Skip to main content

Atmospheric Biogeochemistry

  • Chapter
  • First Online:
Ecological Systems
  • 3745 Accesses

Abstract

Biogeochemistry represents the interaction of biology, chemistry, and geology in the Earth system. For many processes, an understanding of biological uptake and emission, chemical processing, and geological sequestration is necessary to resolve the sources and sinks of a particular constituent. For example, to discover the sources and sinks of atmospheric carbon dioxide, it is important to understand how biota take up carbon dioxide and chemically convert the carbon to organic carbon, and then how this organic carbon is used either to produce energy by biota or is deposited to the land or ocean surface and can become sequestered in geological formations.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aerosol:

A solid or liquid suspended in the atmosphere. The definition usually does not include cloud droplets, although many aerosols have water vapor on their surfaces.

Dry deposition:

Removal process for gas and aerosol species in which the species are deposited onto the lower surface due to either turbulent fluxes (overturning air) forcing the constituent to hit and stick to the surface, or from gravitational settling of aerosols. Gravitational settling is the dominant mechanism for removal for larger aerosols.

Lifetime:

The atmospheric lifetime of a constituent describes how long the constituent will remain in the atmosphere. It is typically calculated by dividing the total amount of the constituent in the atmosphere by the total flux out of or into the atmosphere. The flux can be due to atmospheric chemical reactions, and/or exchanges between other reservoirs in the earth system (e.g., land or ocean). This lifetime is an e-folding lifetime; if one starts with an initial perturbation of the constituent, the amount of the perturbation remaining after a length of time equal to the lifetime is equal to 1/e of the original value of the perturbation.

Wet deposition:

Process by which an atmospheric constituent is removed by precipitation. This is especially important for water-soluble and aerosol species.

Bibliography

Primary Literature

  1. LeQuere C, Raupach M, Canadell J, Marland G, Bopp L et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836. doi:http://10.1038/ngeo689

    Article  CAS  Google Scholar 

  2. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W et al (2006) Climate-carbon cycle feedback analysis, results from the C4MIP Model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  3. Thornton P, Doney S, Lindsay K, Moore JK, Mahowald N et al (2009) Carbon-nitrogen interactions regular climate-carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. Biogeosciences Discussion 6:3303–3354

    Article  Google Scholar 

  4. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science bases. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  5. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L et al (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Pl Sc 37:117–134

    Article  CAS  Google Scholar 

  6. Petit JR, Jouzel J, Raynaud D et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok Ice core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  7. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869

    Article  PubMed  CAS  Google Scholar 

  8. Hewitt C, Mitchell J (1997) Radiative forcing and response of a GCM to ice age boundary conditions: cloud feedback and climate sensitivity. Clim Dynam 13:821–834

    Article  Google Scholar 

  9. Long SP, Ainsworth E, Rogers A, Ort D (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  PubMed  CAS  Google Scholar 

  10. Caspersen J, Pacala S, Jenkins J, Hurtt G, Moorcroft P, Birdsey R (2000) Contributions of land-use history to carbon accumulation in U.S. forests. Science 290:1148–1151

    Article  PubMed  CAS  Google Scholar 

  11. Joos F, Prentice IC, House JI (2002) Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with US forest inventory data. Global Change Biol 8:299–303

    Article  Google Scholar 

  12. Caldeira K, Wickett M (2003) Anthropgenic carbon and ocean pH. Nature 425:365

    Article  PubMed  CAS  Google Scholar 

  13. Kleypas J, Buddemeier R, Archer D, Gattuso J-P, Langdon C, Opdyke B (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  PubMed  CAS  Google Scholar 

  14. Riebesell U, Zondervan I, Rost B, Tortell P, Zeebe R, Morel F (2000) Reduced calcification of marine plankton in respnse to increased atmospheric CO2. Nature 407:364–367

