Skip to main content

Rotating BECs

  • Chapter
  • First Online:
  • 1757 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 70))

Abstract

In this chapter we deal with the important vorticity problem in a condensate. We first explain how quantum vortices can occur in a superfluid, and what is their expected structure. These vortices can spontaneously form in a rotating condensate, and they have tendency to nucleated and to form regular arrays, taking typically triangular lattice shapes. These vortex lattices can oscillate, as first discussed by Tkatchenko.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292, 476 (2001)

    Article  ADS  Google Scholar 

  2. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  3. C.D. Andereck, J. Chalups, W.I. Glaberson, Phys. Rev. Lett. 44, 33 (1980)

    Article  ADS  Google Scholar 

  4. M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, W.D. Philips, Phys. Rev. Lett. 97, 170406 (2006)

    Article  ADS  Google Scholar 

  5. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Butterworth-Heinemann, Oxford, 1982)

    Google Scholar 

  6. I. Bloch, J. Dalibard, W. Zweger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  7. V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 80, 885 (1998)

    Article  Google Scholar 

  8. F.K. Browand, P.D. Wiedman, J. Fluid Mech. 76, 127, (1976)

    Article  ADS  Google Scholar 

  9. C. Byam, Phys. Rev. Lett. 91, 110402 (2003)

    Article  ADS  Google Scholar 

  10. J.G. Charney, A. Elliassen, Tellus 1, 38 (1949)

    Article  MathSciNet  Google Scholar 

  11. I. Coddington, P. Engels, V. Schweikhard, E.A. Cornell, Phys. Rev. Lett. 91, 100402 (2003)

    Article  ADS  Google Scholar 

  12. M. Cozzini, S. Stringari, Phys. Rev. A 67, 041602(R) (2003)

    Google Scholar 

  13. M. Cozzini, A.L. Fetter, B. Jackson, S. Stringari, Phys. Rev. Lett. 94, 100402 (2005)

    Article  ADS  Google Scholar 

  14. A. Fetter, Rotating trapped Bose-Einstein Condensates. Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  15. R.P. Feynman, in Progress in Low Temperature Physics 1, ed. by C. J. Gorter (North-Holland, Amsterdam, 1955). Chap. 2

    Google Scholar 

  16. A. Hasegawa, K. Mima, Phys. Fluids 21, 87 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Hamilton Printing Company, Castleton, New York 1999)

    MATH  Google Scholar 

  18. N.A. Jamaludin, N.G. Parker, A.M. Martin, Phys. Rev. A 77, 051603(R) (2008)

    Google Scholar 

  19. S. Kling, A. Pelster, Phys. Cold Trapp. Atoms 19, 1072 (2009)

    Google Scholar 

  20. M. Kobayashi, M. Tsubota, J. Low Temp. Phys. 150, 587 (2007)

    Article  ADS  Google Scholar 

  21. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  22. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  23. J.T. Mendonça, B. Thidé, H. Then, Phys. Rev. Lett. 102, 185005 (2009)

    Article  ADS  Google Scholar 

  24. L. Onsager, Nuovo Cimento 6(Suppl. 2), 249 (1949)

    MathSciNet  Google Scholar 

  25. J. Pedlosky, Geophysical Fluid Dynamics, 2nd edn. (Springer, New York, 1986)

    Google Scholar 

  26. C.-G. Rossby et al., J. Mar. Res. 1, 38 (1939)

    Google Scholar 

  27. C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Philips, Phys. Rev. Lett. 99, 260401 (2007)

    Article  ADS  Google Scholar 

  28. S. Sinha, Y. Castin, Phys. Rev. Lett. 87, 190402 (2001)

    Article  ADS  Google Scholar 

  29. J.T. Stuart, J. Fluid Mech. 29, 417 (1967)

    Article  ADS  MATH  Google Scholar 

  30. V.K. Tkachenko, Sov. Phys. JETP 22, 1282 (1966)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mendonça, J.T., Terças, H. (2013). Rotating BECs. In: Physics of Ultra-Cold Matter. Springer Series on Atomic, Optical, and Plasma Physics, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5413-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5413-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5412-0

  • Online ISBN: 978-1-4614-5413-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics