Skip to main content

Looking Within the Zebrafish to Understand the Tuberculous Granuloma

  • Chapter
  • First Online:
Book cover The New Paradigm of Immunity to Tuberculosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

Tuberculosis is characterized by the formation of complex immune cell aggregates called granulomas, which for nearly a century have been viewed as critical host-beneficial structures to restrict bacterial growth and spread. A different view has now emerged from real-time visualization of granuloma formation and its consequences in the optically transparent and genetically tractable zebrafish larva. Pathogenic mycobacteria have developed mechanisms to use host granulomas for their expansion and dissemination, at least during the innate phases of infection. Host processes that are intended to be beneficial—death of infected macrophages and their subsequent phagocytosis by macrophages that are newly recruited to the growing granuloma—are harnessed by mycobacteria for their own benefit. Mycobacteria can also render the granuloma a safe-haven in the more advanced stages of infection. An understanding of the host and bacterial pathways involved in tuberculous granuloma formation may suggest new ways to combat mycobacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boros DL (ed) (2003) Granulomatous infections and inflammations cellular and molecular mechanisms. ASM Press, Washington, DC

    Google Scholar 

  2. Adams DO (1976) The granulomatous inflammatory response: a review. Am J Pathol 84:164–192

    PubMed  CAS  Google Scholar 

  3. Spector WG (1969) The granulomatous inflammatory exudate. Int Rev Exp Pathol 8:1–55

    PubMed  CAS  Google Scholar 

  4. Williams GT, Williams WJ (1983) Granulomatous inflammation—a review. J Clin Pathol 36:723–733

    Article  PubMed  CAS  Google Scholar 

  5. Adams DO (1974) The structure of mononuclear phagocytes differentiating in vivo I Sequential fine and histologic studies of the effect of Bacillus Calmette-Guerin (BCG). Am J Pathol 76:17–48

    PubMed  CAS  Google Scholar 

  6. Cohn ZA (1968) The structure and function of monocytes and macrophages. Adv Immunol 9:163–214

    Article  PubMed  CAS  Google Scholar 

  7. Dannenberg AM Jr (1968) Cellular hypersensitivity and cellular immunity in the pathogensis of tuberculosis: specificity, systemic and local nature, and associated macrophage enzymes. Bacteriol Rev 32:85–102

    PubMed  Google Scholar 

  8. Bouley DM et al (2001) Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect Immun 69:7820–7831

    Article  PubMed  CAS  Google Scholar 

  9. Canetti G (1955) The tubercle bacillus in the pulmonary lesion of man; histobacteriology and its bearing on the therapy of pulmonary tuberculosis, American Rev edn. Springer Publishing Company, New York, p 226

    Google Scholar 

  10. Hunter RL (2011) Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis 91:497–509

    Article  PubMed  Google Scholar 

  11. Kumar V, Abbas AK, Fausto N (2005) Robbins and Cotran pathological basis of disease, 7th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  12. Rich AR (1946) The pathogenesis of tuberculosis, 2nd edn. Charles C Thomas, Springfield

    Google Scholar 

  13. Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12:352–366

    PubMed  CAS  Google Scholar 

  14. Dannenberg AMJ (1993) Immunopathogenesis of pulmonary tuberculosis. Hosp Pract 28:51–58

    Google Scholar 

  15. Wolf AJ et al (2007) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179:2509–2519

    PubMed  CAS  Google Scholar 

  16. Cosma CL, Sherman DR, Ramakrishnan L (2003) The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 57:641–676

    Article  PubMed  CAS  Google Scholar 

  17. Feldman WH, Baggenstoss AH (1938) The reisdual infectivity of the primary complex of tuberculosis. Am J Pathol 14:473–490

    PubMed  CAS  Google Scholar 

  18. Opie EL, Aronson JD (1927) Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch Pathol Lab Med 4:1–21

    Google Scholar 

  19. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129

    Article  PubMed  CAS  Google Scholar 

  20. Kaufmann SH (2000) Is the development of a new tuberculosis vaccine possible? Nat Med 6:955–960

    Article  PubMed  CAS  Google Scholar 

  21. Lawn SD, Butera ST, Shinnick TM (2002) Tuberculosis unleashed: the impact of human immunodeficiency virus infection on the host granulomatous response to Mycobacterium tuberculosis. Microbes Infect 4:635–646

