Skip to main content

Breast Cancer Heterogeneity in Primary and Metastatic Disease

  • Chapter
  • First Online:

Abstract

The term ‘breast cancer’ describes a heterogeneous collection of neoplasms arising from the mammary epithelium. Tumors in different patients display diverse morphologies, molecular phenotypes, responses to therapy, probabilities of relapse and overall survival. Current histopathological classification systems aim to categorise tumors into subgroups to inform patient management decisions, but the diversity within subgroups is considerable. Molecular analyses such as gene expression profiling, and more recently, massively parallel sequencing technologies, have been employed to increase the degree of resolution in breast cancer taxonomies. It will take time for this information to be translated into the clinic. Sequencing projects have also been instrumental in revealing the true extent of intratumoral heterogeneity: three-dimensional variability in the genetic, phenotypic, cellular and microenvironmental constitution of individual tumors. This variability underlies clinical problems such as metastasis and drug resistance, and will present additional challenges as breast cancer diagnostics evolves to include higher resolution molecular analyses. Intratumoral heterogeneity will need to be carefully considered as we move towards more personalized models of breast cancer patient management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, (eds) (2012) WHO Classification of Tumors of the Breast. Int Agency for Res on Cancer (IARC), Lyon

    Google Scholar 

  2. Raffan E, Semple RK (2011) Next generation sequencing–implications for clinical practice. Br Med Bull 99:53–71. doi:10.1093/029

    Article  PubMed  CAS  Google Scholar 

  3. Radovich M (2012) Next-generation sequencing in breast cancer: translational Sci and clinical integration. Pharmacogenomics 13(6):637–639. doi:10.2217/12.18

    Article  PubMed  Google Scholar 

  4. Swanton C, Burrell RA, Futreal PA (2011) Breast cancer genome heterogeneity: a challenge to personalized medicine? Breast Cancer Res 13(1):104. doi:10.1186/bcr2807

    Article  PubMed  Google Scholar 

  5. Ellis IO, Schnitt SJ, Sastre-Garau X (2003) Invasive breast carcinomas. In: Tavassoli FA, Devilee P (eds) WHO classification of tumors pathology and genetics of tumors of the breast and female genital organs. IARC Press, Lyon

    Google Scholar 

  6. Boyd W (1934) A textbook of pathology: an introduction to medicine, 2nd edn. Henry Kimpton, London

    Google Scholar 

  7. Pinder SE (2010) Ductal carcinoma in situ (DCIS): Pathological features, differential diagnosis, prognostic factors and specimen evaluation. Modern pathol: an official J US Can Acad Pathol 23(Suppl 2):S8–13. doi:10.1038/2010.40

    Google Scholar 

  8. Weigelt B, Horlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF et al (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 216(2):141–150. doi:10.1002/2407

    Article  PubMed  CAS  Google Scholar 

  9. Rakha EA, Ellis IO (2010) Lobular breast carcinoma and its variants. Semin Diagn Pathol 27(1):49–61

    Article  PubMed  Google Scholar 

  10. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA et al (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2(5):367–376 S1535610802001800[pii]

    Article  PubMed  CAS  Google Scholar 

  11. Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G (2009) Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA 106(44):18740–18744. doi:10.1073/0909114106

    Article  PubMed  CAS  Google Scholar 

  12. Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S et al (2012) Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci USA 109(8):2772–2777. doi:10.1073/1017626108

    Article  PubMed  CAS  Google Scholar 

  13. Elston CW, Ellis IO, Pinder SE (1998) Prognostic factors in invasive carcinoma of the breast. Clin Oncol 10(1):14–17

    Article  CAS  Google Scholar 

  14. Pereira H, Pinder SE, Sibbering DM, Galea MH, Elston CW, Blamey RW et al (1995) Pathological prognostic factors in breast cancer. IV: should you be a typer or a grader? A comparative study of two histological prognostic features in operable breast carcinoma. Histopathol 27(3):219–226

