Skip to main content

Rational Therapy for Renal Cell Carcinoma Based on its Genetic Targets

  • Chapter
  • First Online:
Book cover Impact of Genetic Targets on Cancer Therapy

Abstract

Renal cell carcinoma (RCC) is not a single entity, rather it is a term defining a group of histologically distinct tumors arising in the renal parenchyma. Each histologic subtype is clinically and genetically unique. It is our understanding of the genetic basis for these cancers that has led to the variety of targeted systemic therapies now available in RCC. This review will cover the basic tumor biology behind each histology, as well as the associated therapeutic targets identified thus far. Mechanisms and associated side effects of the currently available drugs will be examined. Completed clinical trials will be discussed, leading into the rationale behind currently active trials, and future directions for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J for Clin. 2012;62:10–29.

    Article  Google Scholar 

  2. Zambrano NR, Lubensky IA, Merino MJ, Linehan WM, Walther MM. Histopathology and molecular genetics of renal tumors toward unification of a classification system. J Urol. 1999;162:1246–58.

    Article  PubMed  CAS  Google Scholar 

  3. Rini BI. Metastatic renal cell carcinoma: many treatment options, one patient. J Clin Oncol. 2009;27:3225–34. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  4. Chow WH, Devesa SS, Warren JL, Fraumeni Jr JF. Rising incidence of renal cell cancer in the United States. JAMA. 1999;281:1628–31.

    Article  PubMed  CAS  Google Scholar 

  5. Jayson M, Sanders H. Increased incidence of serendipitously discovered renal cell carcinoma. Urology. 1998;51:203–5.

    Article  PubMed  CAS  Google Scholar 

  6. Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MA. The natural history of incidentally detected small renal masses. Cancer. 2004;100:738–45.

    Article  PubMed  Google Scholar 

  7. Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst. 2006;98:1331–4.

    Article  PubMed  Google Scholar 

  8. Linehan WM, Grubb RL, Coleman JA, Zbar B, Walther MM. The genetic basis of cancer of kidney cancer: implications for gene-specific clinical management. BJU Int. 2005;95(Suppl 2):2–7.

    Article  PubMed  CAS  Google Scholar 

  9. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13:688–96. Official Journal of the American Society of Clinical Oncology.

    PubMed  CAS  Google Scholar 

  10. Fyfe GA, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Long-term response data for 255 patients with metastatic renal cell carcinoma treated with high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1996;14:2410–1. Official Journal of the American Society of Clinical Oncology.

    PubMed  CAS  Google Scholar 

  11. Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 2000;6(Suppl 1):S55–7.

    PubMed  Google Scholar 

  12. Linehan WM, Bratslavsky G, Pinto PA, et al. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329–43.

    Article  PubMed  CAS  Google Scholar 

  13. Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170:2163–72.

    Article  PubMed  CAS  Google Scholar 

  14. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373:1119–32.

    Article  PubMed  CAS  Google Scholar 

  15. Walther MM, Choyke PL, Glenn G, et al. Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol. 1999;161:1475–9.

    Article  PubMed  CAS  Google Scholar 

  16. Walther MM, Lubensky IA, Venzon D, Zbar B, Linehan WM. Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel-Lindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J Urol. 1995;154:2010–4. discussion 4–5.

    Article  PubMed  CAS  Google Scholar 

  17. Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.

    Article  PubMed  CAS  Google Scholar 

  18. Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7:85–90.

    Article  PubMed  CAS  Google Scholar 

  19. Nickerson ML, Jaeger E, Shi Y, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14:4726–34. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  20. Duan DR, Pause A, Burgess WH, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995;269:1402–6.

    Article  PubMed  CAS  Google Scholar 

  21. Pause A, Lee S, Worrell RA, et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci U S A. 1997;94:2156–61.

    Article  PubMed  CAS  Google Scholar 

  22. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin Jr WG. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science. 1995;269:1444–6.

    Article  PubMed  CAS  Google Scholar 

  23. Kaelin Jr WG. The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing. Biochem Biophys Res Commun. 2005;338:627–38.