    Article  PubMed  CAS  Google Scholar 

  22. North RJ, Izzo AA (1993) Granuloma formation in severe combined immunodeficient (SCID) mice in response to progressive BCG infection tendency not to form granulomas in the lung is associated with faster bacterial growth in this organ. Am J Pathol 142:1959–1966

    PubMed  CAS  Google Scholar 

  23. Cooper AM et al (1993) Disseminated tuberculosis in interferon gamma gene- disrupted mice. J Exp Med 178:2243–2247

    Article  PubMed  CAS  Google Scholar 

  24. Cooper AM et al (1997) Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J Exp Med 186:39–45

    Google Scholar 

  25. Flynn JL et al (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254

    Article  PubMed  CAS  Google Scholar 

  26. Fremond CM et al (2007) IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179:1178–1189

    PubMed  CAS  Google Scholar 

  27. Fremond CM et al (2004) Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 114:1790–1799

    PubMed  CAS  Google Scholar 

  28. Juffermans N et al (2000) Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J Infect Dis 182:902–908

    Article  PubMed  CAS  Google Scholar 

  29. Scanga CA et al (2004) MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun 72:2400–2404

    Article  PubMed  CAS  Google Scholar 

  30. Sugawara I, Yamada H, Mizuno S (2003) Relative importance of STAT4 in murine tuberculosis. J Med Microbiol 52:29–34

    Google Scholar 

  31. Algood HM, Lin L, Flynn JL (2005) Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 41:S189–S193

    Article  PubMed  CAS  Google Scholar 

  32. Bean AG et al (1999) Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162:3504–3511

    PubMed  CAS  Google Scholar 

  33. Chakravarty SD et al (2008) Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 76:916–926

    Article  PubMed  CAS  Google Scholar 

  34. Flynn JL et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572

    Article  PubMed  CAS  Google Scholar 

  35. Kindler V et al (1989) The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731–740

    Article  PubMed  CAS  Google Scholar 

  36. Roach DR et al (2002) TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168:4620–4627

    PubMed  CAS  Google Scholar 

  37. Stenger S (2005) Immunological control of tuberculosis: role of tumour necrosis factor and more. Ann Rheum Dis 64:iv24–iv28

    Google Scholar 

  38. Clay H, Volkman HE, Ramakrishnan L (2008) Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29:283–294

    Article  PubMed  CAS  Google Scholar 

  39. Rubin EJ (2009) The granuloma in tuberculosis–friend or foe? N Engl J Med 360:2471–2473

    Article  PubMed  CAS  Google Scholar 

  40. Bold TD, Ernst JD (2009) Who benefits from granulomas, mycobacteria or host? Cell 136:17–19

    Article  PubMed  CAS  Google Scholar 

  41. Ulrichs T, Kaufmann SH (2006) New insights into the function of granulomas in human tuberculosis. J Pathol 208:261–269

    Article  PubMed  CAS  Google Scholar 

  42. Murphy K, Travers P, Walport M (2008) Janeway’s immunobiology, 7th edn. Garland Science Taylor and Francis Group, New York

    Google Scholar 

  43. Mandell GL, Bennett JE, Dolin R (eds) (2010) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 7th edn. Churchill Livingston, Philadelphia

    Google Scholar 

  44. Schaff H, Zumla A (eds) (2009) Tuberculosis. Elsevier Saunders, Philadelphia

    Google Scholar 

  45. Longo DL et al (eds) (2012) Harrison’s principles of internal medicine. McGraw-Hill, New York

    Google Scholar 

  46. Tobin DM, Ramakrishnan L (2008) Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 10:1027−1039

    Google Scholar 

  47. Ramakrishnan L (1997) Images in clinical medicine Mycobacterium marinum infection of the hand. N Engl J Med 337:612

    Article  PubMed  CAS  Google Scholar 

  48. Ramakrishnan L et al (1997) Mycobacterium marinum causes both long-term subclinical infection and acute disease in the leopard frog (Rana pipiens). Infect Immun 65:767–773