    Article  PubMed  CAS  Google Scholar 

  15. Doney S, Fabry V, Feely R, Kleypas J (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, pp 130–234

    Google Scholar 

  17. Jacob D (1999) Atmospheric chemistry. Princeton University Press, Princeton, p 266

    Google Scholar 

  18. Lamarque J-F, Bond T, Eyring V, Granier C, Heil A et al (2010) Historical (1850–200) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039

    Article  CAS  Google Scholar 

  19. Galloway J, Townsend A, Erisman J, Bekunda M, Cai Z et al (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892

    Article  PubMed  CAS  Google Scholar 

  20. Adams P, Seinfeld J, Koch D (1999) Global concentrations of tropospheric sulfate, nitrate and ammonium aerosol simulated in a general circulation model. J Geophys Res 104:13791–13823

    Article  CAS  Google Scholar 

  21. Duce RA et al (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320. doi:10.1126/science.1150369

    Google Scholar 

  22. Holland E et al (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res 102:15849–15866

    Article  CAS  Google Scholar 

  23. Townsend A, Braswell BH, Holland E, Penner J (1996) Spatial and temporal patterns in potential carbon storage due to deposition of fossil fuel derived nitrogen. Ecol Appl 6. doi:10.2307/2269486

    Google Scholar 

  24. Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin T (2008) Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21:3776–3796

    Article  Google Scholar 

  25. Zaehle S, Friedlingstein P, Friend AD (2010) Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys Res Lett 37. doi:http://10.1029/2009GL041345

    Google Scholar 

  26. Krishnamurthy A, Moore JK, Mahowald N, Luo C, Zender CS (2010) The impacts of atmospheric nutrient inputs on marine biogeochemistry. J Geophys Res 115. doi:http://10.1029/2009JG001115

    Google Scholar 

  27. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic, San Diego, 588 pp

    Google Scholar 

  28. Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008) The global distribution of atmospheric phosphorus deposition and anthropogenic impacts. Global Biogeochem Cycle 22. doi:http://10.1029/2008GB003240

    Google Scholar 

  29. Graham WF, Duce RA (1982) The atmospheric transport of phosphorus to the Western North Atlantic. Atmos Environ 16:1089–1097

    Article  CAS  Google Scholar 

  30. Baker A, French M, Linge K (2006) Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume. Geophys Res Lett 33. doi:http://10.1029/2005GL024764

    Google Scholar 

  31. Baker A, Jickells T, Biswas K, Weston K, French M (2006) Nutrients in atmospheric aerosol particles along the Atlantic Meridional Transect. Deep-Sea Res II 53:1706–1719

    Article  Google Scholar 

  32. Nenes A, Krom M, Mihalopoulos N, VanCapellen P, Shin Z et al (2010) Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus to the oceans. Atmos Chem Phys Discuss 11:6163–6185

    Article  Google Scholar 

  33. Bergametti G, Remoudaki E, Losno R, Stiner E, Chatenet B, Buat-Menard P (1992) Source, transport and deposition of atmospheric phosphorus over the Northwestern Mediterranean. J Atmos Chem 14:501–513

    Article  CAS  Google Scholar 

  34. Herut B, Krom M, Pan G, Mortimer R (1999) Atmospheric input of nitrogen and phosphorus to the Southeast Mediterranean: sources, fluxes and possible impact. Limnol Oceanogr 44:1683–1692

    Article  CAS  Google Scholar 

  35. Herut B, Collier R, Krom M (2002) The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean. Limnol Oceanogr 47:870–878

    Article  CAS  Google Scholar 

  36. Ridame C, Guieu C (2002) Saharan input of phosphate to the oligotrophic water of the open western Mediterranean Sea. Limnol Oceanogr 47:856–869

    Article  CAS  Google Scholar 

  37. Glindemann D, Edwards M, Kuschk P (2003) Phosphine gas in the upper troposphere. Atmos Environ 37:2429–2433

    Article  CAS  Google Scholar 

  38. Glindemann D, Edwards M, J-a L, Kuschk P (2005) Phosphine in soils, sludges, biogases and atmospheric implications–a review. Ecol Eng 24:457–463