    Google Scholar 

  15. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathol 19(5):403–410

    Google Scholar 

  16. Aleskandarany MA, Green AR, Benhasouna AA, Barros FF, Neal K, Reis-Filho JS et al (2012) Prognostic value of proliferation assay in the luminal, HER2-positive, and triple-negative biologic classes of breast cancer. Breast Cancer Res 14(1):R3. doi:10.1186/3084

    Article  PubMed  Google Scholar 

  17. Rakha EA, El-Sayed ME, Lee AH, Elston CW, Grainge MJ, Hodi Z et al (2008) Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J Oncol: Official J Am Soc Clin Oncol 26(19):3153–3158. doi:10.1200/2007.15.5986

    Article  Google Scholar 

  18. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V et al (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 12(4):207. doi:10.1186/2607

    PubMed  Google Scholar 

  19. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272. doi:10.1093/jnci/052

    Article  PubMed  CAS  Google Scholar 

  20. Galea MH, Blamey RW, Elston CE, Ellis IO (1992) The nottingham prognostic index in primary breast cancer. Breast Cancer Res Treat 22(3):207–219

    Article  PubMed  CAS  Google Scholar 

  21. Sundquist M, Thorstenson S, Brudin L, Nordenskjold B (1999) Applying the nottingham prognostic index to a Swedish breast cancer population. South East Swedish breast cancer study group. Breast Cancer Res Treat 53(1):1–8

    Article  PubMed  CAS  Google Scholar 

  22. Mook S, Schmidt MK, Rutgers EJ, van de Velde AO, Visser O, Rutgers SM et al (2009) Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: A hospital-based retrospective cohort study. Lancet Oncol 10(11):1070–1076. doi: S1470-2045(09)70254-2 [pii] 10.1016/S1470-2045(09)70254-2

    Google Scholar 

  23. Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B (2009) Senn HJ (2009) Thresholds for therapies: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer. Ann Oncol: J ESMO 20(8):1319–1329. doi:10.1093

    Article  CAS  Google Scholar 

  24. Early Breast Cancer Trialists’ Collaborative Group (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351(9114):1451–1467

    Article  Google Scholar 

  25. Ravdin PM, Green S, Dorr TM, McGuire WL, Fabian C, Pugh RP et al (1992) Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest oncology group study. J Oncol: Official J Am Soc Clin Oncol 10(8):1284–1291

    CAS  Google Scholar 

  26. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ et al (2007) American Society of Clinical Oncology/College of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131(1):18–43. doi:10.1043/1543-2165131

    PubMed  CAS  Google Scholar 

  27. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  PubMed  CAS  Google Scholar 

  28. Tandon AK, Clark GM, Chamness GC, Ullrich A, McGuire WL (1989) HER-2/neu oncogene protein and prognosis in breast cancer. J Oncol: Official J Am Soc Clin Oncol 7(8):1120–1128

    CAS  Google Scholar 

  29. Chia S, Norris B, Speers C, Cheang M, Gilks B, Gown AM et al (2008) Human epidermal growth factor receptor 2 overexpression as a prognostic factor in a large tissue microarray series of node-negative breast cancers. J Oncol: Official J Am Soc Clin Oncol 26(35):5697–5704. doi:10.1200/2007.15.8659

    Article  CAS  Google Scholar 

  30. Madarnas Y, Trudeau M, Franek JA, McCready D, Pritchard KI, Messersmith H (2008) Adjuvant/neoadjuvant trastuzumab therapy in women with HER-2/neu-overexpressing breast cancer: a systematic review. Cancer Treat Rev 34(6):539–557. doi:10.1016/2008.03.013

    Article  PubMed  CAS  Google Scholar 

  31. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res: An Official J Am Assoc Cancer Res 13(15):4429–4434. doi:10.1158/1078-0432

    Article  Google Scholar 

  32. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V et al (2011) Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Modern pathol: An Official J US Can Acad Pathol 24(2):157–167. doi:10.1038/2010.200