    PubMed  CAS  Google Scholar 

  49. Swaim LE et al (2006) Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect Immun 74:6108–6117

    Article  PubMed  CAS  Google Scholar 

  50. Tobin DM et al (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148:434–446

    Article  PubMed  CAS  Google Scholar 

  51. Tobin DM et al (2010) The lta4 h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:717–730

    Article  PubMed  CAS  Google Scholar 

  52. Saunders BM et al (2002) CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol 216:65–72

    Article  PubMed  CAS  Google Scholar 

  53. van Rie A et al (1999) Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med 341:1174–1179

    Article  PubMed  Google Scholar 

  54. Verver S et al (2005) Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med 171:1430–1435

    Article  PubMed  Google Scholar 

  55. Caminero JA et al (2001) Exogenous reinfection with tuberculosis on a European island with a moderate incidence of disease. Am J Respir Crit Care Med 163:717–720

    PubMed  CAS  Google Scholar 

  56. Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1:20–30

    Article  PubMed  CAS  Google Scholar 

  57. Balasubramanian V et al (1994) Pathogenesis of tuberculosis: pathway to apical localization. Tuber Lung Dis 75:168–178

    Article  PubMed  CAS  Google Scholar 

  58. Hernandez-Pando R et al (2000) Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356:2133–2138

    Article  PubMed  CAS  Google Scholar 

  59. McMurray DN (2003) Hematogenous reseeding of the lung in low-dose, aerosol-infected guinea pigs: unique features of the host-pathogen interface in secondary tubercles. Tuberculosis 83:131–134

    Article  PubMed  Google Scholar 

  60. Grosset J (2003) Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother 47:833–836

    Article  PubMed  CAS  Google Scholar 

  61. Cosma CL, Humbert O, Ramakrishnan L (2004) Superinfecting mycobacteria home to established tuberculous granulomas. Nat Immunol 5:828–835

    Article  PubMed  CAS  Google Scholar 

  62. Cosma CL et al (2008) Trafficking of superinfecting Mycobacterium organisms into established granulomas occurs in mammals and is independent of the Erp and ESX-1 mycobacterial virulence loci. J Infect Dis 198:1851–1855

    Article  PubMed  Google Scholar 

  63. Chan K et al (2002) Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc Natl Acad Sci U S A 99:3920–3925

    Article  PubMed  CAS  Google Scholar 

  64. Ramakrishnan L, Federspiel NA, Falkow S (2000) Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE- PGRS family. Science 288:1436–1439

    Article  PubMed  CAS  Google Scholar 

  65. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422

    Article  PubMed  CAS  Google Scholar 

  66. Gallegos AM, Pamer EG, Glickman MS (2008) Delayed protection by ESAT-6- specific effector CD4+ T cells after airborne M tuberculosis infection. J Exp Med 205:2359–2368

    Article  PubMed  CAS  Google Scholar 

  67. Gill W et al (2009) A replication clock for Mycobacterium tuberculosis. Nature Med 15:211–214

    Article  PubMed  CAS  Google Scholar 

  68. Wolf AJ et al (2008) Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115

    Article  PubMed  CAS  Google Scholar 

  69. North RJ, Jung YJ (2004) Immunity to tuberculosis. Annu Rev Immunol 22:599–623

    Article  PubMed  CAS  Google Scholar 

  70. Andersen P (1997) Host responses and antigens involved in protective immunity to Mycobacterium tuberculosis. Scand J Immunol 45:115–131