    Article  Google Scholar 

  39. Zhu R, Glindemann D, Kong D, Sun L, Geng J, Wang X (2007) Phosphine in the marine atmosphere along a hemisphere course from China to Antarctica. Atmos Env 41:1567–1573

    Article  CAS  Google Scholar 

  40. Graham WF, Duce RA (1979) Atmospheric pathways of the phosphorus cycle. Geochimica et Cosmochimica Acta 43:1195–1208

    Article  CAS  Google Scholar 

  41. Vitousek P (1984) Litterfall, nutrient cycling and nutrient limitations in tropical forests. Ecology 65:285–298

    Article  CAS  Google Scholar 

  42. Okin GS, Mladenov N, Wang L, Cassel D, Caylor KK et al (2008) Spatial pattern of soil nutrients in two southern African savannas. J Geophys Res 111. doi:http://10.1029/2007JG000584

    Google Scholar 

  43. Swap R, Garstang M, Greco S, Talbot R, Kallberg P (1992) Saharan dust in the Amazon Basin. Tellus 44B:133–149

    CAS  Google Scholar 

  44. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–496

    Article  CAS  Google Scholar 

  45. Okin G, Mahowald N, Chadwick O, Artaxo P (2004) The impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycle 18:GB2005. doi:http://10.1029/2003GB002145

    Article  CAS  Google Scholar 

  46. Graham B, Guyon P, Maenhaut W, Taylor PE, Ebert M et al (2003) Composition and diurnal variability of the natural Amazonian aerosol. J Geophys Res 108:4765. doi:http://10.1029/2003JD004049

    Article  CAS  Google Scholar 

  47. Mahowald N, Artaxo P, Baker A, Jickells T, Okin G et al (2005) Impact of biomass burning emissions and land use change on Amazonian atmospheric cycling and deposition of phosphorus. Global Biogeochem Cycle 19:GB4030. doi:http://10.1029/2005GB002541

    Article  CAS  Google Scholar 

  48. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  PubMed  CAS  Google Scholar 

  49. Wu J, Sunda W, Boyle E, Karl D (2000) Phosphate depletion in the western North Atlantic Ocean. Science 289:759–762

    Article  PubMed  CAS  Google Scholar 

  50. Krishnamurthy A, Moore K, Zender C, Luo C (2007) Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry. J Geophys Res 112. doi:http://10.1029/2006JG000334

    Google Scholar 

  51. Seitzinger S, Harrison J, Dumont E, Beusen A, Bouwman A (2005) Sources and delivery of carbon, nitrogen and phosphorus to the coastal zone: an overview of the Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochem Cycle 19. doi:http://10.1029/2005GB002606

    Google Scholar 

  52. Benitez-Nelson C (2000) The biogeochemical cycling of phosphorus in marine systems. Earh-Sci Rev 51:109–135

    Article  CAS  Google Scholar 

  53. Crutzen PJ (1976) The possible importance of CSO for the sulfate layer of the stratosphere. Geophys Res Lett 3:73–76

    Article  CAS  Google Scholar 

  54. Deshler T (2007) Stratospheric aerosol: measurements, importance, life cycle, anomalous aerosol. In: O’Dowd C, Wagner P (eds) Nucleation and atmospheric aerosols. Springer, Heidelberg, pp 613–624

    Chapter  Google Scholar 

  55. Charlson RJ, Lovelock JE, Andreae M, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661

    Article  CAS  Google Scholar 

  56. Kloster S, Feichter J, Maier-Reimer E, Roeckner E, Stier P et al (2007) Response of DMS in the ocean and atmosphere to global warming. J Geophys Res 142:G03005. doi:http://10.1029/2006JG000224

    Article  CAS  Google Scholar 

  57. Seinfeld J, Pandis S (1998) Atmospheric chemistry and physics. Wiley, New York, p 1326

    Google Scholar 

  58. Gong SL, Barrie L, Lazare M (2002) Canadian aerosol model (CAM): a size-segregated simulation of atmospheric aerosol process for climate and air quality models 2. Global sea-salt aerosol and its budgets. J Geophys Res 107:4779. doi:10.209/2001JD002004

    Article  Google Scholar 

  59. Carslaw KS, Boucher O, Spracklen D, Mann G, Rae JG et al (2010) A review of natural aerosol interactions and feedbacks within the earth system. Atmos Chem Phys 10:1701–1737

    Article  CAS  Google Scholar 

  60. Morell F, Price N (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947

    Article  CAS  Google Scholar 

  61. Martin J, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802

    Article  Google Scholar 

  62. Fung I, Meyn SK, Tegen I, Doney S, John J, Bishop J (2000) Iron supply and demand in the upper ocean. Global Biogeochem Cycle 14:281–295

    Article  CAS  Google Scholar 

  63. Poulton S, Raiswell R (2002) The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am J Sci 302:774–805

    Article  CAS  Google Scholar 

  64. Luo C, Mahowald N, Bond T, Chuang PY, Artaxo P et al (2008) Combustion iron distribution and deposition. Global Biogeochem Cycle 22. doi:http://10.1029/2007GB002964

    Google Scholar 

  65. Mahowald N, Engelstaedter S, Luo C, Sealy A, Artaxo P et al (2009) Atmospheric iron deposition: global distribution, variability and human perturbations. Annu Rev Mar Sci 1:245–278. doi:10.1146/annurev/marine.010908.163727

    Article  Google Scholar 

  66. Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P et al (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem Cycle 5:193–259

    Article  CAS  Google Scholar 

  67. Claquin T, Schulz M, Balkanski Y (1999) Modeling the mineralogy of atmospheric dust sources. J Geophys Res 104:22243–22256

    Article  CAS  Google Scholar 

  68. Journet E, Desbouefs K, Caqineau S, Colin J-L (2008) Mineralogy as a critical factor of dust iron solubility. Geophys Res Lett 35. doi:http://10.1029/2007GL031589

    Google Scholar 

  69. Hand J, Mahowald N, Chen Y, Siefert R, Luo C et al (2004) Estimates of soluble iron from observations and a global mineral aerosol model: biogeochemical implications. J Geophys Res 109:D17205. doi:http://10.1029/2004JD004574

    Article  CAS  Google Scholar 

  70. Frogner P, Gislason SR, Oskarsson N (2001) Fertilizing potential of volcanic ash in ocean surface water. Geol Soc Am 29:487–490

    CAS  Google Scholar 

  71. Duggen S, Croot P, Schacht U, Hoffmann L (2007) Subduction zo006Ee volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys Res Lett 34:L01612. doi:http://10.1029/2006GL027522

    Article  Google Scholar 

  72. Johnson K (2001) Iron supply and demand in the upper ocean: is extraterrestrial dust a significant source of bioavailable iron? Global Biogeochem Cycle 15:61–63

    Article  CAS  Google Scholar 

  73. Jickells T, Spokes L (2001) Atmospheric iron inputs to the oceans. In: Turner DR, Hunteger K (eds) Biogeochemistry of iron in seawater. Wiley, Chichester, pp 85–121

    Google Scholar 

  74. Zhu X, Prospero J, Millero F (1997) Diel variability of soluble Fe(II) and soluble total Fe in North Africa dust int he trade winds at Barbados. J Geophys Res 102:21297–21305

    Article  CAS  Google Scholar 

  75. Meskhidze N, Chameides W, Nenes A (2005) Dust and pollution: a recipe for enhanced ocean fertilization? J Geophys Res 110. doi:http://10.1029/2004JD005082

    Google Scholar 

  76. Guieu C, Bonnet S, Wagener T, Loye-Pilot M-D (2005) Biomass burning as a source of dissolved iron to the open ocean? Geophys Res Lett 22:L19608. doi:http://10.1029/2005GL022962

    Article  CAS  Google Scholar 

  77. Chuang P, Duvall R, Shafer M, Schauer J (2005) The origin of water soluble particulate iron in the Asian atmospheric outflow. Geophys Res Lett 32. doi:http://10.1029/2004GL021946

    Google Scholar 

  78. Sedwick P, Sholkovitz E, Church T (2007) Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem Geophy Geosy 8. doi:http://10.1029/2007GC001586

    Google Scholar 

  79. Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S et al (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501

    Article  PubMed  CAS  Google Scholar 

  80. Boyd PW, Law CS (2001) The southern ocean iron release experiment (SOIREE) introduction and summary. Deep-Sea Res II 48:2425–2438

    Article  CAS  Google Scholar 

  81. Bishop J, Davis R, Sherman J (2002) Robotic observations of dust storm enhancement of carbon biomass in the north pacific. Science 298:817–821

    Article  PubMed  CAS  Google Scholar 

  82. Cassar N, Bender M, Barnett B, Fan S, Moxim WJ et al (2007) The southern ocean biological response to aeolian iron deposition. Science 317:1067–1070

    Article  PubMed  CAS  Google Scholar 

  83. Berman-Frank I, Cullen JT, Shaked Y, Sherrell RM, Falkowski P (2001) Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol Oceanogr 46:1249–1260

    Article  CAS  Google Scholar 

  84. Michaels AF, Olson D, Sarmiento JL, Ammerman JW, Fanning K et al (1996) Inputs, losses and transformations of nitrogen and phosphorous in the pelagic North Atlantic Ocean. Biogeochemistry 35:181–226

    Article  CAS  Google Scholar 

  85. Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229

    Article  CAS  Google Scholar 

  86. Mahaffrey C, Williams R, Wolff G, Mahowald N, Anderson W (2003) Isotopic signals of nitrogen fixation over the eastern North Atlantic. Geophys Res Lett 40. doi:10.109/2002/GL016542

    Google Scholar 

  87. Knapp A, Hastings M, Sigman D, Lipschultz F, Galloway J (2010) The flux and isotopic composition of reduced and total nitrogen in Bermuda rain. Mar Chem 120:83–89

    Article  CAS  Google Scholar 

  88. Okin G, Baker A, Tegen I, Mahowald N, Dentener F et al (2011) Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus and iron. Global Biogeochem Cycle 25:GB2022

    Article  CAS  Google Scholar 

  89. Mahowald N, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S et al (2010) Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos Chem Phys 10:10875–10893

    Article  CAS  Google Scholar 

  90. Mahowald NM, Lindsay K, Rothenberg D, Doney SC, Moore JK et al (2011) Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences 8:387–414. doi:10.5194/bg-8-387-2011

    Article  CAS  Google Scholar 

  91. Lovelock J (1979) Gaia: a new look at life on earth. Oxford University Press, Oxford, UK

    Google Scholar 

  92. Keeling R, Shertz SR (1992) Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358:723–727

    Article  CAS  Google Scholar 

  93. Bender M, Ho D, Hendricks M, Mika R, Battle M et al (2005) Atmospheric O2/N2 changes, 1993–2002: implications for the partitioning of fossil fuel CO2 sequestration. Global Biogeochem Cycle 19. doi:http://10.1029/2004GB002410

    Google Scholar 

  94. Hartmann D (1994) Global physical climatology. Academic, San Diego

    Google Scholar 

  95. Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    Article  CAS  Google Scholar 

  96. Chipperfield MP, Randel WJ, Bodeker GE, Dameris M, Fioletov VE, AyitÈ-LÙ DLA, Ajavon N, MÈgie G, Watson RT et al (2003) Global ozone: past and future,chapter 4. In: Scientific assessment of ozone depletion: 2002. WMO, Geneva, p 498

    Google Scholar 

  97. Prinn RG, Weiss RG, Miller BR, Huang J, Alyea FN et al (1995) Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations. Science 269:187–192

    Article  PubMed  CAS  Google Scholar 

  98. Selin N (2009) Global biogeochemical cycling of Mercury: a review. Annu Rev Env Resour 34:43–63

    Article  Google Scholar 

  99. Paytan A, Mackey K, Chen Y, Lima I, Doney S et al (2009) Toxicity of atmospheric aerosols on marine phytoplankton. Proc Natl Acad Sci USA 106:4601–4605. doi:10.1073/pnas.0811486106

    Article  PubMed  CAS  Google Scholar 

  100. Doney S, Mahowald N, Lima I, Feeley R, Mackenzie F et al (2007) Impact of anthropogenic atmospheric nitrogen and sulfur depositionon ocean acidification and the inorganic carbon system. Proc Natl Acad Sci USA 104:14580–14585. doi:10.1073/pnas.07022181

    Article  PubMed  CAS  Google Scholar 

  101. vanVuuren D, den Elzen MG, Lucas P, Eickhout B, Strengers B et al (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159. doi:10.1007/s10584-006-9172-9

    Article  CAS  Google Scholar 

  102. Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richells R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1A of synthesis and assessment product 2.1 by the US climate change science program and the subcommittee on global change research. Department of Energy, Office of Biological and Environmental Research, Washington, DC

    Google Scholar 

  103. Smith SJ, Wigley T (2006) Multi-gas forcing stabilization with the MiniCAM. Energy J Special Issue #3:373–391

    Google Scholar 

  104. Wise M, Calvin KV, Thomson A, Clarke LE, Bond-Lamberty B et al (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Article  PubMed  CAS  Google Scholar 

  105. Fujino J, Nair R, Kainuma M, Masui T, Matuoka Y (2006) Multi-gas mitigation analysis on stabilzation scenarios using AIM global model. Energy J Special Issue 3:343–354

    Google Scholar 

  106. Hijoka Y, Matuoka Y, Hisimoto H, Masui M, Kainuma M (2008) Global GHG emission scenarios under GHG concentration stabilization targets. Global Env Eng 13:97–108

    Google Scholar 

  107. Riahl K, Gruebler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc 74:887–935

    Article  Google Scholar 

  108. Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308:73

    Article  PubMed  CAS  Google Scholar 

  109. Mahowald N, Ward D, Kloster S, Flanner M, Heald C et al (2011) Aerosol impacts on climate and biogeochemistry. Annu Rev Env Resour 36. doi:10.1146/annurev-environ-042009-094507

    Google Scholar 

  110. Lighthart B (2006) The ecology of bacteria in the alfresco atmosphere. FEMS Microbiol Ecol 23:263–274

    Article  Google Scholar 

  111. Burrows SM, Elbert W, Lawrence MG, Poschl U (2009) Bacteria in the global atmosphere–Part 1: review and synthesis of literature for different ecosystems. Atmos Chem Phys 9:9263–9280

    Article  CAS  Google Scholar 

  112. Heald C, Spracklen D (2009) Atmospheric budget of primary biological erosol particles from fungal sources. Geophys Res Lett 36. doi:http://10.1029/2009GL037493

    Google Scholar 

  113. Stanley S (1999) Earth system history. WH Freeman, New York, p 615

    Google Scholar 

  114. Jones C, Cox P, Essery R, Roberts D, Woodage M (2003) Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophys Res Lett 30:1479. doi:10.029/2003gl0166867

    Article  CAS  Google Scholar 

  115. Mercado L, Bellouin N, Stich S, Boucher O, Huntingford C et al (2009) Impacts of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018. doi:http://10.1038/nature07949

    Article  PubMed  CAS  Google Scholar 

  116. Holton JR (1989) Global transport processes in the atmosphere. In: Hutzinger O (ed) The handbook of environmental chemistry. Springer, New York, pp 97–144

    Google Scholar 

  117. Barth M, Stuart A, Skamarock W (2001) Numerical simulations of the July 10, 1996, stratospheric-tropospheric experiment: radiation, aerosols, and ozone (STERAO)-deep convection experiment storm: redistribution of soluble tracers. J Geophys Res 106:12381–12400

    Article  CAS  Google Scholar 

  118. Bowman K, Carrie G (2002) The mean-meridional transport circulation of the troposphere in an idealized GCM. J Atmos Sci 59:1502–1514

    Article  Google Scholar 

  119. Kasibhatla P, Heimann M, Rayner P, Mahowald N, Prinn R, Hartley D (eds) (2000) Inverse methods in global biogeochemical cycles. American Geophysical Union, Washington, DC, p 324

    Google Scholar 

  120. Bolin B, Keeling C (1963) Large-scale atmospheric mixing as deduced from teh seasonal and meridionial variations of carbon dioxide. J Geophys Res 68:3899–3920

    Article  CAS  Google Scholar 

  121. Fung I, John J, Lerner J, Matthews E, Prather M et al (1991) Three-dimensional model syntehsis of the global methane cycle. J Geophys Res 96:13033–13065

    Article  CAS  Google Scholar 

  122. Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D et al (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–630

    Article  PubMed  Google Scholar 

  123. Bousquet P, Peylin P, Ciais P, Quere CL, Friedlingstein P, Tans PP (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1347

    Article  PubMed  CAS  Google Scholar 

  124. Houweling S, Kaminski T, Dentener F, Lelieveld J, Heimann M (1999) Inverse modeling of methane sources and sinks using the adjoint of ta global transprot model. J Geophys Res 104:26137–26160

    Article  CAS  Google Scholar 

  125. Kasibhatla P, Arellano A, Logan J, Palmer P (2002) Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in Asia. Geophys Res Lett 29. doi:http://10.1029/2002GL015581

    Google Scholar 

  126. Braswell B, Sacks W, Linder E, Schimel D (2005) Estimating diurnal to annual ecosystem parameters by synthesis of carbon flux model with eddy covariance net ecosystem exchange observations. Glob Change Biol 11. doi:1111/j.365-2486.005.00897

    Google Scholar 

  127. Keeling RF, Piper SC, Bollenbacher AF, Walker JS (2009) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Dept. of Energy, Oak Ridge

    Google Scholar 

  128. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola J-M, Morgan VI (1998) Historical CO2 records from the law dome DE08, DE08-2, and DSS ice cores. In: Trends: a compendium of data on global change. Oak Ridge National Laboratory: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Google Scholar 

  129. Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (2002) Historical CH4 records since about 1000 A.D. from ice core data. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Google Scholar 

  130. Battle M, Bender M, Sowers T, Tans PP, Butler JH et al (1996) Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature 383:231–235

    Article  CAS  Google Scholar 

  131. Mahowald N (2007) Anthropocence changes in desert area: sensitivity to climate model predictions. Geophys Res Lett 34. doi:http://10.1029/2007GL030472

    Google Scholar 

Books and Reviews

  • Jacobson M, Charlson R, Rodhe H, Orians G (eds) (2000) Earth system science, vol 72. Academic, San Diego

    Google Scholar 

Download references

Acknowledgments

The author would like to thank NSF (0932946, 0832782, 0758369) and NASA (NNG06G127G), as well as Rachel Scanza for assistance on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie M. Mahowald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mahowald, N.M. (2013). Atmospheric Biogeochemistry. In: Leemans, R. (eds) Ecological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5755-8_2

Download citation

Publish with us

Policies and ethics