Skip to main content

EphA2 Immunoconjugate

  • Chapter
  • First Online:
Antibody-Drug Conjugates and Immunotoxins

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Antibody–drug conjugates (ADCs) have the potential to increase the therapeutic index of small molecules by minimizing systemic toxicity and improving tumor targeting. The discovery of new cell surface cancer targets is an important component for the development of new cancer therapies utilizing the ADC approach. The cell surface receptor EphA2 provides just such a new targeted therapeutic opportunity in multiple cancers, notably ovarian, breast, cervical, renal, and prostate, among others. Antibodies that bind to EphA2 on tumor cells can induce rapid internalization and degradation of the protein and antibody complex. The development of MEDI-547, an anti-EphA2 ADC that is composed of a fully human IgG1 monoclonal antibody (known as 1C1) conjugated to monomethyl auristatin phenylalanine through a maleimidocaproyl linker, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486

    Article  PubMed  CAS  Google Scholar 

  2. Murai KK, Pasquale EB (2003) ‘Eph’ective signaling: forward, reverse and crosstalk. J Cell Sci 116:2823–2832

    Article  PubMed  CAS  Google Scholar 

  3. Beckmann MP, Cerretti DP, Baum P et al (1994) Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. EMBO J 13:3757–3762

    PubMed  CAS  Google Scholar 

  4. Davis S, Gale NW, Aldrich TH et al (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819

    Article  PubMed  CAS  Google Scholar 

  5. Egea J, Nissen UV, Dufour A et al (2005) Regulation of EphA4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47:515–528

    Article  PubMed  CAS  Google Scholar 

  6. Vearing CJ, Lackmann M (2005) Eph receptor signalling: dimerisation just isn’t enough. Growth Factors 23:67–76

    Article  PubMed  CAS  Google Scholar 

  7. Himanen JP, Chumley MJ, Lackmann M et al (2004) Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7:501–509

    Article  PubMed  CAS  Google Scholar 

  8. Gale NW, Yancopoulos GD (1997) Ephrins and their receptors: a repulsive topic? Cell Tissue Res 290:227–241

    Article  PubMed  CAS  Google Scholar 

  9. Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21:309–345

    Article  PubMed  CAS  Google Scholar 

  10. Hafner C, Schmitz G, Meyer S et al (2004) Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50:490–499

    Article  PubMed  CAS  Google Scholar 

  11. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52

    Article  PubMed  CAS  Google Scholar 

  12. Zisch AH, Pasquale EB (1997) The Eph family: a multitude of receptors that mediate cell recognition signals. Cell Tissue Res 290:217–226

    Article  PubMed  CAS  Google Scholar 

  13. Huusko P, Ponciano-Jackson D, Wolf M et al (2004) Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet 36:979–983

    Article  PubMed  CAS  Google Scholar 

  14. Kittles RA, Baffoe-Bonnie AB, Moses TY et al (2006) A common nonsense mutation in EphB2 is associated with prostate cancer risk in African American men with a positive family history. J Med Genet 43:507–511

    Article  PubMed  CAS  Google Scholar 

  15. Alazzouzi H, Davalos V, Kokko A et al (2005) Mechanisms of inactivation of the receptor tyrosine kinase EPHB2 in colorectal tumors. Cancer Res 65:10170–10173

    Article  PubMed  CAS  Google Scholar 

  16. Guo DL, Zhang J, Yuen ST et al (2006) Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis 27:454–464

    Article  PubMed  CAS  Google Scholar 

  17. Guo H, Miao H, Gerber L, Singh J, Denning MF, Gilliam AC, Wang B (2006) Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 66(14):7050–7058

    Article  PubMed  CAS  Google Scholar 

  18. Elowe S, Holland SJ, Kulkarni S, Pawson T (2001) Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol Cell Biol 21(21):7429–7441

    Article  PubMed  CAS  Google Scholar 

  19. Zou JX, Wang B, Kalo MS, Zisch AH, Pasquale EB, Ruoslahti E (1999) An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci USA 96:13813–13818

    Article  PubMed  CAS  Google Scholar 

  20. Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME (2005) EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol 167:565–576

    Article  PubMed  CAS  Google Scholar 

  21. Kumar SR, Masood R, Spannuth WA et al (2007) The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer, provides survival signals and predicts poor outcome. Br J Cancer 96:1083–1091

    Article  PubMed  CAS  Google Scholar 

  22. Kumar SR, Scehnet JS, Ley EJ, Singh J et al (2009) Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res 69(9):3736–3745

    Article  PubMed  CAS  Google Scholar 

  23. Noren NK, Foos G, Hauser CA, Pasquale EB (2006) The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 8:815–825

    Article  PubMed  CAS  Google Scholar 

  24. Lindberg RA, Hunter T (1990) cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 10:6316–6324

    PubMed  CAS  Google Scholar 

  25. Ruiz JC, Robertson EJ (1994) The expression of the receptor-protein tyrosine kinase gene, eck, is highly restricted during early mouse development. Mech Dev 46:87–100

    Article  PubMed  CAS  Google Scholar 

  26. Chen J, Nachabah A, Scherer C et al (1996) Germ-line inactivation of the murine Eck receptor tyrosine kinase by gene trap retroviral insertion. Oncogene 12:979–988

    PubMed  CAS  Google Scholar 

  27. Ireton RC, Chen J (2005) EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics. Curr Cancer Drug Targets 5(3):149–157

    Article  PubMed  CAS  Google Scholar 

  28. Wykosky J, Debinski W (2008) The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 6(12):1795–1806

    Article  PubMed  CAS  Google Scholar 

  29. Zeng G, Hu Z, Kinch MS et al (2003) High-level expression of EphA2 receptor tyrosine kinase in prostatic intraepithelial neoplasia. Am J Pathol 163:2271–2276

    Article  PubMed  CAS  Google Scholar 

  30. Thaker PH, Deavers M, Celestino J et al (2004) EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 10:5145–5150

    Article  PubMed  CAS  Google Scholar 

  31. Mudali SV, Fu B, Lakkur SS, Luo M, Embuscado EE, Iacobuzio-Donahue CA (2006) Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clin Exp Metastasis 23:357–365

    Article  PubMed  CAS  Google Scholar 

  32. Wykosky J, Gibo DM, Stanton C, Debinski W (2005) EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 3:541–551

    Article  PubMed  CAS  Google Scholar 

  33. Walker-Daniels J, Coffman K, Azimi M et al (1999) Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 41:275–280

    Article  PubMed  CAS  Google Scholar 

  34. Fox BP, Kandpal RP (2004) Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem Biophys Res Commun 318:882–892

    Article  PubMed  CAS  Google Scholar 

  35. Kinch MS, Moore MB, Harpole DH (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 9:613–618

    PubMed  CAS  Google Scholar 

  36. Miyazaki T, Kato H, Fukuchi M, Nakajima M, Kuwano H (2003) EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer 103:657–663

    Article  PubMed  CAS  Google Scholar 

  37. Han L, Dong Z, Qiao Y (2005) The clinical significance of EphA2 and Ephrin A-1 in epithelial ovarian carcinomas. Gynecol Oncol 99:278–286

    Article  PubMed  CAS  Google Scholar 

  38. Hess AR, Seftor EA, Gardner LM et al (2001) Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res 61:3250–3255

    PubMed  CAS  Google Scholar 

  39. Wang LF, Fokas E, Bieker M et al (2008) Increased expression of EphA2 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. Oncol Rep 19:151–156

    PubMed  Google Scholar 

  40. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS (2001) EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61:2301–2316

    PubMed  CAS  Google Scholar 

  41. Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J (2005) A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 24:7859

    Article  PubMed  CAS  Google Scholar 

  42. Huang F, Reeves K, Han X (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 67:2226–2238

    Article  PubMed  CAS  Google Scholar 

  43. Mitra S, Duggineni S, Koolpe M, Zhu X, Huang Z, Pasquale EB (2010) Structure-activity relationship analysis of peptides targeting the EphA2 receptor. Biochemistry 49(31):6687–6695

    Article  PubMed  CAS  Google Scholar 

  44. Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS (2002) Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 62(10):2840–2847

    PubMed  CAS  Google Scholar 

  45. Zhuang G, Brantley-Sieders DM, Vaught D, Yu J, Xie L, Wells S et al (2010) Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res 70(1):299–308

    Article  PubMed  CAS  Google Scholar 

  46. Kiewlich D, Zhang J, Gross C et al (2006) Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth. Neoplasia 8:18–30

    Article  PubMed  CAS  Google Scholar 

  47. Hammond SA, Lutterbuese R, Roff S et al (2007) Selective targeting and potent control of tumor growth using an EphA2/CD3-Bispecific single-chain antibody construct. Cancer Res 67(8):3927–35

    Article  PubMed  CAS  Google Scholar 

  48. Zhuang G, Hunter S, Hwang Y, Chen J (2007) Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. J Biol Chem 282(4):2683–2694

    Article  PubMed  CAS  Google Scholar 

  49. Jackson D, Gooya J, Mao S, Kinneer K, Xu L, Camara M et al (2008) A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res 68(22):9367–9374

    Article  PubMed  CAS  Google Scholar 

  50. Wykosky J, Palma E, Gibo DM, Ringler S, Turner CP, Debinski W (2008) Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 27(58):7260–75273

    Article  PubMed  CAS  Google Scholar 

  51. Lee JW, Han HD, Shahzad MM, Kim SW, Mangala LS, Nick AM et al (2009) EphA2 immunoconjugate as molecularly targeted chemotherapy for ovarian carcinoma. J Natl Cancer Inst 101(17):1193–1205

    Article  PubMed  CAS  Google Scholar 

  52. Lee JW, Stone RL, Lee SJ, Nam EJ, Roh JW, Nick AM et al (2010) EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clin Cancer Res 16(9):2562–2570

    Article  PubMed  CAS  Google Scholar 

  53. Coffman KT, Hu M, Carles-Kinch K et al (2003) Differential EphA2 epitope display on normal versus malignant cells. Cancer Res 63:7907–7912

    PubMed  CAS  Google Scholar 

  54. Dall’Acqua WF, Damschroder MM, Zhang J et al (2005) Antibody humanization by framework shuffling. Methods 36(1):43–60

    Article  PubMed  CAS  Google Scholar 

  55. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21(7):778–84

    Article  PubMed  CAS  Google Scholar 

  56. Mirsalis JC, Schindler-Horvat J, Hill JR, Tomaszewski JE, Donohue SJ, Tyson CA (1999) Toxicity of dolastatin 10 in mice, rats and dogs and its clinical relevance. Cancer Chemother Pharmacol 44(5):395–402

    Article  PubMed  CAS  Google Scholar 

  57. Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL et al (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem 17(1):114–124

    Article  PubMed  CAS  Google Scholar 

  58. Mansouri A, Henle KJ, Nagle WA (1992) Multidrug resistance: prospects for clinical management. SAAS Bull Biochem Biotechnol 5:48–52

    PubMed  CAS  Google Scholar 

  59. Patwardhan G, Gupta V, Huang J, Gu X, Liu YY et al (2010) Direct assessment of P-glycoprotein efflux to determine tumor response to chemotherapy. Biochem Pharmacol 80(1):72–79

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Tice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xiao, Z., Jackson, D., Tice, D.A. (2013). EphA2 Immunoconjugate. In: Phillips, G. (eds) Antibody-Drug Conjugates and Immunotoxins. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5456-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5456-4_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5455-7

  • Online ISBN: 978-1-4614-5456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics