Skip to main content

Revisiting Mutagenesis in the Age of High-Throughput Sequencing

  • Chapter
  • First Online:
  • 905 Accesses

Abstract

Mutagenesis is a fundamental biological process by which changes in DNA sequences occur in vivo. On one hand, mutagenesis facilitates adaptation and drives evolution, and on the other hand it leads to diseases such as cancer. Recent advances in high-throughput DNA-sequencing technologies, coupled with efficient bioinformatics tools, have allowed analyses of genomic data at an unprecedented scale. These emerging sequencing technologies have not only helped speed up genome analyses; they have also provided novel insights into mutagenesis and its implications for evolution, diseases, and biotechnology. The versatility of these technologies has initiated a new paradigm of biological research in diverse areas of research such as microbiology, evolutionary biology, human genetics and cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • 1000GPC (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  Google Scholar 

  • Baker NE (2011) Cell competition. Curr Biol 21:R11–R15

    Article  PubMed  CAS  Google Scholar 

  • Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773–785

    Article  PubMed  CAS  Google Scholar 

  • Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, Zhang L, Farmer AD, Bell CJ, Kim RW et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356

    Article  PubMed  CAS  Google Scholar 

  • Barrett AN, McDonnell TC, Chan KC, Chitty LS (2012) Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem 58(6):1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  PubMed  CAS  Google Scholar 

  • Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S et al (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–510

    Article  PubMed  CAS  Google Scholar 

  • Carlson EA, Southin JL (1963) Chemically induced somatic and gonadal mosaicism in Drosophila. I. Sex-linked lethals. Genetics 48:663–675

    PubMed  CAS  Google Scholar 

  • Cavelier L, Jazin E, Jalonen P, Gyllensten U (2000) MtDNA substitution rate and segregation of heteroplasmy in coding and noncoding regions. Hum Genet 107:45–50

    Article  PubMed  CAS  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    PubMed  CAS  Google Scholar 

  • Cooper GM, Shendure J (2011) Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet 12:628–640

    Article  PubMed  CAS  Google Scholar 

  • Cooper GM, Shendure J (2012) Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet 12:628–640

    Article  Google Scholar 

  • Cotterman CW (1956) Somatic mosaicism for antigen A2. Acta Genet Stat Med 6:520–521

    PubMed  Google Scholar 

  • Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS et al (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331:430–434

    Article  PubMed  CAS  Google Scholar 

  • De S (2011) Somatic mosaicism in healthy human tissues. Trends Genet 27:217–223

    Article  PubMed  CAS  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Fan HC, Wang J, Potanina A, Quake SR (2010) Whole-genome molecular haplotyping of single cells. Nat Biotechnol 29:51–57

    Article  PubMed  CAS  Google Scholar 

  • Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A et al (1976) Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260:500–507

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251

    Article  PubMed  CAS  Google Scholar 

  • G10KCoS (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100:659–674

    Article  Google Scholar 

  • Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  PubMed  CAS  Google Scholar 

  • Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P et al (2005) Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W, Maxam A (1973) The nucleotide sequence of the lac operator. Proc Natl Acad Sci USA 70:3581–3584

    Article  PubMed  CAS  Google Scholar 

  • Glazov EA, Zankl A, Donskoi M, Kenna TJ, Thomas GP, Clark GR, Duncan EL, Brown MA (2011) Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia. PLoS Genet 7:e1002027

    Article  PubMed  CAS  Google Scholar 

  • Goya R, Sun MG, Morin RD, Leung G, Ha G, Wiegand KC, Senz J, Crisan A, Marra MA, Hirst M et al (2010) SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26:730–736

    Article  PubMed  CAS  Google Scholar 

  • He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464:610–614

    Article  PubMed  CAS  Google Scholar 

  • He D, Hormozdiari F, Furlotte N, Eskin E (2011) Efficient algorithms for tandem copy number variation reconstruction in repeat-rich regions. Bioinformatics 27:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Itsara A, Wu H, Smith JD, Nickerson DA, Romieu I, London SJ, Eichler EE (2010) De novo rates and selection of large copy number variation. Genome Res 20:1469–1481

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Feist AM, Barrett CL, Palsson BO (2011) Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli. PLoS One 6:e26172

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    Article  PubMed  Google Scholar 

  • Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456:66–72

    Article  PubMed  CAS  Google Scholar 

  • Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87:237–249

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Gibson IB, Moore JM, Thornton PC, Leal SM, Hastings PJ (2011) Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells. PLoS Genet 7:e1002223

    Article  PubMed  CAS  Google Scholar 

  • Lupski JR (2007) Genomic rearrangements and sporadic disease. Nat Genet 39:S43–S47

    Article  PubMed  CAS  Google Scholar 

  • Mardis ER (2012a) Genome sequencing and cancer. Curr Opin Genet Dev 22:245–250

    Article  PubMed  CAS  Google Scholar 

  • Mardis ER (2012b) Applying next-generation sequencing to pancreatic cancer treatment. Nat Rev Gastroenterol Hepatol 9(8):477–486

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    Article  PubMed  CAS  Google Scholar 

  • Menendez J, Perez-Garijo A, Calleja M, Morata G (2010) A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc Natl Acad Sci USA 107:14651–14656

    Article  PubMed  CAS  Google Scholar 

  • Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-­generation sequencing. Nat Rev Genet 11:685–696

    Article  PubMed  CAS  Google Scholar 

  • Min Jou W, Haegeman G, Ysebaert M, Fiers W (1972) Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 237:82–88

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  PubMed  CAS  Google Scholar 

  • Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  PubMed  CAS  Google Scholar 

  • Ott J, Kamatani Y, Lathrop M (2012) Family-based designs for genome-wide association studies. Nat Rev Genet 12:465–474

    Article  Google Scholar 

  • Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59

    Article  PubMed  CAS  Google Scholar 

  • Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8:329–340

    Article  PubMed  CAS  Google Scholar 

  • Pasche B, Absher D (2011) Whole-genome sequencing: a step closer to personalized medicine. JAMA 305:1596–1597

    Article  PubMed  CAS  Google Scholar 

  • Sastry GR, Cooper HB Jr, Brink RA (1965) Paramutation and somatic mosaicism in maize. Genetics 52:407–424

    PubMed  CAS  Google Scholar 

  • Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, Hobolth A, Lappalainen T, Mailund T, Marques-Bonet T et al (2012) Insights into hominid evolution from the gorilla genome sequence. Nature 483:169–175

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  PubMed  CAS  Google Scholar 

  • Seshadri R, Kutlaca RJ, Trainor K, Matthews C, Morley AA (1987) Mutation rate of normal and malignant human lymphocytes. Cancer Res 47:407–409

    PubMed  CAS  Google Scholar 

  • Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J et al (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461:809–813

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  PubMed  CAS  Google Scholar 

  • Silva S, Martins Y, Matias A, Blickstein I (2011) Why are monozygotic twins different? J Perinat Med 39:195–202

    Article  PubMed  Google Scholar 

  • Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33:345–354

    Article  PubMed  CAS  Google Scholar 

  • Snape K, Hanks S, Ruark E, Barros-Nunez P, Elliott A, Murray A, Lane AH, Shannon N, Callier P, Chitayat D et al (2011) Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 43:527–529

    Article  PubMed  CAS  Google Scholar 

  • Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  PubMed  CAS  Google Scholar 

  • Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    PubMed  Google Scholar 

  • van Bon BW, Gilissen C, Grange DK, Hennekam RC, Kayserili H, Engels H, Reutter H, Ostergaard JR, Morava E, Tsiakas K et al (2012) Cantu syndrome is caused by mutations in ABCC9. Am J Hum Genet 90:1094–1101

    Article  PubMed  Google Scholar 

  • van Ommen GJ (2005) Frequency of new copy number variation in humans. Nat Genet 37:333–334

    Article  PubMed  Google Scholar 

  • Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15:577–583

    Article  PubMed  CAS  Google Scholar 

  • Wacker SA, Houghtaling BR, Elemento O, Kapoor TM (2012) Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat Chem Biol 8:235–237

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA (2006) The biology of cancer. Garland Science, New York

    Google Scholar 

  • Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S, Wallis J, Chen K, Payton JE, Fulton RS et al (2011) Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 305:1577–1584

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    Article  PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, Johnson J, Montgomery R, Ferriera S, Beeson K et al (2010) Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–66

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhajyoti De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

De, S., Ward, R.M. (2013). Revisiting Mutagenesis in the Age of High-Throughput Sequencing. In: Mittelman, D. (eds) Stress-Induced Mutagenesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6280-4_13

Download citation

Publish with us

Policies and ethics