Skip to main content

ATP-Binding Cassette, Subfamily A (ABC1), Member 7 (ABCA7)

  • Chapter
  • First Online:

Abstract

ABCA7 is a member of the ATP binding cassette transporter gene superfamily. These multispan transmembrane proteins are highly conserved and exist in organisms from bacteria to humans. Energy derived from the hydrolysis of ATP is used to transport a number of substrates across both the cellular and intracellular lipid membranes.

Apolipoprotein-dependent cholesterol efflux, sterol homeostasis and lipid metabolism can all be attributed to ABCA proteins to some degree, but how these roles manifest within the CNS and BBB is relatively unknown. Putative functionality within Alzheimer’s disease has been suggested for ABCA7 based on ABCA1 functionality and the observed homology between the proteins. Whilst cholesterol efflux is a minor role for ABCA7 there is a suggestion any reduction could hinder APOE lipidation. As lipidated APOE in the brain reduces Aβ accumulation, any inhibitor to this APOE lipidation could increase Aβ levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104(5):1145–1166

    Article  PubMed  CAS  Google Scholar 

  2. Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3(3):281–290

    Article  PubMed  CAS  Google Scholar 

  3. Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42(7):1007–1017

    PubMed  CAS  Google Scholar 

  4. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML, Yokoyama S (2010) Helical apolipoproteins of high-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7. J Lipid Res 51(9):2591–2599

    Article  PubMed  CAS  Google Scholar 

  6. Kaminski WE, Piehler A, Wenzel JJ (2006) ABC A-subfamily transporters: structure, function and disease. Biochim Biophys Acta 1762(5):510–524

    Article  PubMed  CAS  Google Scholar 

  7. Piehler AP, Hellum M, Wenzel JJ, Kaminski E, Haug KBF, Kierulf P, Kaminski WE (2008) The human ABC transporter pseudogene family: evidence for transcription and gene-­pseudogene interference. BMC Genomics 9(1):165

    Article  PubMed  Google Scholar 

  8. Broccardo C, Luciani M-F, Chimini G (1999) The ABCA subclass of mammalian transporters. Biochim Biophys Acta 1461(2):395–404

    Article  PubMed  CAS  Google Scholar 

  9. Tusnády GE, Sarkadi B, Simon I, Váradi A (2006) Membrane topology of human ABC proteins. FEBS Lett 580(4):1017–1022

    Article  PubMed  Google Scholar 

  10. Tanaka AR, Ikeda Y, Abe-Dohmae S, Arakawa R, Sadanami K, Kidera A, Nakagawa S, Nagase T, Aoki R, Kioka N, Amachi T, Yokoyama S, Ueda K (2001) Human ABCA1 contains a large amino-terminal extracellular domain homologous to an epitope of Sjögren’s Syndrome. Biochem Biophys Res Commun 283(5):1019–1025

    Article  PubMed  CAS  Google Scholar 

  11. Kaminski WE, Orsó E, Diederich W, Klucken J, Drobnik W, Schmitz G (2000) Identification of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7). Biochem Biophys Res Commun 273(2):532–538

    Article  PubMed  CAS  Google Scholar 

  12. Allikmets R, Wasserman WW, Hutchinson A, Smallwood P, Nathans J, Rogan PK, Schneider TD, Dean M (1998) Organization of the ABCR gene: analysis of promoter and splice junction sequences. Gene 215(1):111–122

    Article  PubMed  CAS  Google Scholar 

  13. Remaley AT, Rust S, Rosier M, Knapper C, Naudin L, Broccardo C, Peterson KM, Koch C, Arnould I, Prades C, Duverger N, Funke H, Assman G, Dinger M, Dean M, Chimini G, Santamarina-Fojo S, Fredrickson DS, Denefle P, Brewer HB (1999) Human ATP-binding cassette transporter 1 (ABC1): genomic organization and identification of the genetic defect in the original Tangier disease kindred. Proc Natl Acad Sci U S A 96(22):12685–12690