    Article  PubMed  CAS  Google Scholar 

  24. Banumathy G, Cairns P. Signaling pathways in renal cell carcinoma. Cancer Biol Ther. 2010;10:658–64.

    Article  PubMed  CAS  Google Scholar 

  25. Linehan WM, Pinto PA, Bratslavsky G, et al. Hereditary kidney cancer: unique opportunity for disease-based therapy. Cancer. 2009;115:2252–61.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas GV, Tran C, Mellinghoff IK, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Natl Med. 2006;12:122–7.

    Article  CAS  Google Scholar 

  27. Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22:7004–14.

    Article  PubMed  CAS  Google Scholar 

  28. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6:729–34.

    Article  PubMed  CAS  Google Scholar 

  29. Rini BI. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin Cancer Res. 2008;14:1286–90. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  30. Abraham RT, Gibbons JJ. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res. 2007;13:3109–14. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  31. Forbes SA, Tang G, Bindal N, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 2010;38:D652–7.

    Article  PubMed  CAS  Google Scholar 

  32. Lin F, Zhang PL, Yang XJ, Prichard JW, Lun M, Brown RE. Morphoproteomic and molecular concomitants of an overexpressed and activated mTOR pathway in renal cell carcinomas. Ann Clin Lab Sci. 2006;36:283–93.

    PubMed  CAS  Google Scholar 

  33. Hara S, Oya M, Mizuno R, Horiguchi A, Marumo K, Murai M. Akt activation in renal cell carcinoma: contribution of a decreased PTEN expression and the induction of apoptosis by an Akt inhibitor. Ann Oncol. 2005;16:928–33.

    Article  PubMed  CAS  Google Scholar 

  34. Linehan WM, Rubin JS, Bottaro DP. VHL loss of function and its impact on oncogenic signaling networks in clear cell renal cell carcinoma. Int J Biochem Cell Biol. 2009;41:753–6.

    Article  PubMed  CAS  Google Scholar 

  35. Chitalia VC, Foy RL, Bachschmid MM, et al. Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Natl Cell Biol. 2008;10:1208–16.

    Article  CAS  Google Scholar 

  36. Berndt JD, Moon RT, Major MB. Beta-catenin gets jaded and von Hippel-Lindau is to blame. Trends Biochem Sci. 2009;34:101–4.

    Article  PubMed  CAS  Google Scholar 

  37. Kim YS, Kang YK, Kim JB, Han SA, Kim KI, Paik SR. Beta-catenin expression and mutational analysis in renal cell carcinomas. Pathol Int. 2000;50:725–30.

    Article  PubMed  CAS  Google Scholar 

  38. Sansom OJ, Griffiths DF, Reed KR, Winton DJ, Clarke AR. Apc deficiency predisposes to renal carcinoma in the mouse. Oncogene. 2005;24:8205–10.

    Article  PubMed  CAS  Google Scholar 

  39. Qian CN, Knol J, Igarashi P, et al. Cystic renal neoplasia following conditional inactivation of apc in mouse renal tubular epithelium. J Biol Chem. 2005;280:3938–45.

    Article  PubMed  CAS  Google Scholar 

  40. Saadi-Kheddouci S, Berrebi D, Romagnolo B, et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene. 2001;20:5972–81.

    Article  PubMed  CAS  Google Scholar 

  41. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  PubMed  CAS  Google Scholar 

  42. Beroukhim R, Brunet JP, Di Napoli A, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 2009;69:4674–81.

    Article  PubMed  CAS  Google Scholar 

  43. Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126:955–68.

    Article  PubMed  CAS  Google Scholar 

  44. Awakura Y, Nakamura E, Ito N, Kamoto T, Ogawa O. Methylation-associated silencing of SFRP1 in renal cell carcinoma. Oncol Rep. 2008;20:1257–63.

    PubMed  CAS  Google Scholar 

  45. Hirata H, Hinoda Y, Nakajima K, et al. Wnt antagonist gene DKK2 is epigenetically silenced and inhibits renal cancer progression through apoptotic and cell cycle pathways. Clin Cancer Res. 2009;15:5678–87. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  46. Hirata H, Hinoda Y, Nakajima K, et al. Wnt antagonist gene polymorphisms and renal cancer. Cancer. 2009;115:4488–503.

    Article  PubMed  CAS  Google Scholar 

  47. Kawakami K, Hirata H, Yamamura S, et al. Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res. 2009;69:8603–10.

    Article  PubMed  CAS  Google Scholar 

  48. Urakami S, Shiina H, Enokida H, et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res. 2006;12:383–91. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  49. Biswas S, Eisen T. Immunotherapeutic strategies in kidney cancer—when TKIs are not enough. Natl Rev Clin Oncol. 2009;6:478–87.

    Article  CAS  Google Scholar 

  50. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.

    PubMed  CAS  Google Scholar 

  51. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–34.

    Article  PubMed  CAS  Google Scholar 

  52. Bukowski RM, Kabbinavar FF, Figlin RA, et al. Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J Clin Oncol. 2007;25:4536–41. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  53. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–11.

    Article  PubMed  Google Scholar 

  54. Rini BI, Halabi S, Rosenberg JE, et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 2008;26:5422–8. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  55. Motzer RJ, Michaelson MD, Redman BG, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:16–24. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  56. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

    Article  PubMed  CAS  Google Scholar 

  57. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9:327–37. Official Journal of the American Society of Clinical Oncology.

    PubMed  CAS  Google Scholar 

  58. Motzer RJ, Hutson TE, Tomczak P, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:3584–90.

    Article  PubMed  CAS  Google Scholar 

  59. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.

    Article  PubMed  CAS  Google Scholar 

  60. Khakoo AY, Kassiotis CM, Tannir N, et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer. 2008;112:2500–8.

    Article  PubMed  CAS  Google Scholar 

  61. Wilhelm SM, Carter C, Tang L, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  PubMed  CAS  Google Scholar 

  62. Rini BI, Garcia JA, Cooney MM, et al. A phase I study of sunitinib plus bevacizumab in advanced solid tumors. Clin Cancer Res. 2009;15:6277–83. An Official Journal of the American Association for Cancer Research.

    Article  PubMed  CAS  Google Scholar 

  63. Escudier B, Eisen T, Stadler WM, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27:3312–8. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  64. Escudier B, Szczylik C, Hutson TE, et al. Randomized phase II trial of first-line treatment with sorafenib versus interferon Alfa-2a in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:1280–9. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  65. Hutson TE, Davis ID, Machiels JP, et al. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2010;28:475–80. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  66. Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28:1061–8. Official Journal of the American Society of Clinical Oncology.

    Article  PubMed  CAS  Google Scholar 

  67. Goldstein R, Pickering L, Larkin J. Does axitinib (AG-01376) have a future role in metastatic renal cell carcinoma and other malignancies? Expert Rev Anticancer Ther. 2010;10:1545–57.

    Article  PubMed  CAS  Google Scholar 

  68. Rixe O, Bukowski RM, Michaelson MD, et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol. 2007;8:975–84.

    Article  PubMed  Google Scholar 

  69. Linehan WM. Targeting VEGF receptors in kidney cancer. Lancet Oncol. 2007;8:956–7.

    Article  PubMed  CAS  Google Scholar 

  70. Eskens FA, de Jonge MJ, Bhargava P, et al. Biological and clinical activity of tivozanib, a selective inhibitor of VEGF receptor-1, -2, and -3 tyrosine kinases, in a 4 week on, 2 week off schedule in patients with advanced solid tumors. Clin Cancer. 2011;17(22):7156–63.

    Article  CAS  Google Scholar 

  71. De Luca A, Normanno N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. IDrugs. 2010;13:636–45.

    PubMed  Google Scholar 

  72. Finley DS, Pantuck AJ, Belldgrun AS. Tumor biology and prognostic factors in renal cell carcinoma. Oncologist. 2011;16:4–13.

    Article  PubMed  Google Scholar 

  73. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.

    Article  PubMed  CAS  Google Scholar 

  74. Maroto JP, Hudes G, Dutcher JP, et al. Drug-related pneumonitis in patients with advanced renal cell carcinoma treated with temsirolimus. J Clin Oncol. 2011;29:1750–6.

    Article  PubMed  CAS  Google Scholar 

  75. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372:449–56.

    Article  PubMed  CAS  Google Scholar 

  76. Escudier B, Bellmunt J, Negrier S, et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol, 28 (2010), pp 2144–2150.

    Article  PubMed  CAS  Google Scholar 

  77. Rini BI, Halabi S, Rosenberg JE, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol, 28 (2010), pp 2137–2143.

    Google Scholar 

  78. Feldman DR, Baum MS, Ginsberg MS, et al. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol, 27 (2009), pp1432–1439.

    Google Scholar 

  79. Patel PH, Senico PL, Curiel RE, et al. Phase I study combining treatment with temsirolimus and sunitinib malate in patients with advanced renal cell carcinoma. Clin Genitourin Cancer, 7 (2009), pp 24–27.

    Google Scholar 

  80. Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004;22:909–18.

    Article  PubMed  CAS  Google Scholar 

  81. Rini BI, Michaelson MD, Rosenberg JE, et al. Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J Clin Oncol. 2008;26:3743–8.

    Article  PubMed  CAS  Google Scholar 

  82. Rini BI, Wilding G, Hudes G, et al. Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol. 2009;27:4462–8.

    Article  PubMed  CAS  Google Scholar 

  83. Sablin MP, Negrier S, Ravaud A, et al. Sequential sorafenib and sunitinib for renal cell carcinoma. J Urol. 2009;182:29–34.

    Article  PubMed  CAS  Google Scholar 

  84. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2010;372:449–56.

    Article  CAS  Google Scholar 

  85. MacKenzie MJ, Rini BI, Elson P, et al. Temsirolimus in VEGF-refractory metastatic renal cell carcinoma. Ann Oncol. 2011;22:145–8.

    Article  PubMed  CAS  Google Scholar 

  86. Hainsworth JD, Spigel DR, Burris HA, Waterhouse D, Clark BL, Whorf R. Phase II trial of bevacizumab and everolimus in patients with advanced renal cell carcinoma. J Clin Oncol. 2010;28:2131–6.

    Article  PubMed  CAS  Google Scholar 

  87. Flanigan RC, Salmon SE, Blumenstein BA, et al. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med. 2001;345:1655–9.

    Article  PubMed  CAS  Google Scholar 

  88. Thomas AA, Rini BI, Lane BR, et al. Response of the primary tumor to neoadjuvant sunitinib in patients with advanced renal cell carcinoma. J Urol. 2009;181:518–23.

    Article  PubMed  CAS  Google Scholar 

  89. Powles T, Blank C, Chowdhury S, et al. The outcome of patients treated with sunitinib prior to planned nephrectomy in metastatic clear cell cancer. Eur Urol. 2011;60:448–54.

    Article  PubMed  CAS  Google Scholar 

  90. Hellenthal NJ, Underwood W, Penetrante R, et al. Prospective clinical trial of preoperative sunitinib in patients with renal cell carcinoma. J Urol. 2010;184:859–64.

    Article  PubMed  CAS  Google Scholar 

  91. Cowey CL, Amin C, Pruthi RS, et al. Neoadjuvant clinical trial with sorafenib for patients with stage II or higher renal cell carcinoma. J Clin Oncol. 2010;28:1502–7.

    Article  PubMed  CAS  Google Scholar 

  92. Cost N, Delacroix S, Sleeper J, et al. The impact of targeted molecular therapies on the level of renal cell carcinoma vena caval tumor thrombus. Eur Urol. 2011;59:912–8.

    Article  PubMed  CAS  Google Scholar 

  93. Chapin B, Delacroix S, Culp S, et al. Safety of presurgical targeted tehrapy in the setting of metastatic renal cell carcinoma. Eur Urol. 2011;60:964–71.

    Article  PubMed  Google Scholar 

  94. Margulis V, Matin SF, Tannir N, et al. Surgical morbidity associated with administration of targeted molecular therapies before cytoreductive nephrectomy or resection of locally recurrent renal cell carcinoma. J Urol. 2008;180:94–8.