    Google Scholar 

  33. Hammond ME, Hayes DF, Wolff AC, Mangu PB, Temin S (2010) American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 6(4):195–197. doi:10.1200/JOP.777003

    Article  PubMed  Google Scholar 

  34. Seol H, Lee HJ, Choi Y, Lee HE, Kim YJ, Kim JH et al (2012) Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod pathol: An Official J US Can Acad Pathol. doi:10.1038/2012.36

    Google Scholar 

  35. Vance GH, Barry TS, Bloom KJ, Fitzgibbons PL, Hicks DG, Jenkins RB et al (2009) Genetic heterogeneity in HER2 testing in breast cancer: panel summary and guidelines. Arch Pathol Lab Med 133(4):611–612. doi:10.1043/1543-2165-133.4.611

    PubMed  Google Scholar 

  36. Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R et al (2010) Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol 220(5):562–573. doi:10.1002/2675

    Article  PubMed  CAS  Google Scholar 

  37. Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY et al (2003) Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 63(21):7167–7175

    PubMed  CAS  Google Scholar 

  38. Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K et al (2010) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 220(1):45–57. doi:10.1002/2629

    Article  PubMed  CAS  Google Scholar 

  39. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Google Scholar 

  40. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679. doi:10.1016/S0140-6736(05)17947-1

    PubMed  CAS  Google Scholar 

  41. Ma XJ, Hilsenbeck SG, Wang W, Ding L, Sgroi DC, Bender RA et al (2006) The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Oncol: Official J Am Soc Clin Oncol 24(28):4611–4619. doi:10.1200/2006.06.6944

    Article  CAS  Google Scholar 

  42. Goetz MP, Suman VJ, Ingle JN, Nibbe AM, Visscher DW, Reynolds CA et al (2006) A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res: An Official J Am Assoc Cancer Res 12(7):2080–2087. doi:10.1158/1078-0432.CCR-05-1263

    Article  CAS  Google Scholar 

  43. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumors. Nature 406(6797):747–752. doi:10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  44. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.19136709898/19/10869

    Article  PubMed  CAS  Google Scholar 

  45. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96. doi:1471-2164-7-9610.1186

    Article  PubMed  CAS  Google Scholar 

  46. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100(18):10393–10398

    Article  PubMed  CAS  Google Scholar 

  47. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Oncol 27(8):1160–1167. doi:JCO.2008.18.137010.1200/JCO.2008.18.1370

    Article  Google Scholar 

  48. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    Article  PubMed  CAS  Google Scholar 

  49. Harrell JC, Prat A, Parker JS, Fan C, He X, Carey L et al (2011) Genomic analysis identifies unique sigNats predictive of brain, lung, and liver relapse. Breast Cancer Res Treat. doi:10.1007/s10549-011-1619-7

    PubMed  Google Scholar 

  50. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH et al (2010) Metastatic behavior of breast cancer subtypes. J Oncol: Official J Am Soc Clin Oncol 28(20):3271–3277. doi:10.1200/JCO.2009.25.9820

    Article  Google Scholar 

  51. Korde LA, Lusa L, McShane L, Lebowitz PF, Lukes L, Camphausen K et al (2010) Gene expression pathway analysis to predict response to neoadjuvant docetaxel and capecitabine for breast cancer. Breast Cancer Res Treat 119(3):685–699. doi:10.1007/s10549-009-0651-3

    Article  PubMed  CAS  Google Scholar 

  52. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685

    Article  PubMed  CAS  Google Scholar 

  53. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis sigNats. Breast Cancer Res 10(4):R65. doi:212410.1186/2124

    Article  PubMed  CAS  Google Scholar 

  54. Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR (2010) Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol 4(3):255–266. doi:10.1016/2010.04.001

    Article  PubMed  CAS  Google Scholar 

  55. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D et al (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26(14):2126–2132. doi:1210014/10.1038/1210014

    Article  PubMed  CAS  Google Scholar 

  56. Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A et al (2007) Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA 104(29):12111–12116. doi:10.1073/0702969104

    Article  PubMed  CAS  Google Scholar 

  57. McCarthy A, Savage K, Gabriel A, Naceur C, Reis-Filho JS, Ashworth A (2007) A mouse model of basal-like breast carcinoma with metaplastic elements. J Pathol 211(4):389–398. doi:10.1002/2124

    Article  PubMed  CAS  Google Scholar 

  58. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 8(2):149–163. doi:10.1016/2010.12.007

    Article  PubMed  CAS  Google Scholar 

  59. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK et al (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14(5):1368–1376. doi:14/5/1368/10.1158/1078-0432.CCR-07-1658

    Article  PubMed  CAS  Google Scholar 

  60. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374. doi:10.1158/1078-0432.CCR-04-022010/16/5367

    Article  PubMed  CAS  Google Scholar 

  61. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Col Official J Am Soc Clin Oncol 30(15):1879–1887. doi:10.1200/JCO.2011.38.2010

    Article  CAS  Google Scholar 

  62. Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR et al (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathol 49(1):22–34. doi:HIS2453/10.1111/j.1365-2559.2006.02453.x

    Article  CAS  Google Scholar 

  63. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT et al (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19(2):264–271. doi: 3800528 [pii] 10.1038/modpathol.3800528

    Google Scholar 

  64. Banerjee S, Reis-Filho JS, Ashley S, Steele D, Ashworth A, Lakhani SR et al (2006) Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol 59(7):729–735. doi:10.1136/2005.033043

    Article  PubMed  CAS  Google Scholar 

  65. Bergamaschi A, Kim YH, Wang P, Sorlie T, Hernandez-Boussard T, Lonning PE et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45(11):1033–1040. doi:10.1002/20366

    Article  PubMed  CAS  Google Scholar 

  66. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. doi:10.1016/2006.10.009

    Article  PubMed  CAS  Google Scholar 

  67. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. doi:10.1038/10933

    Google Scholar 

  68. Fulford LG, Reis-Filho JS, Ryder K, Jones C, Gillett CE, Hanby A et al (2007) Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res 9(1):R4. doi:10.1186/1636

    Article  PubMed  CAS  Google Scholar 

  69. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO (2012) CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res 14(2):R48. doi:10.1186/3148

    Article  PubMed  CAS  Google Scholar 

  70. Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L et al (2011) A clinically relevant gene sigNat in triple negative and basal-like breast cancer. Breast Cancer Res 13(5):R97. doi:10.1186/3035

    Article  PubMed  Google Scholar 

  71. Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F et al (2011) A refined molecular taxonomy of breast cancer. Oncogene. doi:10.1038/2011.301

    Google Scholar 

  72. Peppercorn J, Perou CM, Carey LA (2008) Molecular subtypes in breast cancer evaluation and management: divide and conquer. Cancer Invest 26(1):1–10. doi:789315352/10.1080/07357900701784238

    Article  PubMed  CAS  Google Scholar 

  73. Weigelt B, Geyer FC, Reis-Filho JS (2010) Histological types of breast cancer: how special are they? Mol Oncol 4(3):192–208. doi:10.1016/2010.04.004

    Article  PubMed  CAS  Google Scholar 

  74. Rakha EA, Aleskandarany M, El-Sayed ME, Blamey RW, Elston CW, Ellis IO et al (2009) The prognostic significance of inflammation and medullary histological type in invasive carcinoma of the breast. Eur J Cancer 45(10):1780–1787. doi:10.1016/2009.02.014

    Article  PubMed  CAS  Google Scholar 

  75. Weigelt B, Kreike B, Reis-Filho JS (2009) Metaplastic breast carcinomas are basal-like breast cancers: A genomic profiling analysis. Breast Cancer Res Treat 117(2):273–280. doi:10.1007/s10549-008-0197-9