    Article  PubMed  CAS  Google Scholar 

  14. Kaminski WE, Piehler A, Schmitz G (2000) Genomic organization of the human cholesterol-­responsive ABC transporter ABCA7: tandem linkage with the minor histocompatibility antigen HA-1 gene. Biochem Biophys Res Commun 278(3):782–789

    Article  PubMed  CAS  Google Scholar 

  15. Ikeda Y, Abe-Dohmae S, Munehira Y, Aoki R, Kawamoto S, Furuya A, Shitara K, Amachi T, Kioka N, Matsuo M (2003) Posttranscriptional regulation of human ABCA7 and its function for the apoA-I-dependent lipid release. Biochem Biophys Res Commun 311(2):313–318

    Article  PubMed  CAS  Google Scholar 

  16. Broccardo C, Osorio J, Luciani MF, Schriml LM, Prades C, Shulenin S, Arnould I, Naudin L, Lafargue C, Rosier M, Jordan B, Mattei MG, Dean M, Denèfle P, Chimini G (2001) Comparative analysis of the promoter structure and genomic organization of the human and mouse ABCA7 gene encoding a novel ABCA transporter. Cytogenet Cell Genet 92(3–4):264–270

    Article  PubMed  CAS  Google Scholar 

  17. Iwamoto N, Abe-Dohmae S, Sato R, Yokoyama S (2006) ABCA7 expression is regulated by cellular cholesterol through the SREBP2 pathway and associated with phagocytosis. J Lipid Res 47(9):1915–1927

    Article  PubMed  CAS  Google Scholar 

  18. Zheng D, Gerstein MB (2006) A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol 7(Suppl 1):S13.1–S13.10

    Article  Google Scholar 

  19. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  20. The International HapMap Consortium (2003) the International HapMap Project Nature 426(6968):789–796

    Google Scholar 

  21. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ERLC, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Rüther E, Schürmann B, Heun R, Kölsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Gallacher J, Hüll M, Rujescu D, Giegling I, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel K-H, Klopp N, Wichmann H-E, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MMB, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues J-F, Tzourio C, Alpérovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Björnsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossù P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O’Donovan M, Amouyel P, Williams J (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435

    Article  PubMed  CAS  Google Scholar 

  22. Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K, Harigae S, Osawa S, Nakamura Y (2002) Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J Hum Genet 47(6):285–310

    Article  PubMed  CAS  Google Scholar 

  23. Klucken J (2000) ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci U S A 97(2):817–822

    Article  PubMed  CAS  Google Scholar 

  24. Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, Kaminski WE, Schmitz G (1999) Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun 257(1):29–33

    Article  PubMed  CAS  Google Scholar 

  25. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 97(22):12097–12102

    Article  PubMed  CAS  Google Scholar 

  26. Costet P, Luo Y, Wang N, Tall AR (2000) Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 275(36):28240–28245

    PubMed  CAS  Google Scholar 

  27. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM, Mangelsdorf DJ (2000) Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289(5484):1524–1529

    Article  PubMed  CAS  Google Scholar 

  28. The UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40(Database issue):D71–D75

    Article  Google Scholar 

  29. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database–2009 update. Nucleic Acids Res 37(Database issue):D767–D772

    Article  PubMed  CAS  Google Scholar 

  30. Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard RE, Higgins CF (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346(6282):362–365

    Article  PubMed  CAS  Google Scholar 

  31. Smith CA, Rayment I (1996) Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J 70(4):1590–1602

    Article  PubMed  CAS  Google Scholar 

  32. Linton KJ (2007) Structure and function of ABC transporters. Physiology (Bethesda) 22(2):122–130

    Article  CAS  Google Scholar 

  33. Hrycyna CA, Ramachandra M, Germann UA, Cheng PW, Pastan I, Gottesman MM (1999) Both ATP sites of human P-glycoprotein are essential but not symmetric. Biochemistry 38(42):13887–13899

    Article  PubMed  CAS  Google Scholar 

  34. Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W, Martinez LO, Tall AR (2003) ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem 278(44):42906–42912