    Article  PubMed  Google Scholar 

  95. Haas NB, Uzzo R. Adjuvant therapy for renal cell carcinoma. Curr Oncol Rep. 2008;10:245–52.

    Article  PubMed  CAS  Google Scholar 

  96. Zbar B, Tory K, Merino M, et al. Hereditary papillary renal cell carcinoma. J Urol. 1994;151:561–6.

    PubMed  CAS  Google Scholar 

  97. Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16:68–73.

    Article  PubMed  CAS  Google Scholar 

  98. Kovacs G. Molecular cytogenetics of renal cell tumors. Adv Cancer Res. 1993;62:89–124.

    Article  PubMed  CAS  Google Scholar 

  99. Finley DS, Pantuck AJ, Belldegrun AS. Tumor biology and prognostic factors in renal cell carcinoma. Oncologist. 2011;16(Suppl 2):4–13.

    Article  PubMed  Google Scholar 

  100. Launonen V, Vierimaa O, Kiuru M, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A. 2001;98:3387–92.

    Article  PubMed  CAS  Google Scholar 

  101. Grubb 3rd RL, Franks ME, Toro J, et al. Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol. 2007;177:2074–9. discussion 9–80.

    Article  PubMed  CAS  Google Scholar 

  102. Toro JR, Nickerson ML, Wei MH, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 2003;73:95–106.

    Article  PubMed  CAS  Google Scholar 

  103. Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30:406–10.

    Article  PubMed  CAS  Google Scholar 

  104. Isaacs JS, Jung YJ, Mole DR, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 2005;8:143–53.

    Article  PubMed  CAS  Google Scholar 

  105. Pollard PJ, Briere JJ, Alam NA, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14:2231–9.

    Article  PubMed  CAS  Google Scholar 

  106. Choueiri TK, Plantade A, Elson P, et al. Efficacy of sunitinib and sorafenib in metastatic papillary and chromophobe renal cell carcinoma. J Clin Oncol. 2008;26:127–31.

    Article  PubMed  CAS  Google Scholar 

  107. Srinivasan R, Choueiri TK, Vaishampayan U, et al. A phase II study of the dual MET/VEGFR2 inhibitor XL880 in patients (pts) with papillary renal carcinoma (PRC). ASCO Meeting Abstr. 2008;26:5103.

    Google Scholar 

  108. Pavlovich CP, Walther MM, Eyler RA, et al. Renal tumors in the Birt-Hogg-Dube syndrome. Am J Surg Pathol. 2002;26:1542–52.

    Article  PubMed  Google Scholar 

  109. Nickerson ML, Warren MB, Toro JR, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell. 2002;2:157–64.

    Article  PubMed  CAS  Google Scholar 

  110. Baba M, Hong SB, Sharma N, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci U S A. 2006;103:15552–7.

    Article  PubMed  CAS  Google Scholar 

  111. Hudon V, Sabourin S, Dydensborg AB, et al. Renal tumour suppressor function of the Birt-Hogg-Dube syndrome gene product folliculin. J Med Genet. 2010;47:182–9.

    Article  PubMed  CAS  Google Scholar 

  112. Hasumi H, Baba M, Hong SB, et al. Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene. 2008;415:60–7.

    Article  PubMed  CAS  Google Scholar 

  113. Baba M, Furihata M, Hong SB, et al. Kidney-targeted Birt-Hogg-Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst. 2008;100:140–54.

    Article  PubMed  CAS  Google Scholar 

  114. Flavin R, Finn SP, Choueiri TK, et al. RET protein expression in papillary renal cell carcinoma. Urol Oncol. 2011 Mar 9. [Epub ahead of print].

    Google Scholar 

  115. Plaza-Menacho I, Mologni L, Sala E, et al. Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J Biol Chem. 2007;282:29230–40.

    Article  PubMed  CAS  Google Scholar 

  116. Oudard S, Elaidi RT. Sequential therapy with targeted agents in patients with advanced renal cell carcinoma: optimizing patient benefit. Cancer Treat Rev. 2012;38(8):981–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Kaag M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Messer, J., Drabick, J., Kaag, M. (2013). Rational Therapy for Renal Cell Carcinoma Based on its Genetic Targets. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_13

Download citation

Publish with us

Policies and ethics