Skip to main content

Inverse Planning, Intensity Modulated Radiation Therapy, and Image-Guided Radiation Therapy

  • Chapter
  • First Online:
  • 2276 Accesses

Abstract

Breast cancer has been postoperatively treated with conventional tangential beams using standard dose 46–50Gy to the chest wall or whole breast and 10–16Gy boost with or without regional lymphatics for many years. In addition to successful cosmetic results and low rates of cardiac-pulmonary complications, high rates of local control have been achieved [1–3]. Significant advances have occurred in the area of imaging and irradiation techniques over the past 15 years. Despite these advances, several studies have also shown that dose uniformities can occur in a high percentage of breast volume (Fig. 17.1) [4, 5]. To achieve dose homogeneity in the target is difficult using conventional two-dimensional (2D) or three-dimensional (3D) tangential beams because of the complicated geometry of the breast and different depths of regional lymph nodes (Figs. 17.2 and 17.3). During tangential breast irradiation, particularly in the nipple, the entrance and exit points, and in the superior and inferior portions of the fields may achieve an inhomogeneous dose distribution, which in turn, causes less favorable cosmesis related to breast size, wedge angles, and beam energies (Fig. 17.4) [6, 7]. Irradiated volumes of lung and heart within the treatment fields are sometimes unacceptably large and irradiation of regional lymph nodes, especially in the mammaria interna area, delivers high doses to the heart, lung, and contralateral breast. Cardiac perfusion defects have been documented even in patients treated with advanced 3D planning techniques, although the clinical consequences of these defects are not yet clear [8]. Potential interactions between cardiotoxic systemic agents such as doxorubicin and transtuzumab and radiotherapy (RT) must be considered [9, 10].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Clarke D, Martinez A, Cox RS, et al. Analysis of cosmetic results and complications in patients with stage I and II breast cancer treated by biopsy and irradiation. Int J Radiat Oncol Biol Phys. 1983;9:1807–13.

    Article  PubMed  CAS  Google Scholar 

  2. Early Breast Cancer Trialist’s Collaborative Group (EBCTCG). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366:2087–106.

    Google Scholar 

  3. Early Breast Cancer Trialist’s Collaborative Group (EBCTCG). Effects of radiotherapy after breast-concerving surgery on 10-year recurrence and 15-year Breast cancer death: meta-analysis of individual patients data for 10801 women in 17 randomised trials. Lancet. 2011;378:1707–16.

    Article  Google Scholar 

  4. Neal AJ, Mayles WP, Yarnold JR. Invited review: tangential breast irradiation-rationale and methods for improving dosimetry. Br J Radiol. 1994;67:1149–54.

    Article  PubMed  CAS  Google Scholar 

  5. Delaney G, Beckham W, Veness M, et al. Three dimentional dose distribution of tangential breast irradiation: results of a multicenter phantom dosimetry study. Radiother Oncol. 2000; 57:61–8.

    Article  PubMed  CAS  Google Scholar 

  6. Gray JR, McCormick B, Cox L, et al. Primary Breast irradiation in large–breasted or heavy women: analysis of cosmetic outcome. Int J Radiat Oncol Biol Phys. 1983;21:347–54.

    Article  Google Scholar 

  7. Solin L, Chu J, sontag M, et al. Three-dimensional photon treatment planning of intact breast. Int J Radiat Oncol Biol Phys. 1991;21:193–203.

    Article  PubMed  CAS  Google Scholar 

  8. Marks LB, Yu X, Prosnitz RG, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005;63(1):214–23.

    Article  PubMed  Google Scholar 

  9. Zambetti M, Moliterni A, Materazzo C, et al. Long-term cardiac sequelae in operable breast cancer patients given adjuvant chemotherapy with or without doxorubicin and breast irradiation. J Cin Oncol. 2001;19(1):37–43.

    CAS  Google Scholar 

  10. Sparano JA. Cardiac toxicity of trastuzumab. Semin Oncol. 2001;28 Suppl 3:20–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hong L, Hunt M, Chui C, et al. Intensity modulated tangential beam irradiation of intact breast. Int J Radiat Oncol Biol Phys. 1999;44:1336–44.