    Article  PubMed  CAS  Google Scholar 

  76. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature. doi:10.1038/10983

    Google Scholar 

  77. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D et al (2005) Identification of molecular apocrine breast tumors by microarray analysis. Oncogene 24(29):4660–4671. doi:10.1038/1208561

    Article  PubMed  CAS  Google Scholar 

  78. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69(10):4116–4124. doi:0008-5472.CAN-08-344110.1158/0008-5472

    Article  PubMed  CAS  Google Scholar 

  79. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76. doi:10.1186

    Article  PubMed  CAS  Google Scholar 

  80. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68. doi:10.1186/2635

    Article  PubMed  CAS  Google Scholar 

  81. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C et al (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25(28):3994–4008. doi:10.1038/1209415

    Article  PubMed  CAS  Google Scholar 

  82. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):13820–13825. doi:10.1073/0905718106

    Article  PubMed  CAS  Google Scholar 

  83. Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y et al (2011) Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20(1):119–131. doi:10.1016/2011.05.026

    Article  PubMed  CAS  Google Scholar 

  84. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW et al (2002) A gene-expression sigNat as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009 doi:10.1056/021967

    Google Scholar 

  85. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM et al (2006) Validation and clinical utility of a 70-gene prognostic sigNat for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192. doi: 10.109398/17/1183/329

    Google Scholar 

  86. Bueno-de-Mesquita JM, Linn SC, Keijzer R, Wesseling J, Nuyten DS, van Krimpen C et al (2009) Validation of 70-gene prognosis sigNat in node-negative breast cancer. Breast Cancer Res Treat 117(3):483–495. doi:10.1007/s10549-008-0191-2

    Article  PubMed  CAS  Google Scholar 

  87. Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol: Official J Am Soc Clin Oncol 26(5):729–735. doi:10.1200/2007.14.3222

    Article  Google Scholar 

  88. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. doi:10.1056/041588

    Article  PubMed  CAS  Google Scholar 

  89. Paik S (2007) Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncol 12(6):631–635. doi:10.1634/12-6-631

    Article  CAS  Google Scholar 

  90. Goldstein LJ, Gray R, Badve S, Childs BH, Yoshizawa C, Rowley S et al (2008) Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol: Official J Am Soc Clin Oncol 26(25):4063–4071. doi:10.1200/2007.14.4501

    Article  Google Scholar 

  91. EBCTCG (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15 year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717. doi:10.1016/S0140-6736(05)66544-0

    Article  CAS  Google Scholar 

  92. Cummings MC, Chambers R, Simpson PT, Lakhani SR (2011) Molecular classification of breast cancer: is it time to pack up our microscopes? Pathology 43(1):1–8. doi:10.1097/0b013e328341e0b5

    Article  PubMed  Google Scholar 

  93. Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280. doi:10.1002/2648

    PubMed  CAS  Google Scholar 

  94. Weigelt B, Pusztai L, Ashworth A, Reis-Filho JS (2012) Challenges translating breast cancer gene sigNats into the clinic. Nat Rev Clin Oncol 9(1):58–64. doi:10.1038/2011.125

    Article  CAS  Google Scholar 

  95. Pusztai L, Mazouni C, Anderson K, Wu Y, Symmans WF (2006) Molecular classification of breast cancer: limitations and potential. Oncology 11(8):868–877. doi:10.1634/11/8/868

    Article  CAS  Google Scholar 

  96. Weigelt B, Mackay A, A’Hern R, Natrajan R, Tan DS, Dowsett M et al (2010) Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol 11(4):339–349. doi:10.1016/S1470-2045(10)70008-5

    Article  PubMed  CAS  Google Scholar 

  97. Shendure J (2008) The beginning of the end for microarrays? Nat Meth 5(7):585–587. doi:10.1038/0708-585

    Article  CAS  Google Scholar 

  98. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature. doi:10.1038/10983

    Google Scholar 

  99. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. doi:10.1038/2484

    Article  PubMed  CAS  Google Scholar 

  100. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005. doi:10.1038/08989

    Article  PubMed  CAS  Google Scholar 

  101. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A et al (2009) Mutational evolution in a lobular breast tumor profiled at single nucleotide resolution. Nature 461(7265):809–813. doi:10.1038/08489

    Article  PubMed  CAS  Google Scholar 

  102. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature. doi:10.1038/11017

    Google Scholar 

  103. Evans JP, Meslin EM, Marteau TM, Caulfield T (2011) Genomics. Deflating the genomic bubble. Science 331(6019):861–862. doi:10.1126/Sci.1198039

    Article  PubMed  CAS  Google Scholar 

  104. Aparicio SA, Huntsman DG (2010) Does massively parallel DNA resequencing signify the end of histopathology as we know it? J Pathol 220(2):307–315. doi:10.1002/2636

    PubMed  CAS  Google Scholar 

  105. Dennis C (2012) Mouse ‘avatars’ could aid pancreatic cancer therapy. Nat News. doi:10.1038/2012.10259

    Google Scholar 

  106. Clarke CL, Sandle J, Jones AA, Sofronis A, Patani NR, Lakhani SR (2006) Mapping loss of heterozygosity in normal human breast cells from BRCA1/2 carriers. Br J Cancer 95(4):515–519. doi:10.1038/sj.bjc.6603298

    Article  PubMed  CAS  Google Scholar 

  107. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117. doi:10.1038/09515

    Article  PubMed  CAS  Google Scholar 

  108. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. doi:10.1056/1113205

    Article  PubMed  CAS  Google Scholar 

  109. Smallwood JA, Morgan GR, Cooper A, Kirkham N, Williams CJ, Whitehouse JM et al (1984) Correlations between clonogenicity and prognostic factors in human breast cancer. Br J Surg 71(2):109–111

    Article  PubMed  CAS  Google Scholar 

  110. Moezzi J, Ali-Osman F, Nicholson GL, Ungerleider JS, Murphy MJ Jr (1986) Relationship between histopathology and in vitro clonogenicity in breast cancer. Breast Cancer Res Treat 8(2):147–156

    Article  PubMed  CAS  Google Scholar 

  111. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L et al (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 10(3):R52. doi:10.1186/2106

    Article  PubMed  CAS  Google Scholar 

  112. Nio Y, Tamura K, Kan N, Inamoto T, Ohgaki K, Kodama H (2000) Anticancer chemosensitivity profiles of human breast cancer cells assessed by in vitro DNA synthesis inhibition assay. Anticancer Res 20(2B):1237–1244

    Google Scholar 

  113. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313. doi:10.1038/10762

    Article  PubMed  CAS  Google Scholar 

  114. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  PubMed  CAS  Google Scholar 

  115. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumor evolution inferred by single-cell sequencing. Nature 472(7341):90–94. doi:10.1038/09807

    Article  PubMed  CAS  Google Scholar 

  116. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40. doi:10.1016/j.cell.2010.11.055

    Article  PubMed  CAS  Google Scholar 

  117. Marusyk A, Almendro V, Polyak K (2012) Intratumor heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334. doi:10.1038/3261

    Article  PubMed  CAS  Google Scholar 

  118. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1:105–117. doi:10.1016/2009.11.002

    Google Scholar 

  119. Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  120. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469(7330):356–361. doi:10.1038/09650

    Article  PubMed  CAS  Google Scholar 

  121. Ruiz C, Lenkiewicz E, Evers L, Holley T, Robeson A, Kiefer J et al (2011) Advancing a clinically relevant perspective of the clonal Nat of cancer. Proc Natl Acad Sci U S A 108(29):12054–12059. doi:10.1073/pnas.1104009108

    Article  PubMed  CAS  Google Scholar 

  122. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW et al (2009) Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 69(16):6660–6667. doi:10.1158/0008-5472