    Article  PubMed  CAS  Google Scholar 

  35. Kim WS, Fitzgerald ML, Kang K, Okuhira K, Bell SA, Manning JJ, Koehn SL, Lu N, Moore KJ, Freeman MW (2005) Abca7 null mice retain normal macrophage phosphatidylcholine and cholesterol efflux activity despite alterations in adipose mass and serum cholesterol levels. J Biol Chem 280(5):3989–3995

    Article  PubMed  CAS  Google Scholar 

  36. Kim WS, Guillemin GJ, Glaros EN, Lim CK, Garner B (2006) Quantitation of ATP-binding cassette subfamily-A transporter gene expression in primary human brain cells. Neuroreport 17(9):891–896

    Article  PubMed  CAS  Google Scholar 

  37. Kielar D, Kaminski WE, Liebisch G, Piehler A, Wenzel JJ, Möhle C, Heimerl S, Langmann T, Friedrich SO, Böttcher A, Barlage S, Drobnik W, Schmitz G (2003) Adenosine triphosphate binding cassette (ABC) transporters are expressed and regulated during terminal keratinocyte differentiation: a potential role for ABCA7 in epidermal lipid reorganization. J Invest Dermatol 121(3):465–474

    Article  PubMed  CAS  Google Scholar 

  38. Carter C (2011) Alzheimer’s disease: APP, gamma secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and their relationships with herpes simplex, C. Pneumoniae, other suspect pathogens, and the immune system. Int J Alzheimers Dis 2011:501862

    Article  PubMed  Google Scholar 

  39. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101(16):6062–6067

    Article  PubMed  CAS  Google Scholar 

  40. Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, Okuhira K, Ueda K, Yokoyama S (2004) Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem 279(1):604–611

    Article  PubMed  CAS  Google Scholar 

  41. Linsel-Nitschke P, Jehle AW, Shan J, Cao G, Bacic D, Lan D, Wang N, Tall AR (2005) Potential role of ABCA7 in cellular lipid efflux to apoA-I. J Lipid Res 46(1):86–92

    Article  PubMed  CAS  Google Scholar 

  42. Sasaki M, Shoji A, Kubo Y, Nada S, Yamaguchi A (2003) Cloning of rat ABCA7 and its preferential expression in platelets. Biochem Biophys Res Commun 304(4):777–782

    Article  PubMed  CAS  Google Scholar 

  43. Piehler AP, Ozcürümez M, Kaminski WE (2012) A-subclass ATP-binding cassette proteins in brain lipid homeostasis and neurodegeneration. Front Psychiatry 3:17

    Article  PubMed  CAS  Google Scholar 

  44. Lauer J, Shen CK, Maniatis T (1980) The chromosomal arrangement of human alpha-like globin genes: sequence homology and alpha-globin gene deletions. Cell 20(1):119–130

    Article  PubMed  CAS  Google Scholar 

  45. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561

    Article  PubMed  CAS  Google Scholar 

  46. Hartz AMS, Bauer B (2011) ABC transporters in the CNS—an inventory. Curr Pharm Biotechnol 12(4):656–673

    Article  PubMed  CAS  Google Scholar 

  47. Koldamova R, Fitz NF, Lefterov I (2010) The role of ATP-binding cassette transporter A1 in Alzheimer’s disease and neurodegeneration. Biochim Biophys Acta 1801(8):824–830

    Article  PubMed  CAS  Google Scholar 

  48. Gosselet F, Candela P, Sevin E, Berezowski V, Cecchelli R, Fenart L (2009) Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood–brain barrier: use of an in vitro model. Brain Res 1249:34–42

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka N, Abe-Dohmae S, Iwamoto N, Yokoyama S (2011) Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system. J Atheroscler Thromb 18(4):274–281

    Article  PubMed  CAS  Google Scholar 

  50. Chan SL, Kim WS, Kwok JB, Hill AF, Cappai R, Rye K-A, Garner B (2008) ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro. J Neurochem 106(2):793–804

    Article  PubMed  CAS  Google Scholar 

  51. Abe-Dohmae S, Ueda K, Yokoyama S (2006) ABCA7, a molecule with unknown function. FEBS Lett 580(4):1178–1182

    Article  PubMed  CAS  Google Scholar 

  52. Kishore U, Reid KB (2000) C1q: structure, function, and receptors. Immunopharmacology 49(1–2):159–170

    Article  PubMed  CAS  Google Scholar 

  53. Jehle AW, Gardai SJ, Li S, Linsel-Nitschke P, Morimoto K, Janssen WJ, Vandivier RW, Wang N, Greenberg S, Dale BM, Qin C, Henson PM, Tall AR (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174(4):547–556

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML, Yokoyama S (2011) HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7. Atherosclerosis 217(2):407–414

    Article  PubMed  CAS  Google Scholar 

  55. Zhou Q, Liao JK (2009) Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr Pharm Des 15(5):467–478

    Article  PubMed  CAS  Google Scholar 

  56. Hayashi M, Abe-Dohmae S, Okazaki M, Ueda K, Yokoyama S (2005) Heterogeneity of high density lipoprotein generated by ABCA1 and ABCA7. J Lipid Res 46(8):1703–1711

    Article  PubMed  CAS  Google Scholar 

  57. Brunham LR, Singaraja RR, Pape TD, Kejariwal A, Thomas PD, Hayden MR (2005) Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene. PLoS Genet 1(6):e83

    Article  PubMed  Google Scholar 

  58. Schmitz G, Kaminski WE, Orsó E (2000) ABC transporters in cellular lipid trafficking. Curr Opin Lipidol 11(5):493–501

    Article  PubMed  CAS  Google Scholar 

  59. Meurs I, Calpe-Berdiel L, Habets KLL, Zhao Y, Korporaal SJ, Mommaas AM, Josselin E, Hildebrand RB, Ye D, Out R, Kuiper J, Van Berkel TJC, Chimini G, Van Eck M (2012) Effects of deletion of macrophage ABCA7 on lipid metabolism and the development of atherosclerosis in the presence and absence of ABCA1. PLoS One 7(3):e30984

    Article  PubMed  CAS  Google Scholar 

  60. Christiansen-Weber TA, Voland JR, Wu Y, Ngo K, Roland BL, Nguyen S, Peterson PA, Fung-­Leung WP (2000) Functional loss of ABCA1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency. Am J Pathol 157(3):1017–1029

    Article  PubMed  CAS  Google Scholar 

  61. Witztum JL (1994) The oxidation hypothesis of atherosclerosis. Lancet 344(8925):793–795

    Article  PubMed  CAS  Google Scholar 

  62. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  PubMed  CAS  Google Scholar 

  63. Young SG, Fielding CJ (1999) The ABCs of cholesterol efflux. Nat Genet 22(4):316–318

    Article  PubMed  CAS  Google Scholar 

  64. Hamon Y, Broccardo C, Chambenoit O, Luciani MF, Toti F, Chaslin S, Freyssinet JM, Devaux PF, McNeish J, Marguet D, Chimini G (2000) ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat Cell Biol 2(7):399–406

    Article  PubMed  CAS  Google Scholar 

  65. McNeish J, Aiello RJ, Guyot D, Turi T, Gabel C, Aldinger C, Hoppe KL, Roach ML, Royer LJ, de Wet J, Broccardo C, Chimini G, Francone OL (2000) High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc Natl Acad Sci U S A 97(8):4245–4250

    Article  PubMed  CAS  Google Scholar 

  66. Schurer NY, Elias PM (1991) The biochemistry and function of stratum corneum lipids. Adv Lipid Res 24:27–56

    PubMed  CAS  Google Scholar 

  67. Di Nardo A, Benassi L, Magnoni C, Cossarizza A, Seidenari S, Giannetti A (2000) Ceramide 2 (N-acetyl sphingosine) is associated with reduction in Bcl-2 protein levels by Western blotting and with apoptosis in cultured human keratinocytes. Br J Dermatol 143(3):491–497

