. J Am Oil Chem Soc 49:494–498

    Article  CAS  Google Scholar 

  • Baeten V, Hourant P, Morales MT, Aparicio R (1998) Oils and fats classification by FT-Raman spectroscopy. J Agric Food Chem 46:2638–2646

    Article  CAS  Google Scholar 

  • BaetenV MM, Morales MT, Aparicio R (1996) Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. J Agric Food Chem 44:2225–2230

    Article  Google Scholar 

  • Baeten V, Pierna JAF, Dardenne P, Meurens M, García-González DL, Aparicio-Ruiz R (2005) Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J Agric Food Chem 53:6201–6206

    Article  CAS  Google Scholar 

  • Barlett JG, Mahon JH (1958) Identification of oils and detection of oil adulteration by differential infrared spectroscopiy. J Assoc Off Anal Chem 41:450–459

    Google Scholar 

  • Bianchi G (2002) Authentication of olive oil. In: Jee M (ed) Oils and fats authentication. CRC, Oxford, UK, pp 25–65

    Google Scholar 

  • Biedermann M, Grob K, Mariani C (1995) On-line LC-UV-GC-FID for the determination of Δ7- and Δ8(14)- seterols and its application for the detection of adulterated olive oils. Riv Ital Sost Grasse 72:339–344

    CAS  Google Scholar 

  • Biedermann M, Grob K, Mariani C, Schmidt JP (1996) Detection of desterolized sunflower oil in olive oil through isomerized Δ7-sterols. Z Lebensm Unter Forsch 202:199–204

    Article  CAS  Google Scholar 

  • Biedermann M, Haase-Aschoff P, Grob K (2008a) Wax ester fraction of edible oils: analysis by on-line LC-GC-MS and GC × GC-FID. Eur J Lipid Sci Technol 110:1084–1094

    Article  CAS  Google Scholar 

  • Biedermann M, Bongartz A, Mariani C, Grob K (2008b) Fatty acid methyl and ethyl esters as well as wax esters for evaluating the quality of olive oils. Eur Food Res Technol 228:65–74

    Article  CAS  Google Scholar 

  • Bortolomeazzi R, De Zan M, Pizzale L, Conte LS (2000) Identification of new steroidal hydrocarbons in refined oils and the role of hydroxy sterols as possible precursors. J Agric Food Chem 48:1101–1105

    Article  CAS  Google Scholar 

  • Bowadt S, Aparicio R (2003) The detection of the adulteration of olive oil with hazelnut oil: a challenge for the chemists. Inform 14:342–344

    Google Scholar 

  • Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep 30:449–462

    Article  CAS  Google Scholar 

  • Brumley WC, Sheppard AJ, Rudolf TS, Shen CS, Yasaei P, Sphon JA (1985) Mass spectrometry and identification of sterols in vegetable oils as butyryl esters and relative quantitation by gas chromatography with flame ionization detection. J Assoc Off Anal Chem 68(4):701–709

    CAS  Google Scholar 

  • Buchgraber M, Ulberth F, Emons H, Anklam E (2004) Triacylglycerol profiling by using chromatographic techniques. Eur J Lipid Sci Technol 106:621–648

    Article  CAS  Google Scholar 

  • Camin F, Larcher R, Perini M, Bontempo L, Bertoldi D, Gagliano G, Nicolini G, Versini G (2010) Characterisation of authentic Italian extra-virgin olive oils by stable isotope ratios of C, O and H and mineral composition. Food Chem 118:901–909

    Article  CAS  Google Scholar 

  • Calapaj R, Chiricosta S, Saija G (1993) Valutazione di resultanze analitiche gas-cromatografiche e spettrofotometriche nell’accertamento della presenza di oli di semi in campioni di olio di oliva. Riv Ital Sost Grasse 70:585–594

    CAS  Google Scholar 

  • Carrasco-Pancorbo A, Cerretani L, Bendini A, Segura-Carretero A, Gallina-Toschi T, Fernández-Gutiérrez A (2005) Analytical determination of polyphenols in olive oils. J Sep Sci 28:837–858

    Article  CAS  Google Scholar 

  • Ceci LN, Carelli AA (2007) Characterization of monovarietal Argentinian olive oils from new productive zones. J Am Oil Chem Soc 84:1125–1136

    Article  CAS  Google Scholar 

  • Codex Alimentarius Commission (CAC) (2007) CCMAS 07/28/2: guidance on measurement uncertainty. FAO, Roma

    Google Scholar 

  • Codex Alimentarius Commssion (CAC) (2009a) Distribution of the report of the 21st session of the Codex Committee on fats and oils (ALINORM 09/32/17). FAO, Roma

    Google Scholar 

  • Codex Alimentarius Commission (2009b) Report of the thirtieth session of the Codex Committee on methods of analysis and sampling. Appendix III. Draft guidelines on analytical terminology (ALINORM 09/32/23). FAO, Roma

    Google Scholar 

  • Codex Committee on Methods of Analysis and Sampling (CCMAS) (2007) Twenty-eigth session, Budapest, Hungary. FAO, Roma

    Google Scholar 

  • Consolandi C, Palmieri L, Severgnini M, Maestri E, Marmiroli N, Agrimonti C, Baldoni L, Donini P, De Bellis G, Castiglioni B (2008) A procedure for olive oil traceability and authenticity: DNA extraction, multiplex PCR and LDR–universal array analysis. Eur Food Res Technol 227:1429–1438

    Article  CAS  Google Scholar 

  • Conte LS, Koprivnjak O, Fiorasi C, Pizzale L (1997) Solid-phase extraction applied to diacylglycerol determination in foods. Riv Ital Sostanze Grasse 74:411–414

    CAS  Google Scholar 

  • Cortes HJ, Winniford B, Luong J, Pursch M (2009) Comprehensive two dimensional gas chromatography review. J Sep Sci 32:883–904

    Article  CAS  Google Scholar 

  • Cortesi N, Fedeli E (1983) Polar compounds of virgin olive oil. Note 1. Riv Ital Sost Grasse 60:341–351

    CAS  Google Scholar 

  • Cortesi N, Rovellini P, Fedeli E (1990) I trigliceridi degli oli naturali. Nota I. Riv Ital Sost Grasse 67:69–73

    CAS  Google Scholar 

  • Cossignani L, Luneia R, Damiani P, Simonetti MS, Riccieri R, Tisconia E (2007) Analysis of isomeric diacylglycerolic classes to evaluate the quality of olive oil in relation to storage conditions. Eur Food Res Technol 224:379–383

    Article  CAS  Google Scholar 

  • Cunha SC, Oliveira MBPP (2005) Discrimination of vegetable oils by triacylglycerols evaluation of profile using HPLC/ELSD. Food Chem 95:518–524

    Article  CAS  Google Scholar 

  • de Koning S, Kaal E, Janssen HG, van Platerink C, Brinkman UAT (2008) Characterization of olive oil volatiles by multi-step direct thermal desorption-comprehensive gas chromatography-time-of-flight mass spectrometry using a programmed temperature vaporizing injector. J Chromatogr A 1186:228–235

    Article  CAS  Google Scholar 

  • Damiani P, Santinelli F, Simonetti MS, Castellini M, Rosi M (1994) Comparison between 2 procedures for stereospecific analysis of triacylglycerols from vegetable oils-I: olive oil. J Am Oil Chem Soc 71:1157–1162

    Article  CAS  Google Scholar 

  • Damiani P, Cossignani L, Simonetti MS, Santinelli F (2000) Prediction of isocratic non-aqueous RP-HPLC retention parameters and response factors of triacylglycerols detected and response factors of triacylglycerols detected by an UV-diode array-evaporative light scattering on-line system. J Chromatogr Sci 38:195–199

    Article  CAS  Google Scholar 

  • DGF-Einheitsmethoden (2006) DGF Standard Method C-VI 16 (06) Isomeric diacylglycerols. Determination of 1,2- and 1,3-diacylglycerols in vegetable edible oils. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart

    Google Scholar 

  • Dionisi F, Prodolliet J, Tagliaferri E (1995) Assessment of olive oil adulteration by reversed phase high performance liquid chromatography/amperometric detection of tocopherols and tocotrienols. J Am Oil Chem Soc 72:1505–1511

    Article  CAS  Google Scholar 

  • El-Abassy RM, Donfack P, Materny A (2009) Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. J Raman Spectrosc 40:1284–1289

    Article  CAS  Google Scholar 

  • El-Hamdy AH, Perkins EG (1981) High-performance reversed-phase chromatography of natural triglyceride mixtures: critical pair separation. J Am Oil Chem Soc 58:867–872

    Article  CAS  Google Scholar 

  • El-Hamdy AH, El-Fizga NK (1995) Detection of olive oil adulteration by measuring its authenticity factor using reversed-phase high-performance liquid chromatography. J Chromatogr A 708:351–355

    Article  CAS  Google Scholar 

  • Ellison SLR, Rosslein M, Williams A (2000) Quantifying uncertainty in analytical measurement. EURACHEM/CITAC Guide CG 4, 2nd edn

    Google Scholar 

  • European Communities (EC) (1987) Official Journal of the Commission of the European Communities. Regulation no 2658/87, L256, 9 Sept 1987

    Google Scholar 

  • European Communities (EC) (1991) Official Journal of the Commission of the European Communities. Regulation no 2568/91, L248, 5 Sept 1991

    Google Scholar 

  • European Communities (EC) (1995) Official Journal of the Commission of the European Communities. Regulation no 656/95, 29 Mar 1995

    Google Scholar 

  • European Communities (EC) (1997) Official Journal of the Commission of the European Communities. Regulation no 2472/97, 11 Dec 1997

    Google Scholar 

  • European Communities (EC) (2007) Official Journal of the European Union. Regulation no 702/2007, 22 June 2007

    Google Scholar 

  • European Communities (EC) (2011) Official Journal of the European Union. Regulation no 61/2011, L 23, 27 Jan 2011

    Google Scholar 

  • Fiebig HJ (1985) HPLC-Trennung von Triglyceriden. Fette Seifen Anstrichm 87:53–57

    Article  CAS  Google Scholar 

  • Flor RV, Hecking LT, Martin D (1993) Development of high performance liquid chromatography criteria for determination of grades of commercial olive oils. Part I. The normal ranges for the triacylglycerols. J Am Oil Chem Soc 70:199–203

    Article  CAS  Google Scholar 

  • Frankel EN (2010) Chemistry of extra virgin olive oil: adulteration, oxidative stability, and antioxidants. J Agric Food Chem 58:5991–6006

    Article  CAS  Google Scholar 

  • Frede E (1986) Improved HPLC of triglycerides by special tempering procedures. Chromatographia 21:29–36

    Article  CAS  Google Scholar 

  • Frega N, Bocci F, Lercker G (1993) High-resolution gas-chromatography determination of diacylglycerols in common vegetable oils. J Am Oil Chem Soc 70:175–177

    Article  CAS  Google Scholar 

  • Frega N, Bocci F, Lercker E (1990) The HRGC determination of triglycerides. Ital J Food Sci 4:257–264

    Google Scholar 

  • Gallina-Toschi TG, Christie WW, Conte LS (1993) Capillary gas chromatography combined with high performance liquid chromatography for the structural analysis of olive oil triacylglycerols. J High Resolut Chromatogr 16:725–730

    Article  Google Scholar 

  • Gallina-Toschi T, Bendini A, Lercker G (1996) Evaluation of 3,5-stigmastadiene content of edible oils: comparison between the traditional capillary gas chromatographic method and the on-line high performance liquid chromatography-capillary gas chromatographic analysis. Chromatographia 43(3/4):195–199

    Article  Google Scholar 

  • García-González DL, Mannina L, D’ Imperio M, Segre AL, Aparicio R (2004) Using 1H and 13C NMR techniques and artificial neural networks to detect the adulteration of olive oil with hazelnut oil. Eur Food Res Technol 219:545–548

    Article  CAS  Google Scholar 

  • García-González DL, Aparicio R (2006) Olive oil authenticity: the current analytical challenges. Lipid Technol 18(4):80–85

    Google Scholar 

  • García-González DL, Viera M, Tena N, Aparicio R (2007) Evaluation of the methods based on triglycerides and sterols for the detection of hazelnut oil in olive oil. Grasas Aceites 58:344–350

    Google Scholar 

  • García-González DL, Aparicio-Ruiz R, Aparicio R (2009) Olive oil. In: Moreau RA, Kamal-Eldin A (eds) Gourmet and health-promoting speciality oils. AOCS Press, Urbana, pp 33–72

    Google Scholar 

  • Garcia-Pulido J, Aparicio R (1993) Triacylglycerol determination based on fatty acid composition using chemometrics. Anal Chim Acta 271:293–298

    Article  CAS  Google Scholar 

  • Gegiou D, Georgouli M (1983) A rapid argentation TLC method for detection of reesterified oils in olive oil and olive-pomace oil. J Am Oil Chem Soc 60:833–835

    Article  CAS  Google Scholar 

  • Gertz C (2008) New analytical possibilities to survey quality and identity of olive oils. In: 99th AOCS annual meeting, Seattle, 18th–21st May

    Google Scholar 

  • Gertz C, Fiebig HJ (2005) Statement on the applicability of methods for the determination of pyropheophytin A and isomeric diacylglycerols in virgin olive oils. German Society for Fat Science (DGF). http://www.dgfett.de/meetings/archiv/hagenolive/Conclusions/Statement_Methods.pdf

  • Gertz C, Fiebig HJ (2006) Isomeric diacylglycerols – determination of 1,2- and 1,3 diacylglycerols in virgin olive oil. Eur J Lipid Sci Technol 108:1066–1069

    Article  CAS  Google Scholar 

  • Goodacre R, Kell DB, Bianchi G (1993) Rapid assessment of the authentication of virgin olive oils by other seed oils using pyrolysis mass spectrometry and articial neural networks. J Sci Food Agric 63:297–307

    Article  CAS  Google Scholar 

  • Grob K, Lanfranchi ML, Mariani C (1990) Evaluation of olive oils through the fatty alcohols, the sterols and their esters by coupled LC-GC. J Am Oil Chem Soc 67(10):626–634

    Article  CAS  Google Scholar 

  • Grob K, Artho A, Mariani C (1992) Determination of raffination of edible oils and fats by olefinic degradation products of sterols and squalene, using coupled LC-GC. Fat Sci Technol 10:394–400