    Article  PubMed  CAS  Google Scholar 

  123. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113. doi:10.1126/1145720

    Article  PubMed  CAS  Google Scholar 

  124. Torkamani A, Schork NJ (2008) Prediction of cancer driver mutations in protein kinases. Cancer Res 68(6):1675–1682. doi:10.1158/0008-5472

    Article  PubMed  CAS  Google Scholar 

  125. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 108(19):7950–7955. doi:10.1073/1102454108

    Article  PubMed  CAS  Google Scholar 

  126. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913. doi:10.1038/2000

    Article  PubMed  CAS  Google Scholar 

  127. Visvader JE (2011) Cells of origin in cancer. Nature 469(7330):314–322. doi:10.1038/09781

    Article  PubMed  CAS  Google Scholar 

  128. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319. doi:10.1038/2304

    Article  PubMed  CAS  Google Scholar 

  129. Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7(3):403–417. doi:10.1016/2010.07.010

    Article  PubMed  CAS  Google Scholar 

  130. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324(5935):1670–1673. doi:10.1126/1171837

    Article  PubMed  CAS  Google Scholar 

  131. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467(7312):167–173. doi:10.1038/09326

    Article  PubMed  CAS  Google Scholar 

  132. Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121(10):3804–3809. doi:10.1172/57099

    Article  PubMed  CAS  Google Scholar 

  133. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi:10.1038/1764

    Article  PubMed  CAS  Google Scholar 

  134. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32. doi:10.1016/2004.06.010

    Article  PubMed  CAS  Google Scholar 

  135. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1):R7. doi:10.1186/2222

  136. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH et al (2011) Tumor-infiltrating CD8 + lymphocytes predict clinical outcome in breast cancer. J Clin Oncol: Official J Am Soc Clin Oncol 29(15):1949–1955. doi:10.1200/2010.30.5037

    Article  Google Scholar 

  137. Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, Chauffert B et al (2008) Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3 + regulatory T cells. Clinical Cancer Res: An Official J Am Assoc Cancer Res 14(8):2413–2420. doi:10.1158/1078-0432

    Article  CAS  Google Scholar 

  138. Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J et al (2011) Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res. doi:10.1007/s11095-011-0601-8

    PubMed  Google Scholar 

  139. Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ et al (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15(4):1452–1459. doi:10.1158/1078-0432.CCR-08-1080

    Article  PubMed  CAS  Google Scholar 

  140. Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, van’t Veer LJ (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100(26):15901–15905. doi:10.1073/26340671002634067100

    Article  PubMed  CAS  Google Scholar 

  141. Klein CA (2009) Parallel progression of primary tumors and metastases. Nat Rev Cancer 9(4):302–312. doi:10.1038/2627

    Article  PubMed  CAS  Google Scholar 

  142. Da Silva L, Simpson PT, Smart CE, Cocciardi S, Waddell N, Lane A et al (2010) HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer. Breast Cancer Res 12(4):R46. doi:10.1186/2603

    Article  PubMed  CAS  Google Scholar 

  143. Wu JM, Fackler MJ, Halushka MK, Molavi DW, Taylor ME, Teo WW et al (2008) Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res: An Official J Am Assoc Cancer Res 14(7):1938–1946. doi:10.1158/1078-0432.CCR-07-4082

    Article  CAS  Google Scholar 

  144. Arslan C, Sari E, Aksoy S, Altundag K (2011) Variation in hormone receptor and HER-2 status between primary and metastatic breast cancer: review of the literature. Expert Opin Ther Targets 15(1):21–30. doi:10.1517/14656566.2011.537260

    Article  PubMed  CAS  Google Scholar 

  145. St Romain P, Madan R, Tawfik OW, Damjanov I, Fan F (2012) Organotropism and prognostic marker discordance in distant metastases of breast carcinoma: fact or fiction? A clinicopathologic analysis. Hum Pathol 43(3):398–404. doi:10.1016/2011.05.009

