Skip to main content

The Effect of Novel Anti-myeloma Agents on Bone Metabolism

  • Chapter
  • First Online:
Advances in Biology and Therapy of Multiple Myeloma
  • 569 Accesses

Abstract

Several novel anti-myeloma agents are used in the management of patients with both newly diagnosed and relapsed/refractory multiple myeloma. Except of their direct anti-myeloma effect, these agents also alter the interactions between myeloma cells and marrow microenvironment. These alterations include potential effects on bone metabolism. Preclinical studies have demonstrated that immunomodulatory drugs (IMiDs) reduce osteoclast formation and function in vitro. Clinical studies have confirmed that thalidomide reduces markers of bone resorption, while lenalidomide induces osteoclast arrest in myeloma patients. However, IMiDs seem to have very minor effects on osteoblast exhaustion present in myeloma. The proteasome inhibitor bortezomib restores abnormal bone remodeling through the inhibition of osteoclast function and the increase in osteoblast differentiation and activity in vitro. In myeloma patients, bortezomib reduces biochemical markers of bone resorption and normalizes the RANKL/osteoprotegerin ratio while at the same time increases bone formation markers reducing levels of dickkopf-1 protein. Bortezomib leads to increased bone density and bone volume in a subset of myeloma patients. This chapter summarizes all available data for the effect of novel anti-myeloma agents on bone metabolism that may alter the way of management of myeloma-related bone disease in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kyle RA, Gertz MA, Witzig TE et al (2003) Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 78:21–33

    Article  PubMed  Google Scholar 

  2. Kim HJ, Zhao H, Kitaura H et al (2007) Glucocorticoids and the osteoclast. Ann N Y Acad Sci 1116:335–339

    Article  PubMed  CAS  Google Scholar 

  3. Giuliani N, Rizzoli V, Roodman GD (2006) Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 108:3992–3996

    Article  PubMed  CAS  Google Scholar 

  4. Sezer O (2009) Myeloma bone disease: recent advances in biology, diagnosis, and treatment. Oncologist 14:276–283

    Article  PubMed  CAS  Google Scholar 

  5. Terpos E, Dimopoulos MA (2005) Myeloma bone disease: pathophysiology and management. Ann Oncol 16:1223–1231

    Article  PubMed  CAS  Google Scholar 

  6. Dimopoulos M, Terpos E, Comenzo RL et al (2009) International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia 23:1545–1556

    Article  PubMed  CAS  Google Scholar 

  7. Terpos E, Dimopoulos MA, Sezer O et al (2010) The use of biochemical markers of bone remodeling in multiple myeloma: a report of the International Myeloma Working Group. Leukemia 24:1700–17123

    Google Scholar 

  8. Barlogie B (2003) Thalidomide and CC-5013 in multiple myeloma: the University of Arkansas experience. Semin Hematol 40(4 Suppl 4):33–38

    Article  PubMed  CAS  Google Scholar 

  9. Dimopoulos MA, Chen C, Spencer A et al (2009) Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia 23:2147–2152

    Article  PubMed  CAS  Google Scholar 

  10. Mateos MV, Richardson PG, Schlag R et al (2010) Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clin Oncol 28:2259–2266

    Article  PubMed  CAS  Google Scholar 

  11. Terpos E, Szydlo R, Apperley JF et al (2003) Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102:1064–1069

    Article  PubMed  CAS  Google Scholar 

  12. Hsu H, Lacey DL, Dunstan CR et al (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545

    Article  PubMed  CAS  Google Scholar 

  13. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  14. Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  15. Han JH, Choi SJ, Kurihara N et al (2001) Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97:3349–3353

    Article  PubMed  CAS  Google Scholar 

  16. Hashimoto T, Abe M, Oshima T et al (2004) Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1alpha and MIP-1beta correlates with lytic bone lesions in patients with multiple myeloma. Br J Haematol 125:38–41

    Article  PubMed  CAS  Google Scholar 

  17. Magrangeas F, Nasser V, vet-Loiseau H et al (2003) Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease. Blood 101:4998–5006