    Google Scholar 

  • Grob K, Bronz M (1994) Analytical problems in determining 3,5-stigmastadiene and campestadiene inedible oils. Riv Ital Sost Grasse 71:291–295

    CAS  Google Scholar 

  • Grob K, Giuffré AM, Leuzzi U, Mincione B (1994a) Recognition of adulterated oils by direct analysis of the minor components. Fat Sci Technol 8:286–290

    Google Scholar 

  • Grob K, Giuffré MA, Biedermann M, Bronz M (1994b) The detection of adulteration with desterolized oils. Fat Sci Technol 9:341–345

    Google Scholar 

  • Guillén MD, Ruiz A (2003) Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils. Eur J Lipid Sci Technol 105:688–696

    Article  CAS  Google Scholar 

  • Guillou C, Lipp M, Radovic B, Reniero F, Schmidt M, Anklam E (1999) Use of pyrolysis–mass spectrometry in food analysis: applications in the food analysis laboratory of the European Commissions’ Joint Research Centre. J Anal Appl Pyrolysis 49:329–335

    Article  CAS  Google Scholar 

  • Guimet F, Ferré J, Boqué R (2005a) Rapid detection of olive–pomace oil adulteration in extra virgin olive oils from the protected designation of origin “Siurana” using excitation–emission fluorescence spectroscopy and three-way methods of analysis. Anal Chim Acta 544:143–152

    Article  CAS  Google Scholar 

  • Guimet F, Ferré J, Boqué R, Vidal M, García J (2005b) Excitation-emission fluorescence spectroscopy combined with three-way methods of analysis as a complementary technique for olive oil characterization. J Agric Food Chem 53:9319–9328

    Article  CAS  Google Scholar 

  • Gurdeniz G, Tokatli F, Ozen B (2007) Differentiation of mixtures of monovarietal olive oils by mid-infrared spectroscopy and chemometrics. Eur J Lipid Sci Technol 109:1194–1202

    Article  CAS  Google Scholar 

  • Gurdeniz G, Ozen B (2009) Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem 116:519–525

    Article  CAS  Google Scholar 

  • Gurr MI (1986) Trans-fatty acids. Metabolic and nutritional significance. BNF Nutr Bull 11:105–122

    Article  CAS  Google Scholar 

  • Hrncirik K, Fritsche S (2004) Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur J Lipid Sci Technol 106:540–549

    Article  CAS  Google Scholar 

  • Horwitz W (1988) Protocol for the design, conduct and interpretation of collaborative studies. Pure Appl Chem 60(6):855–864

    Article  CAS  Google Scholar 

  • Horwitz W (1995) Protocol for the design, conduct and interpretation of collaborative studies. Pure Appl Chem 67(2):331–343

    Article  Google Scholar 

  • Horwitz W, Kamps LR, Boyer KW (1980) Quality assurance in the analysis of foods for trace constituents. J Assoc Off Anal Chem 63:1344–1354

    CAS  Google Scholar 

  • Hourant P, Baeten V, Morales MT, Meurens M, Aparicio R (2000) Oil and fat classification by selected bands of near-infrared spectroscopy. Appl Spectrosc 54:1168–1174

    Article  CAS  Google Scholar 

  • International Olive Council (IOC) (2006a) COI/T.20/Doc No 25. Global method for the detection of extraneous oils in olive oils. Madrid

    Google Scholar 

  • International Olive Council (IOC) (2006b) COI/T.20/Doc No 23. Method for the determination of the percentage of 2-glyceryl-monopalmitate. Madrid

    Google Scholar 

  • International Olive Council (IOC) (2006c) Method COI/T20/Doc No 18. Determination of wax content by capillary-column gas–liquid chromatography, Madrid

    Google Scholar 

  • International Olive Council (IOC) (2009) COI/T.20/Doc No 29. Determination of biophenols in olive oils by HPLC. Madrid

    Google Scholar 

  • International Olive Council (IOC) (2010) COI/T.15/NC No 3/Rev. 5. Trade standards applying to olive oils and olive-pomace oils. Madrid

    Google Scholar 

  • International Organization of Standardization (ISO) (1994a) ISO 5725–1:1994, Accuracy (trueness and precision) of measurement methods and results – part 1: general principles and definitions. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (1994b) ISO 5725–2:1994, Accuracy (trueness and precision) of measurement methods and results –part 2: basic method for the determination of repeatability and reproducibility of a standard measurement method. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (1994c) SO 5725–3:1994, Accuracy (trueness and precision) of measurement methods and results – part 3: intermediate measures of the precision of a standard measurement method. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (1994d) ISO 5725–6:1994, Accuracy (trueness and precision) of measurement methods and results – part 6: use in practice of accuracy values. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2001) ISO 5555, Animal and vegetable fats and oils – sampling. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2003) ISO 661, Animal and vegetable fats and oils – preparation test sample. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2005a) ISO 17025, General requirements for the competence of testing and calibration laboratories. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2005b) ISO 9000, Quality management systems – fundamentals and vocabulary. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2006a) ISO Guide 35, Reference materials – general and statistical principles for certification. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2006b) ISO 3534–2, Statistics -vocabulary and symbols – part 2: applied statistics. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2008) ISO 9001, Quality management systems – requirements. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2009) ISO Guide 34, General requirements for the competence of reference material producers. Geneva

    Google Scholar 

  • International Organization of Standardization (ISO) (2010) ISO 21748, Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation. Geneva

    Google Scholar 

  • International Union of Pure and Applied Chemistry (IUPAC) (1997) Compendium of chemical terminology. In: McNaught AD, Wilkinson A (eds) Blackwell Scientific Publications, Oxford, on-line corrected version: http://goldbook.iupac.org (2006-) created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A

  • Kafatos A, Comas G (1991) Biological effects of olive oil on human health. In: Kiritsakis AK (ed) Olive oil. AOCS Press, Urbana, pp 157–181

    Google Scholar 

  • Kapoulas VM, Passaloglou-Emmanouilidou S (1981) Detection of the adulteration of olive oil with seed oils by a combination of column and gas liquid chromatography. J Am Oil Chem Soc 58:694–697

    Article  CAS  Google Scholar 

  • Kapoulas VM, Andrikopoulos NK (1987) Detection of virgin olive oil adulteration with refined oils by second-derivative spectrophotometry. Food Chem 23:183–192

    Article  CAS  Google Scholar 

  • Kelly S, Parker I, Sharman M, Dennis J, Goodall I (1997) Assessing the authenticity of single seed vegetable oils using fatty acid stable carbon isotope ratios (13C/12C). Food Chem 59:181–186

    Article  CAS  Google Scholar 

  • Kumar S, Kalon T, Chaudhary S (2011) A rapid screening for adulterants in olive oil using DNA barcodes. Food Chem 127:1335–1341

    Article  CAS  Google Scholar 

  • Lai YW, Kemsley EK, Wilson RH (1995) Quantitative analysis of potential adulterants of extra virgin olive oil using infrared spectroscopy. Food Chem 53:95–98

    Article  CAS  Google Scholar 

  • Lanzón A, Albi T, Cert A (1989) Detección de la presencia de aceete de oliva refinado en el aceite de oliva virgen. Grasas Aceites 40:385–388

    Google Scholar 

  • Lanzón A, Albi T, Cert A, Gracián J (1994) The hydrocarbon fraction of virgin olive oil and changes resulting from refining. J Am Oil Chem Soc 71:285–291

    Article  Google Scholar 

  • Lees M (1998) Introduction. In: Lees M (ed) Food authenticity: issues and methodologies. Eurofins Scientific, Nantes, pp 11–17

    Google Scholar 

  • Lercker G, Moschetta M, Caboni MF, Frega N (1985) Determinazione degli oli esterificati negli oli provenienti dalla lavorazione delle olive. Riv Ital Sost Grasse 62:15–18

    CAS  Google Scholar 

  • Lipp M, Anklam E (1998) Review of cocoa butter and alternative fats for use in chocolate-Part B. Analytical approachesfor identification and determination. Food Chem 62:99–108

    Article  CAS  Google Scholar 

  • Lisa M, Holĉapek M, Bohac M (2009) Statistical evaluation of triacylglycerol composition in plant oils based on high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry data. J Agric Food Chem 57:6888–6898

    Article  CAS  Google Scholar 

  • Mailer RJ, Ayton J, Graham K (2010) The influence of growing region, cultivar and harvest timing on the diversity of Australian olive oil. J Am Oil Chem Soc 87:877–884

    Article  CAS  Google Scholar 

  • Mannina L, D’Imperio M, Capitani D, Rezzi S, Guillou C, Mavromoustakos T, Vichez MDM, Fernandez AH, Thomas F, Aparicio R (2009) 1H NMR-based protocol for the detection of adulterations of refined olive oil with refined hazelnut oil. J Agric Food Chem 57:11550–11556

    Article  CAS  Google Scholar 

  • Mariani C, Bondioli P, Venturini S, Fedeli E (1991) Sulla formazione di acidi grassi trans nel processo di reffinazione dell’olio di oliva lampante. Riv Ital Sost Grasse 68:455–459

    CAS  Google Scholar 

  • Mariani C, Venturini S, Bondioli P, Fedeli E, Grob K (1992) Evaluation of the variations products by bleaching process on the more meaningful minor components, free and esterified in olive oil. Riv Ital Sost Grasse 69:393–399

    CAS  Google Scholar 

  • Mariani C, Gasparoli A, Venturini S, Fedeli E (1993) Strutto vergine e strutto raffinato: Loro differenziazione analitica. Riv Ital Sost Grasse 70:275–278

    CAS  Google Scholar 

  • Mariani C, Venturini S, Grob K (1995) Individuazione dell’olio di girasole alto oleico desterolato nell’olio d’oliva. Riv Ital Sost Grasse 72:473–482

    CAS  Google Scholar 

  • Mariani C (1998) Sulla presenza di ergosterolo negli oli di oliva. Riv Ital Sost Grasse 75:3–10

    CAS  Google Scholar 

  • Mariani C, Bellan G, Lestini E, Aparicio R (2006) The detection of the presence of hazelnut oil in olive oil by free and esterified sterols. Eur Food Res Technol 223:655–661

    Article  CAS  Google Scholar 

  • Marigheto NA, Kemsley EK, Defernez M, Wilson RH (1998) Comparison of mid-infrared and Raman spectroscopies for the authentication of edible oils. J Am Oil Chem Soc 75:987–992

    CAS  Google Scholar 

  • Martens H, Naes T (1989) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  • Mavromoustakos T, Zervou M, Bonas G, Kolokouris A, Petrakis P (2000) A novel method to detect adulteration of virgin olive oil by other oils. J Am Oil Chem Soc 77:405–411

    Article  CAS  Google Scholar 

  • Montealegre C, Alegre MLM, García-Ruiz C (2010) Traceability markers to the botanical origin in olive oils. J Agric Food Chem 58:28–38

    Article  CAS  Google Scholar 

  • Montedoro GF, Servili M, Baldioli M, Miniati E (1992) Simple and hydrolyzable compounds in virgin olive oil. 1. Their extraction, separation and quantitative and semiquantitative evaluation by HPLC. J Agric Food Chem 40:1571–1576

    Article  CAS  Google Scholar 

  • Morchio G, Di Bello A, Mariani C, Fedeli E (1989) Individuazione di particolari oli rettificati in oli vergini di oliva. Riv Ital Sostanze Grasse 66:251–257

    CAS  Google Scholar 

  • Moreda W, Pérez-Camino MC, Cert A (2003) Improved method for the determination of triacylglycerols in olive oils by high performance liquid chromatography. Grasas Aceites 54:175–179

    Article  CAS  Google Scholar 

  • Motta L, Brianza M, Stanga F, Amelotti G (1983) Analisi gascromatografica di gliceridi parziali dopo lipolisi con lipasi pancreatica. Riv Ital Sost Grasse 60:625–633

    CAS  Google Scholar 

  • Muzzalupo I, Perri E (2002) Recovery and characterisation of DNA from virgin olive oil. Eur Food Res Technol 214:528–531

    Article  CAS  Google Scholar 

  • Nagy K, Bongiorno D, Avellone G, Agozzino P, Ceraulo L, Vekey K (2005) High-performance liquid chromatography-mass spectrometry based chemometric characterization of olive oils. J Chromatogr A 1078:90–97

    Article  CAS  Google Scholar 

  • Norme Grassi e Derivati (NGD) (2005) NGD C 87–05. Determinazione della composizione e del contenuto di digliceridi mediante GLC capillare. Stazione Sperimentale per le Industrie degli Oli e dei Grassi (SSOG), Milano

    Google Scholar 

  • Ogrinc N, Košir IJ, Spangenberg JE, Kidrič J (2003) The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review. Anal Bioanal Chem 376:424–430

    Article  CAS  Google Scholar 

  • Ollivier D, Artaud J, Pinatel C, Durbec JP, Guérère M (2003) Triacylglycerol and fatty acid compositions of French virgin olive oils. Characterization by chemometrics. J Agric Food Chem 51:5723–5731

    Article  CAS  Google Scholar 

  • Özdemir D, Öztürk B (2007) Near infrared spectroscopic determination of olive oil adulteration with sunflower and corn oil. J Food Drug Anal 15:40–47

    Google Scholar 

  • Ozen BF, Mauer LJ (2002) Detection of hazelnut oil adulteration using FT-IR spectroscopy. J Agric Food Chem 50:3898–3901

    Article  CAS  Google Scholar 

  • Öztürk B, Yalçin A, Özdemir D (2010) Determination of olive oil adulteration with vegetable oils by near infrared spectroscopy coupled with multivariate calibration. J Near Infrared Spectrosc 18:191–201

    Article  CAS  Google Scholar 

  • Pafundo S, Busconi M, Agrimonti C, Fogher C, Marmiroli N (2010) Storage-time effects on olive oil DNA assessed by amplified fragments length polymorphisms. Food Chem 123:787–793

    Article  CAS  Google Scholar 

  • Paganuzzi V (1997) Sulle attuali possibili sofisticazione dell’olio di oliva. Riv Ital Sost Grasse 74:49–58

    CAS  Google Scholar 

  • Passaloglou-Emmanouilidou S (1990) A xomparative study of UV spectrophotometric methods for detection of olive oil adulteration by refined oils. Z Lebensm Unterz Forsch 191:132–134

    Article  CAS  Google Scholar 

  • Pérez-Camino MC, Moreda W, Cert A (1996) Determination of diacylglycerol isomers in vegetable oils by solid-phse extraction followed by gas chromatography on a polar phase. J Chromatogr A 721:305–314

    Article  Google Scholar 

  • Pérez-Camino MC, Moreda W, Mateos R, Cert A (2002) Determination of esters of fatty acids with low molecular weight alcohols in olive oils. J Agric Food Chem 50:4721–4725

    Article  CAS  Google Scholar 

  • Pérez-Camino MC, Moreda W, Mateos R, Cert A (2003) Simultaneous determination of long-chain aliphatic aldehydes and waxes in olive oils. J Chromatogr A 983:283–288

    Article  Google Scholar 

  • Pérez-Camino MC, Cert A, Romero-Segura A, Cert-Trujillo R, Moreda W (2008) Alkyl esters of fatty acids a useful tool to detect soft deodorized olive oils. J Agric Food Chem 56:6740–6744

    Article  CAS  Google Scholar 

  • Phillips FC, Erdahl WL, Nadenicek JD, Nutter LJ, Schmit JA et al (1984) Analysis of triglyceride species by high-performance liquid chromatography via a flame ionization detector. Lipids 19:142–150

    Article  CAS  Google Scholar 

  • Podlaha O, Toregard B (1982) A system for identification of triglycerides in RP-HPLC chromatograms based on equivalent carbon numbers. J High Resolut Chromatogr 5:553–558

    Article  CAS  Google Scholar 

  • Poulli KI, Mousdis GA, Georgiou CA (2006) Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration. Anal Bioanal Chem 386:1571–1575

    Article  CAS  Google Scholar 

  • Poulli KI, Mousdis GA, Georgiou CA (2007) Rapid synchronous fluorescence method for virgin olive oil adulteration assessment. Food Chem 105:369–375

    Article  CAS  Google Scholar 

  • Purcaro G, Morrison P, Moret S, Conte LS, Marriott PJ (2007) Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microcomprenhensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A 1161:284–291

    Article  CAS  Google Scholar 

  • Rivera del Alamo RM, Fregapane G, Gómez-Alonso S, Aranda F, Salvador MD (2004) Sterols and alcohols composition of Cornicabra virgin olive oil: the campesterol content exceeds the upper limit of 4% established by EU Regulations. Food Chem 84:533–537

    Article  CAS  Google Scholar 

  • Rohman A, Che Man YB (2010) Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res Int 43:886–892

    Article  CAS  Google Scholar 

  • Rossell JB (1986) Classical analysis of oils and fats. In: Hamilton RJ, Rossell JB (eds) Analysis of oils and fats. Elsevier Applied Science, London, pp 261–327

    Google Scholar 

  • Sacchi R, Addeo F, Giudicianni I, Paolillo L (1992) Analysis of positional distribution of fatty acids in olive oil triacylglycerols by high resolution 13C-NMR of the carbonyl region. Ital J Food Sci 4:117–123

    CAS  Google Scholar 

  • Salivaras M, McCurdy AR (1992) Detection of olive oil adulteration with canola oil from triacylglycerol analysis by reversed-phase high-performance liquid chromatography. J Am Oil Chem Soc 69:935–939

    Article  CAS  Google Scholar 

  • Salvador MD, Aranda F, Fregapane G (1998) Chemical composition of comercial Cornicabra virgin olive oil from 1995/96 and 1996/97 crops. J Am Oil Chem Soc 75:1305–1311

    Article  CAS  Google Scholar 

  • Sánchez-Casas JS, Osorio-Bueno E, Montaño-García AM, Martinez-Cano M (2004) Sterol and erythrodiol + uvaol content of virgin olive oils from cultivars of Extremadura (Spain). Food Chem 87:225–230

    Article  CAS  Google Scholar 

  • Sayago A, García-González DL, Morales MT, Aparicio R (2007) Detection of the presence of refined hazelnut oil in refined olive oil by fluorescence spectroscopy. J Agric Food Chem 55:2068–2071

    Article  CAS  Google Scholar 

  • Serani A, Piacenti D, Staiano G (2001) Sistema analitico per l’identificazione di oli deodorati in oli vergini di oliva – Nota 2. Cinetica di isomerizzazione dei digliceride in oli vergine di oliva. Riv Ital Sost Grasse 78:525–528

    CAS  Google Scholar 

  • Sinouri S, Frangiscos E, Cristopoulou E, Lazaraki M, Alexiou F (1995) Influence of certain cultivars on the composition of olive-pomace oils. Note I: triglycerides and fatty acids. Riv Ital Sost Grasse 72:483–491