    Article  PubMed  CAS  Google Scholar 

  146. Houssami N, Macaskill P, Balleine RL, Bilous M, Pegram MD (2011) HER2 discordance between primary breast cancer and its paired metastasis: tumor biology or test artefact? Insights through meta-analysis. Breast Cancer Res Treat 129(3):659–674. doi:10.1007/s105490111632

    Article  PubMed  CAS  Google Scholar 

  147. Wu JM, Halushka MK, Argani P (2010) Intratumoral heterogeneity of HER-2 gene amplification and protein overexpression in breast cancer. Hum Pathol 41(6):914–917. doi:10.1016/2009.10.022

    Article  PubMed  CAS  Google Scholar 

  148. Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C et al (2012) Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol: Official J Am Soc Clin Oncol 30(6):587–592. doi:10.1200/2010.33.5232

    Article  Google Scholar 

  149. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382):506–510. doi:10.1038/10738

    Article  PubMed  CAS  Google Scholar 

  150. Gerlinger M, Swanton C (2010) How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 103(8):1139–1143. doi:10.1038/sj.bjc.6605912

    Article  PubMed  CAS  Google Scholar 

  151. Turner NC, Reis-Filho JS (2012) Genetic heterogeneity and cancer drug resistance. Lancet Oncol 13(4):e178–e185. doi:10.1016/s1470-2045(11)70335-7

    Article  PubMed  Google Scholar 

  152. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C (2012) Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med 4(127):127ps110. doi:10.1126/3003854

  153. MammaPrint by Agendia. http://www.agendia.com/pages/mammaprint/21.php. Accessed May 2012

  154. Oncotype DX breast cancer assay. http://www.oncotypedx.com/. Accessed May 2012

  155. Von Hoff DD, Stephenson JJ Jr, Rosen P, Loesch DM, Borad MJ, Anthony S et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clinical Oncol: Official J Am Soc Clin Oncol 28(33):4877–4883. doi:10.1200/2009.26.5983

    Article  CAS  Google Scholar 

  156. Caris Target Now Molecular Profiling by Caris Life Scis. http://www.carislifeScis.com/oncology-target-now. Accessed May 2012

  157. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol: Official J Am Soc Clin Oncol 25(10):1239–1246. doi:10.1200/JCO.2006.07.1522

    Article  CAS  Google Scholar 

  158. Toussaint J, Sieuwerts AM, Haibe-Kains B, Desmedt C, Rouas G, Harris AL et al (2009) Improvement of the clinical applicability of the genomic grade index through a qRT-PCR test performed on frozen and formalin-fixed paraffin-embedded tissues. BMC Genomics 10:424. doi:10.1186/1471216410424

    Article  PubMed  CAS  Google Scholar 

  159. MapQuant Dx by Ipsogen. http://www.ipsogen.com. Accessed May 2012

  160. Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clinical Cancer Res: An Official J Am Assoc Cancer Res 14(9):2601–2608. doi:10.1158/1078-0432

    Article  CAS  Google Scholar 

  161. Breast Cancer Index by bioTheranostics. http://www.biotheranostics.com. Accessed May 2012

Download references

Acknowledgments

The authors are grateful to Ms Rebecca Johnston and Dr Ana Cristina Vargas for critical review and assistance with preparation of this manuscript. We would also like to acknowledge our funding agencies: The Australian National Health and Medical Research Council, The Qld Cancer Council, Pathology Queensland, The Queensland Health Pathology and Scientific Services Study, Education and Research Trust Fund (SERTF), The Royal Brisbane and Women’s Hospital and The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jodi M. Saunus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saunus, J.M., McCart-Reed, A., Momeny, M., Cummings, M., Lakhani, S.R. (2013). Breast Cancer Heterogeneity in Primary and Metastatic Disease. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_5

Download citation

Publish with us

Policies and ethics