    Article  PubMed  CAS  Google Scholar 

  71. Saunders BM, Cooper AM (2000) Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol Cell Biol 78:334–341

    Article  PubMed  CAS  Google Scholar 

  72. Davis JM et al (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17:693–702

    Article  PubMed  CAS  Google Scholar 

  73. Volkman HE et al (2004) Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol 2:e367

    Article  PubMed  CAS  Google Scholar 

  74. Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49

    Article  PubMed  CAS  Google Scholar 

  75. Egen JG et al (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28:271–284

    Article  PubMed  CAS  Google Scholar 

  76. Egen JG et al (2011) Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34:807–819

    Article  PubMed  CAS  Google Scholar 

  77. Sherman DR et al (2004) Mycobacterium tuberculosis H37Rv: Delta RD1 is more virulent than M bovis bacille Calmette-Guerin in long-term murine infection. J Infect Dis 190:123–126

    Article  PubMed  Google Scholar 

  78. Gao LY et al (2004) A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol 53:1677–1693

    Article  PubMed  CAS  Google Scholar 

  79. Guinn KM et al (2004) Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51:359–370

    Article  PubMed  CAS  Google Scholar 

  80. Choi HH et al (2010) Endoplasmic reticulum stress response is involved in Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis. FEBS Lett 584:2445–2454

    Article  PubMed  CAS  Google Scholar 

  81. Derrick SC, Morris SL (2007) The ESAT-6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cell Microbiol 9:1547–1555

    Article  PubMed  CAS  Google Scholar 

  82. Mishra BB et al (2010) Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 12:1046–1063

    Article  PubMed  CAS  Google Scholar 

  83. Behar SM et al (2011) Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 4:279–287

    Article  PubMed  CAS  Google Scholar 

  84. Fratazzi C et al (1997) Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages. J Immunol 158:4320–4327

    PubMed  CAS  Google Scholar 

  85. Gan H et al (2008) Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 9:1189–1197

    Article  PubMed  CAS  Google Scholar 

  86. Keane J, Shurtleff B, Kornfeld H (2002) TNF-dependent BALB/c murine macrophage apoptosis following Mycobacterium tuberculosis infection inhibits bacillary growth in an IFN-gamma independent manner. Tuberculosis 82:55–61

    Article  PubMed  CAS  Google Scholar 

  87. Martin CJ et al (2012) Efferocytosis is an innate antibacterial mechanism. Cell Host and Microbe 12:289−300

    Article  PubMed  CAS  Google Scholar 

  88. Oddo M et al (1998) Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 160:5448–5454

    PubMed  CAS  Google Scholar 

  89. Molloy A (1994) Laochumroonvorapong, and G Kaplan, Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. J Exp Med 180:1499–1509

    Article  PubMed  CAS  Google Scholar 

  90. Lammas DA et al (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7:433–444

    Article  PubMed  CAS  Google Scholar 

  91. Armstrong JA, Hart D (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142:1–16

    Article  PubMed  CAS  Google Scholar 

  92. van der Wel N et al (2007) M tuberculosis and M leprae translocate from the phagolysosome to the cytosol in myeloid cells Cell 129:1287–1298

    Google Scholar 

  93. Briken V, Miller JL (2008) Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Futur Microbiol 3:415–422

    Article  CAS  Google Scholar 

  94. Hinchey J et al (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117:2279–2288

    Article  PubMed  CAS  Google Scholar 

  95. Jayakumar D, Jacobs WR Jr, Narayanan S (2008) Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell Microbiol 10:365–374

    PubMed  CAS  Google Scholar 

  96. Velmurugan K et al (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3:e110

    Article  PubMed  CAS  Google Scholar 

  97. Yang CT et al (2012) Neutrophils protect against tuberculosis by oxidative killing of mycobacteria phagocytosed from granuloma macrophages. Cell Host Microbe 12:301−312

    Article  PubMed  CAS  Google Scholar 

  98. Cree IA et al (1987) Cell death in granulomata: the role of apoptosis. J Clin Pathol 40:1314–1319

    Article  PubMed  CAS  Google Scholar 

  99. Keane J et al (1997) Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65:298–304

    PubMed  CAS  Google Scholar 

  100. Fayyazi A et al (2000) Apoptosis of macrophages and T cells in tuberculosis associated caseous necrosis. J Pathol 191:417–425

    Article  PubMed  CAS  Google Scholar 

  101. Clay H et al (2007) Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2:29–39

    Article  PubMed  CAS  Google Scholar 

  102. Chen M et al (2008) Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J Exp Med 205:2791–2801

    Article  PubMed  CAS  Google Scholar 

  103. Divangahi M et al (2009) Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10:899–906

    Article  PubMed  CAS  Google Scholar 

  104. Divangahi M et al (2010) Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11:751–758

    Article  PubMed  CAS  Google Scholar 

  105. Volkman HE et al (2010) Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327:466–469

    Article  PubMed  CAS  Google Scholar 

  106. Van den Steen E et al (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375–536

    Article  PubMed  Google Scholar 

  107. Banaiee N et al (2006) Potent inhibition of macrophage responses to IFN-gamma by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J Immunol 176:3019–3027

    PubMed  CAS  Google Scholar 

  108. Fortune SM et al (2004) Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. J Immunol 172:6272–6280

    PubMed  CAS  Google Scholar 

  109. Kincaid EZ, Ernst JD (2003) Mycobacterium tuberculosis exerts gene-selective inhibition of transcriptional responses to IFN-gamma without inhibiting STAT1 function. J Immunol 171:2042–2049

    PubMed  CAS  Google Scholar 

  110. Ting LM et al (1999) Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 163:3898–3906

    PubMed  CAS  Google Scholar 

  111. Stockhammer OW et al (2009) Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J Immunol 182:5641–5653

    Article  PubMed  CAS  Google Scholar 

  112. Taylor JL et al (2006) Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect Immun 74:6135–6144

    Article  PubMed  CAS  Google Scholar 

  113. Park KJ et al (2005) Expression of matrix metalloproteinase-9 in pleural effusions of tuberculosis and lung cancer. Respiration 72:166–175

    Article  PubMed  CAS  Google Scholar 

  114. Price NM et al (2001) Identification of a matrix-degrading phenotype in human tuberculosis in vitro and in vivo. J Immunol 166:4223–4230

    PubMed  CAS  Google Scholar 

  115. Sheen P et al (2009) High MMP-9 activity characterises pleural tuberculosis correlating with granuloma formation. Eur Respir J 33:134–141

    Article  PubMed  CAS  Google Scholar 

  116. Elkington T et al (2007) Synergistic up-regulation of epithelial cell matrix metalloproteinase-9 secretion in tuberculosis. Am J Respir Cell Mol Biol

    Google Scholar 

  117. Adams KN et al (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53

    Article  PubMed  CAS  Google Scholar 

  118. Chackerian AA et al (2002) Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70:4501–4509

    Article  PubMed  CAS  Google Scholar 

  119. Schreiber HA et al (2011) Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice. J Clin Invest 121:3902–3913

    Article  PubMed  CAS  Google Scholar 

  120. Akira M, Sakatani M, Ishikawa H (2000) Transient radiographic progression during initial treatment of pulmonary tuberculosis: CT findings. J Comput Assist Tomogr 24:426–431

    Article  PubMed  CAS  Google Scholar 

  121. Bobrowitz ID (1980) Reversible roentgenographic progression in the initial treatment of pulmonary tuberculosis. Am Rev Respir Dis 121:735–742

    PubMed  CAS  Google Scholar 

  122. Russell DG (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5:39–47

    Article  PubMed  CAS  Google Scholar 

  123. Takaki K et al (2012) An in vivo platform for rapid high-throughput antitubercular drug discovery. Cell Rep 2:175–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research presented in this chapter has been supported by grants from the National Institutes of Health, including the NIH Director’s Pioneer Award, as well as the Burroughs Wellcome Award in the Pathogenesis of Infectious Diseases, the Ellison Medical Foundation, the Keck Foundation, and the Akibene Foundation. I thank Christine Cosma for discussion and critical review of the manuscript and Tiffany Pecor for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalita Ramakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramakrishnan, L. (2013). Looking Within the Zebrafish to Understand the Tuberculous Granuloma. In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_13

Download citation

Publish with us

Policies and ethics