    Article  PubMed  CAS  Google Scholar 

  18. Terpos E, Politou M, Szydlo R et al (2003) Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br J Haematol 123:106–109

    Article  PubMed  CAS  Google Scholar 

  19. Abe M, Hiura K, Wilde J et al (2004) Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104:2484–2491

    Article  PubMed  CAS  Google Scholar 

  20. Roodman GD (2009) Pathogenesis of myeloma bone disease. Leukemia 23:435–441

    Article  PubMed  CAS  Google Scholar 

  21. Giuliani N, Colla S, Morandi F et al (2005) Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 106:2472–2483

    Article  PubMed  CAS  Google Scholar 

  22. Qiang YW, Barlogie B, Rudikoff S et al (2008) Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 42:669–680

    Article  PubMed  CAS  Google Scholar 

  23. Tian E, Zhan F, Walker R et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494

    Article  PubMed  CAS  Google Scholar 

  24. Durie BG, Van NB, Ramos C et al (2009) Genetic polymorphisms of EPHX1, Gsk3beta, TNFSF8 and myeloma cell DKK-1 expression linked to bone disease in myeloma. Leukemia 23:1913–1919

    Article  PubMed  CAS  Google Scholar 

  25. Haaber J, Abildgaard N, Knudsen LM et al (2008) Myeloma cell expression of 10 candidate genes for osteolytic bone disease. Only overexpression of DKK1 correlates with clinical bone involvement at diagnosis. Br J Haematol 140:25–35

    PubMed  CAS  Google Scholar 

  26. Qiang YW, Chen Y, Stephens O et al (2008) Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 112:196–207

    Article  PubMed  CAS  Google Scholar 

  27. Qiang YW, Chen Y, Brown N et al (2010) Characterization of Wnt/beta-catenin signalling in osteoclasts in multiple myeloma. Br J Haematol 148:726–738

    Article  PubMed  CAS  Google Scholar 

  28. Heath DJ, Chantry AD, Buckle CH et al (2009) Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res 24:425–436

    Article  PubMed  CAS  Google Scholar 

  29. Terpos E, Christoulas D, Katodritou E et al (2012) Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. Int J Cancer 131:1466–1471

    Google Scholar 

  30. Terpos E, Sezer O, Croucher PI et al (2009) The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network. Ann Oncol 20:1303–1317

    Article  PubMed  CAS  Google Scholar 

  31. Henry A, von Moos R, Vadhan-Raj S et al (2009) A double-blind, randomized study of denosumab versus zoledronic acid for the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. Eur J Cancer (Suppl 7):11 (abstract 20LBA)

    Google Scholar 

  32. Kumar S, Rajkumar SV (2006) Thalidomide and lenalidomide in the treatment of multiple myeloma. Eur J Cancer 42:1612–1622

    Article  PubMed  CAS  Google Scholar 

  33. Schey SA, Fields P, Bartlett JB et al (2004) Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol 22:3269–3276

    Article  PubMed  CAS  Google Scholar 

  34. Anderson G, Gries M, Kurihara N et al (2006) Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood 107:3098–3105

    Article  PubMed  CAS  Google Scholar 

  35. Breitkreutz I, Raab MS, Vallet S et al (2008) Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 22:1925–1932

    Article  PubMed  CAS  Google Scholar 

  36. Munemasa S, Sakai A, Kuroda Y et al (2008) Osteoprogenitor differentiation is not affected by immunomodulatory thalidomide analogs but is promoted by low bortezomib concentration, while both agents suppress osteoclast differentiation. Int J Oncol 33:129–136

    PubMed  CAS  Google Scholar 

  37. Tosi P, Zamagni E, Cellini C et al (2006) First-line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma. Eur J Haematol 76:399–404

    Article  PubMed  CAS  Google Scholar 

  38. Terpos E, Mihou D, Szydlo R et al (2005) The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia 19:1969–1976

    Article  PubMed  CAS  Google Scholar 

  39. Zangari M, Esseltine D, Lee CK et al (2005) Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 131:71–73

    Article  PubMed  CAS  Google Scholar 

  40. Heider U, Kaiser M, Muller C et al (2006) Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 77:233–238

    Article  PubMed  CAS  Google Scholar 

  41. Terpos E, Heath DJ, Rahemtulla A et al (2006) Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand co ncentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 135:688–692

    Article  PubMed  CAS  Google Scholar 

  42. Giuliani N, Morandi F, Tagliaferri S et al (2007) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110:334–338

    Article  PubMed  CAS  Google Scholar 

  43. Ozaki S, Tanaka O, Fujii S et al (2007) Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive patients with multiple myeloma. Int J Hematol 86:180–185

    Article  PubMed  CAS  Google Scholar 

  44. Terpos E, Kastritis E, Roussou M et al (2008) The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia 22:2247–2256

    Article  PubMed  CAS  Google Scholar 

  45. Terpos E, Kastritis E, Christoulas D et al (2008) The administration of bortezomib, dexamethasone and thalidomide (VTD) after ASCT in myeloma patients who do not receive bisphosphonates normalizes sRANKL, Dickkopf-1 and improves abnormal osteoclast function and impaired angiogenesis. Blood 112:609 (abstract 1728)

    Article  Google Scholar 

  46. Zangari M, Pappas L, Zhan F et al (2008) Parathyroid hormones (PTH) serum variations are associated with bortezomib response in multiple myeloma patients. Blood 112:961 (abstract 2783)

    Google Scholar 

  47. Delforge M, Kropff M, Spicka I et al (2009) VMP results in fewer bone events and greater ALP increases versus MP in the VISTA study in front-line MM. Clin Lymphoma Myeloma 9:43 (abstract A246)

    Article  Google Scholar 

  48. Lund T, Soe K, Abildgaard N et al (2010) First line treatment with bortezomib rapidly stimulates both osteoblast activity and bone matrix deposition in patients with multiple myeloma, and stimulates osteoblast proliferation and differentiation in vitro. Eur J Haematol 85:290–299

    Article  PubMed  CAS  Google Scholar 

  49. Terpos E, Christoulas D, Kokkoris P et al (2010) Increased bone mineral density in a subset of patients with relapsed multiple myeloma who received the combination of bortezomib, dexamethasone and zoledronic acid. Ann Oncol 27:1561–1562

    Article  Google Scholar 

  50. Christoulas D, Dimopoulos M, Katodritou E et al (2010) The combination of lenalidomide and dexamethasone reduces bone resorption in responding patients with relapsed/refractory multiple myeloma but has no effect on bone formation. Haematologica 95(Suppl 2):397 (abstract 0958)

    Google Scholar 

  51. Heider U, Kaiser M, Mieth M et al (2009) Serum concentrations of DKK-1 decrease in patients with multiple myeloma responding to anti-myeloma treatment. Eur J Haematol 82:31–38

    Article  PubMed  CAS  Google Scholar 

  52. De Matteo M, Brunetti AE, Maiorano E et al (2010) Constitutive down-regulation of Osterix in osteoblasts from myeloma patients: in vitro effect of Bortezomib and Lenalidomide. Leuk Res 34:243–249

    Article  PubMed  Google Scholar 

  53. LeBlanc R, Catley LP, Hideshima T et al (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62:4996–5000

    PubMed  CAS  Google Scholar 

  54. Harousseau JL, Attal M, Leleu X et al (2006) Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study. Haematologica 91:1498–1505

    PubMed  CAS  Google Scholar 

  55. Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  PubMed  CAS  Google Scholar 

  56. Pennisi A, Li X, Ling W et al (2009) The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones in vivo. Am J Hematol 84:6–14

    Article  PubMed  CAS  Google Scholar 

  57. von Metzler I, Krebbel H, Hecht M et al (2007) Bortezomib inhibits human osteoclastogenesis. Leukemia 21:2025–2034

    Article  Google Scholar 

  58. Deleu S, Lemaire M, Arts J et al (2009) Bortezomib alone or in combination with the histone deacetylase inhibitor JNJ-26481585: effect on myeloma bone disease in the 5T2MM murine model of myeloma. Cancer Res 69:5307–5311

    Article  PubMed  CAS  Google Scholar 

  59. Feng R, Anderson G, Xiao G et al (2007) SDX-308, a nonsteroidal anti-inflammatory agent, inhibits NF-kappaB activity, resulting in strong inhibition of osteoclast formation/activity and multiple myeloma cell growth. Blood 109:2130–2138

    Article  PubMed  CAS  Google Scholar 

  60. Feng R, Oton A, Mapara MY et al (2007) The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haematol 139:385–397

    Article  PubMed  CAS  Google Scholar 

  61. Gupta A, Wideman CL, Tabassi R et al (2008) Bortezomib significantly delays development of paraplegia in the 5TGM1 murine model of myeloma bone disease. Proceedings of the AACR Annual Meeting 49:775 (abstract 3267)

    Google Scholar 

  62. Mukherjee S, Raje N, Schoonmaker JA et al (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 118:491–504

    PubMed  CAS  Google Scholar 

  63. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360

    Article  PubMed  CAS  Google Scholar 

  64. Darnay BG, Besse A, Poblenz AT et al (2007) TRAFs in RANK signaling. Adv Exp Med Biol 597:152–159

    Article  PubMed  Google Scholar 

  65. Xu J, Wu HF, Ang ES et al (2009) NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev 20:7–17

    Article  PubMed  CAS  Google Scholar 

  66. Terpos E, Sezer O, Croucher P et al (2007) Myeloma bone disease and proteasome inhibition therapies. Blood 110:1098–1104

    Article  PubMed  CAS  Google Scholar 

  67. Zavrski I, Krebbel H, Wildemann B et al (2005) Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function. Biochem Biophys Res Commun 333:200–205

    Article  PubMed  CAS  Google Scholar 

  68. Hongming H, Jian H (2009) Bortezomib inhibits maturation and function of osteoclasts from PBMCs of patients with multiple myeloma by downregulating TRAF6. Leuk Res 33:115–122

    Article  PubMed  Google Scholar 

  69. Hideshima T, Chauhan D, Richardson P et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647

    Article  PubMed  CAS  Google Scholar 

  70. Lauta VM (2003) A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer 97:2440–2452

    Article  PubMed  CAS  Google Scholar 

  71. Lee Y, Hyung SW, Jung HJ et al (2008) The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-beta-induced inhibitory signaling. Blood 111:885–893

    Article  PubMed  CAS  Google Scholar 

  72. Oyajobi BO, Garrett IR, Gupta A et al (2007) Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease. Br J Haematol 139:434–438

    Article  PubMed  CAS  Google Scholar 

  73. Zhao M, Qiao M, Oyajobi BO et al (2003) E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem 278:27939–27944

    Article  PubMed  CAS  Google Scholar 

  74. Garrett IR, Chen D, Gutierrez G et al (2003) Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 111:1771–1782

    PubMed  CAS  Google Scholar 

  75. Giuliani N, Mangoni M, Rizzoli V (2009) Osteogenic differentiation of mesenchymal stem cells in multiple myeloma: identification of potential therapeutic targets. Exp Hematol 37:879–886

    Article  PubMed  CAS  Google Scholar 

  76. Guo R, Yamashita M, Zhang Q et al (2008) Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem 283:23084–23092

    Article  PubMed  CAS  Google Scholar 

  77. Kim M, Nakamoto T, Nishimori S et al (2008) A new ubiquitin ligase involved in p57KIP2 proteolysis regulates osteoblast cell differentiation. EMBO Rep 9:878–884

    Article  PubMed  CAS  Google Scholar 

  78. Yaccoby S, Wezeman MJ, Zangari M et al (2006) Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 91:192–199

    PubMed  CAS  Google Scholar 

  79. Zangari M, Yaccoby S, Cavallo F et al (2006) Response to bortezomib and activation of osteoblasts in multiple myeloma. Clin Lymphoma Myeloma 7:109–114

    Article  PubMed  CAS  Google Scholar 

  80. Shimazaki C, Uchida R, Nakano S et al (2005) High serum bone-specific alkaline phosphatase level after bortezomib-combined therapy in refractory multiple myeloma: possible role of bortezomib on osteoblast differentiation. Leukemia 19:1102–1103

    Article  PubMed  CAS  Google Scholar 

  81. Zangari M, Esseltine D, Cavallo F et al (2007) Predictive value of alkaline phosphatase for response and time to progression in bortezomib-treated multiple myeloma patients. Am J Hematol 82:831–833

    Article  PubMed  CAS  Google Scholar 

  82. Zangari M, Cavallo F, Suva L et al (2007) Prospective evaluation of the bone anabolic effect of bortezomib in relapsed multiple myeloma (MM) patients. Blood 110:798a (abstract 2719)

    Google Scholar 

  83. San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917

    Article  PubMed  CAS  Google Scholar 

  84. Berenson JR, Hillner BE, Kyle RA et al (2002) American Society of Clinical Oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol 20:3719–3736

    Article  PubMed  Google Scholar 

  85. Terpos E, Christoulas D, Kastritis E et al (2009) The addition of bortezomib to the combination of lenalidomide and dexamethasone increases bone formation in relapsed/refractory myeloma: a prospective study in 91 patients. Blood 114:721 (abstract 1815)

    Google Scholar 

  86. Coleman RE, Major P, Lipton A et al (2005) Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 23:4925–4935

    Article  PubMed  CAS  Google Scholar 

  87. Terpos E, de la Fuente J, Szydlo R et al (2003) Tartrate-resistant acid phosphatase isoform 5b: a novel serum marker for monitoring bone disease in multiple myeloma. Int J Cancer 106:455–457

    Article  PubMed  CAS  Google Scholar 

  88. Terpos E, Politou M, Szydlo R et al (2004) Autologous stem cell transplantation normalizes abnormal bone remodeling and sRANKL/osteoprotegerin ratio in patients with multiple myeloma. Leukemia 18:1420–1426

    Article  PubMed  CAS  Google Scholar 

  89. Jagannath S, Dimopoulos MA, Lonial S (2010) Combined proteasome and histone deacetylase inhibition: A promising synergy for patients with relapsed/refractory multiple myeloma. Leuk Res 34:1111–1118

    Article  PubMed  CAS  Google Scholar 

  90. Feng R, Hager JH, Hassig CA et al (2006) A novel, mercaptoketone-based HDAC inhibitor, KD5170 exerts marked inhibition of osteoclast formation and anti-myeloma activity in vitro. Blood 108(Suppl Part 1):991–992 (abstract 3477)

    Google Scholar 

  91. Nakamura T, Kukita T, Shobuike T et al (2005) Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-beta production. J Immunol 175:5809–5816

    PubMed  CAS  Google Scholar 

  92. Rahman MM, Kukita A, Kukita T et al (2003) Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 101:3451–3459

    Article  PubMed  CAS  Google Scholar 

  93. Deleu S, Lemaire M, Arts J et al (2009) The effects of JNJ-26481585, a novel hydroxamate-based histone deacetylase inhibitor, on the development of multiple myeloma in the 5T2MM and 5T33MM murine models. Leukemia 23:1894–1903

    Article  PubMed  CAS  Google Scholar 

  94. Breitkreutz I, Raab MS, Vallet S et al (2007) Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol 139:55–63

    Article  PubMed  CAS  Google Scholar 

  95. Takeuchi K, Abe M, Hiasa M et al (2010) Tgf-Beta inhibition restores terminal osteoblast differentiation to suppress myeloma growth. PLoS One 5:e9870

    Article  PubMed  Google Scholar 

  96. Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Terpos M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terpos, E. (2013). The Effect of Novel Anti-myeloma Agents on Bone Metabolism. In: Munshi, N., Anderson, K. (eds) Advances in Biology and Therapy of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5260-7_11

Download citation

Publish with us

Policies and ethics