    Article  Google Scholar 

  12. Lo YC, Yasuda G, Fitzgerald TJ, et al. Intensity modulation for breast treatment using static multileaf colimators. Int J Radiat Oncol Biol Phys. 2000;46:187–94.

    Article  PubMed  CAS  Google Scholar 

  13. Vicini FA, Sharpe M, Kestin L, et al. Optimizing breast cancer treatment efficacy with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2002;54:1336–44.

    Article  PubMed  Google Scholar 

  14. Krueger EA, Fraass BA, Pierce LJ. Clinical Aspect of intensity-modulated radiotherapy in the treatment of breast cancer. Semin Radiat Oncol. 2002;12(3):250–9.

    Article  PubMed  Google Scholar 

  15. Evans PM, Donovan EM, Partridge M, et al. The delivery of intensity-modulated radiotherapy to the breast using multiple static fields. Radiother Oncol. 2000;57:79–89.

    Article  PubMed  CAS  Google Scholar 

  16. Hurkmans CW, Cho BC, Damen E, et al. Reduction of cardiac and lung complication probabilities after breast irradiation using conformal radiotherapy with or without intensity modulation. Radiother Oncol. 2002;62:163–71.

    Article  PubMed  Google Scholar 

  17. Andratschke N, Maurer J, Molls M, Trott K. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanism and strategies of prevention. Radiother Oncol. 2011;100:160–6.

    Article  PubMed  Google Scholar 

  18. Offersen B, Hojris I, Overgaard M. Radiation-induced heart morbidity after adjuvant radiotherapy of early breast cancer—is it still an issue? Radiother Oncol. 2011;100:157–9.

    Article  PubMed  Google Scholar 

  19. Freedman GM, Anderson PR, Li J, et al. Intensity-modulated radiation therapy (IMRT) decreases acute skin toxicity for women receiving radiation for breast cancer. Am J Clin Oncol. 2006;29:66–70.

    Article  PubMed  Google Scholar 

  20. Donovan E, Bleakley N, Denholm E, et al. Randomised Trial of Standard 2D radiotherapy (RT) versus intensity-modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol. 2007;82:254–64.

    Article  PubMed  Google Scholar 

  21. Pignol JP, Olivotto I, Rakovitch E, et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduced acute radiation dermatitis. JCO1. 2008;26(13): 2085–92.

    Article  Google Scholar 

  22. Mihai A, Rakovitch E, Sixel K, et al. Inverse vs. forward breast IMRT planning. Med Dosim. 2005;30:149–54.

    Article  PubMed  Google Scholar 

  23. Almberg SS, LindmoT T, Frengen J. Superficial doses in Breast cancer radiotherapy using conventional and IMRT techniques: a film-based phantom study. Radiother Oncol. 2011;100:259–64.

    Article  PubMed  Google Scholar 

  24. Mc Donalds MW, Godette K, Butker E, et al. Long–term outcomes of IMRT for breast cancer: a single–institution cohort analysis. Radiat Oncol Biol Phys. 2008;72(4):1031–40.

    Article  Google Scholar 

  25. Cho BC, Hurkmans CW, Damen EM, et al. Intensity modulated versus non-intensity modulated radiotherapy in the treatment of the left Breast and upper internal mammarialymph node chain: a comparative planning study. Radiother Oncol. 2002;62:127–36.

    Article  PubMed  Google Scholar 

  26. Bortfelt T. Optimized planning using physical objectives and constraints. Semin Radiat Oncol. 1999;9:20–34.

    Article  Google Scholar 

  27. Remoucamps VM, Vicini F, Sharpe M, et al. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Radiat Oncol Biol Phys. 2003;55(2):392–406.

    Article  Google Scholar 

  28. McCormick B, Hunt M. Intensity-modulated radiation therapy for breast: is it for everyone? Semin Radiat Oncol. 2011;21:51–4.

    Article  PubMed  Google Scholar 

  29. Moody AM, Mayles WP, Bliss JMA, Hern RP, Owen JR, Regan J, et al. The influence of breast size on late radiation effects and association with radiotherapy dose inhomogeneity. Radiother Oncol. 1994;33:106–12.