    Article  PubMed  Google Scholar 

  68. Sood S, Anthony R, Pease CT (2000) Sjogren’s syndrome. Clin Otolaryngol Allied Sci 25(5):350–357

    Article  PubMed  CAS  Google Scholar 

  69. Toda Y, Aoki R, Ikeda Y, Azuma Y, Kioka N, Matsuo M, Sakamoto M, Mori S, Fukumoto M, Ueda K (2005) Detection of ABCA7-positive cells in salivary glands from patients with Sjögren’s syndrome. Pathol Int 55(10):639–643

    Article  PubMed  CAS  Google Scholar 

  70. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JSK, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin L-W, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441

    Article  PubMed  CAS  Google Scholar 

  71. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  PubMed  CAS  Google Scholar 

  72. Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, Tansley GH, Cohn JS, Hayden MR, Wellington CL (2004) Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 279(39):41197–41207

    Article  PubMed  CAS  Google Scholar 

  73. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel K-H, Klopp N, Wichmann H, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O’Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    Article  PubMed  CAS  Google Scholar 

  74. Jiang Q, Lee CYD, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58(5):681–693

    Article  PubMed  CAS  Google Scholar 

  75. Minagawa H, Gong J-S, Jung C-G, Watanabe A, Lund-Katz S, Phillips MC, Saito H, Michikawa M (2009) Mechanism underlying apolipoprotein E (ApoE) isoform-dependent lipid efflux from neural cells in culture. J Neurosci Res 87(11):2498–2508

    Article  PubMed  CAS  Google Scholar 

  76. Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, Kowalewski T, Holtzman DM (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279(39):40987–40993

    Article  PubMed  CAS  Google Scholar 

  77. Chen ZJ, Vulevic B, Ile KE, Soulika A, Davis W, Reiner PB, Connop BP, Nathwani P, Trojanowski JQ, Tew KD (2004) Association of ABCA2 expression with determinants of Alzheimer’s disease. FASEB J 18(10):1129–1131

    PubMed  CAS  Google Scholar 

  78. Albrecht C, Viturro E (2007) The ABCA subfamily–gene and protein structures, functions and associated hereditary diseases. Pflugers Arch 453(5):581–589

    Article  PubMed  CAS  Google Scholar 

  79. Macé S, Cousin E, Ricard S, Génin E, Spanakis E, Lafargue-Soubigou C, Génin B, Fournel R, Roche S, Haussy G, Massey F, Soubigou S, Bréfort G, Benoit P, Brice A, Campion D, Hollis M, Pradier L, Benavides J, Deleuze J-F (2005) ABCA2 is a strong genetic risk factor for early-­onset Alzheimer’s disease. Neurobiol Dis 18(1):119–125

    Article  PubMed  Google Scholar 

  80. Bach UC, Baiersdörfer M, Klock G, Cattaruzza M, Post A, Koch-Brandt C (2001) Apoptotic cell debris and phosphatidylserine-containing lipid vesicles induce apolipoprotein J (clusterin) gene expression in vital fibroblasts. Exp Cell Res 265(1):11–20

    Article  PubMed  CAS  Google Scholar 

  81. Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 8(1):65–72

    Article  PubMed  CAS  Google Scholar 

  82. Hirsch-Reinshagen V, Burgess BL, Wellington CL (2009) Why lipids are important for Alzheimer disease? Mol Cell Biochem 326(1–2):121–129

    Article  PubMed  CAS  Google Scholar 

  83. Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C, Goate AM (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer's disease brains. PLoS One 7(11):e50976

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Turton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turton, J., Morgan, K. (2013). ATP-Binding Cassette, Subfamily A (ABC1), Member 7 (ABCA7). In: Morgan, K., Carrasquillo, M. (eds) Genetic Variants in Alzheimer's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7309-1_7

Download citation

Publish with us

Policies and ethics