    Google Scholar 

  • Šmejkalová D, Piccolo A (2010) High-power gradient diffusion NMR spectroscopy for rapid assessment of extra-virgin olive oil adulteration. Food Chem 118:153–158

    Article  CAS  Google Scholar 

  • Tena N, Aparicio R, García-González DL (2009) Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content. J Agric Food Chem 57:10505–10511

    Article  CAS  Google Scholar 

  • Tranchida PQ, Purcaro G, Conte LS, Dugo O, Dugo G, Mondello L (2009a) Enhanced resolution comprehensive two-dimensional gas chromatography applied to the analysis of roasted coffee volatiles. J Chromatogr A 1216:7301–7306

    Article  CAS  Google Scholar 

  • Tranchida PQ, Purcaro G, Conte LS, Dugo O, Dugo G, Mondello L (2009b) Optimized use of a 50 μm internal diameter secondary column in a comprehensive two-dimensional gas chromatography system. Anal Chem 81:8529–8537

    Article  CAS  Google Scholar 

  • Vandeginste BGM, Massart DL, Buydens LMC, de Jong S, Lewi PJ, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimetrics: Part B. Elsevier, Amsterdam

    Google Scholar 

  • van de Voort FR, Sedman J, Emo G, Ismail AA (1992) Rapid and direct value and saponification number determination of fats and oils by attenuated total reflectance/Fourier transform infrared spectroscopy. J Am Oil Chem Soc 69:1118–1123

    Article  Google Scholar 

  • van de Voort FR, Ismail AA, Sedman J (1995) A rapid, automated method for the determination of cis and trans content of fats and oils by Fourier transform infrared spectroscopy. J Am Oil Chem Soc 72:873–880

    Article  Google Scholar 

  • Vecchio S, Cerratini L, Bendini A, Chiavaro E (2009) Thermal decomposition study of monovarietal extra virgin olive oil by simultaneous thermogravimetry/differential scanning calorimetry: relation with chemical composition. J Agric Food Chem 57:4793–4800

    Article  CAS  Google Scholar 

  • Verleyen T, Szulczewska A, Verhe R, Dewettinck K, Huyghebaert A, De Greyt W (2002) Comparison of steradiene analysis between GC and HPLC. Food Chem 78:267–272

    Article  CAS  Google Scholar 

  • Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E (2006) Applications of Fourier transform-infrared spectroscopy to edible oils. Anal Chim Acta 573–574:459–465

    Article  CAS  Google Scholar 

  • Vlaeminck B, Harynuk J, Fievez V, Marriott P (2007) Comprehensive two-imensional gas chromatography for the separation of fatty acids in milk. Eur J Lipid Sci Technol 109:757–766

    Article  CAS  Google Scholar 

  • Wesley IJ, Barnes RJ, McGill AEJ (1995) Measurement of adulteration of olive oils by near-infrared spectroscopy. J Am Oil Chem Soc 72:289–292

    Article  CAS  Google Scholar 

  • Wesley IJ, Pacheco F, McGill AEJ (1996) Identification of adulterants in olive oils. J Am Oil Chem Soc 73:515–518

    Article  CAS  Google Scholar 

  • Woodbury SE, Evershed RP, Rossell JB (1998) Purity assessments of major vegetable oils based on δ13C values of individual fatty acids. J Am Oil Chem Soc 75:371–379

    Article  CAS  Google Scholar 

  • Woolfe M, Primrose S (2004) Food forensics: using DNA technology to combat misdescription and fraud. Trends Biotechnol 22:222–226

    Article  CAS  Google Scholar 

  • Yang H, Irudayaraj J (2001) Comparison of near-infrared, Fourier transform-infrared, and Fourier transform-Raman methods for determining olive pomace oil adulteration in extra virgin olive oil. J Am Oil Chem Soc 78:889–895

    Article  CAS  Google Scholar 

  • Zamora R, Gómez G, Alba V, Hidalgo FJ (2001) Use of highresolution 13C nuclear magnetic resonance spectroscopy for the screening of virgin olive oil. J Am Oil Chem Soc 78:89–93

    Article  CAS  Google Scholar 

  • Zeitoun MAM, Neff WE, Selke E, Mounts TL (1991) Analyses of vegetable oil triglyceride molecular species by reversed phase high-performance liquid chromatography. J Liq Chromatogr 14:2685–2698

    Article  CAS  Google Scholar 

  • Zou MQ, Zhang XF, Xiao-Hua QI, Ma H-L, Dong Y, Chun-Wei LIU, Guo XUN, Wang H (2009) Rapid authentication of olive oil adulteration by Raman spectrometry. J Agric Food Chem 57:2001–6006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Aparicio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aparicio, R., Conte, L.S., Fiebig, HJ. (2013). Olive Oil Authentication. In: Aparicio, R., Harwood, J. (eds) Handbook of Olive Oil. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7777-8_16

Download citation

Publish with us

Policies and ethics