    Article  PubMed  CAS  Google Scholar 

  30. Rongsriyam K, Rojpornpradit P, Lertbutsayanukul C, et al. Dosimetric study of inverse-planed intensity modulated, forward-planned intensity modulated and conventional tangential techniques in breast conserving radiotherapy. J Med Assoc Thai. 2008;91(10):1571–82.

    PubMed  Google Scholar 

  31. Hong L, Hunt M, Chui C, Spirou S, Forster K, Lee H, et al. Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys. 1999;44:1155–64.

    Article  PubMed  CAS  Google Scholar 

  32. Schubert LK, Gondi V, Sengbusch E, et al. dosimetric comparison of left-sided whole Breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy. Radiat Oncol. 2011;100:241–6.

    Article  Google Scholar 

  33. Nicolini G, Fogliata A, Clivio A, et al. Planning strategies in volumetric modulated arc therapy for breast. Med Phys. 2011;38(7):4025–31.

    Article  Google Scholar 

  34. Caudrelier JM, Morgan SC, Montgomery L, et al. Helical tomotherapy for locoregional irradiation including the internal mammary chain in left-sided breast cancer: dosimetric evaluation. Radiat Oncol. 2009;9(1):99–105.

    Google Scholar 

  35. Gonzales VJ, Bucholz DJ, Langren KM, et al. Evaluation of two tomotherapy based technique for the delivery of whole breast intensity-modulated radiation therapy. Radiat Oncol Biol Phys. 2006;65:284–90.

    Article  Google Scholar 

  36. Donovan EM, Yarnold JR, Adams EJ, Morgan A, Warrington APJ, Evans PM. An investigation into methods of IMRT planning applied to breast radiotherapy. Br J Radiol. 2008;81:311–22.

    Article  PubMed  CAS  Google Scholar 

  37. LiX A, Arthur DW, Bucholz TA, et al. Variability of target and normal structures delineation for breast cancer radiotherapy: a RTOG multi-institutional and multi-observer study [Abstract]. Radiat Oncol Biol Phys. 2007;69:S72.

    Article  Google Scholar 

  38. ICRU International Commission on Radiation Units and Measurements. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT) ICRU Report 83., Bethesda, MD: International Commission on Radiation Units and Measurements; 2010.

    Google Scholar 

  39. Knoos T, Kristensen I, Nilsson P. Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys. 1998;42:1169–76.

    Article  PubMed  CAS  Google Scholar 

  40. ICRU International Commission on Radiation Units and Measurements. Report 62. Prescribing, Recording and Reporting Photon Beam Therapy (supplement to ICRU report 50). Bethesda, MD: International Commission on Radiation Units and Measurements; 1999.

    Google Scholar 

  41. Fowler JF. The linear- quadraric formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62:679–94.

    Article  PubMed  CAS  Google Scholar 

  42. Mcdonald M, Godette K, Whitaker D. Three-year outcomes of breast intensity—modulated radiation therapy with simultaneous integrated boost. Radiat Oncol Biol Phys. 2010;77(2): 523–30.

    Article  Google Scholar 

  43. Descovich M, Fowble B, Bevan A, et al. Comparison between hybrid direct aperture optimized intensity modulated radiotherapy and forward planning intensity modulated radiotherapy for whole breast irradiation. Radiat Oncol. 2010;76(1):91–9.

    Article  Google Scholar 

  44. Ludlum E, Xia P. Comparison of IMRT planning with two-step and one-step optimization: a way to simplify IMRT. Phys Med Biol. 2008;53:807–21.

    Article  PubMed  CAS  Google Scholar 

  45. Shephard DM, Earl MA, Li XA, et al. Direct aperture optimization: a turn key solution for step and shoot IMRT. Med Phys. 2002;29:1007–18.

    Article  Google Scholar 

  46. Zhang G, Jiang Z, Shepard D, et al. Direct aperture optimization of breast IMRT and the dosimetric impact of respiration motion. Phys Med Biol. 2006;51:357–69.

    Article  Google Scholar 

  47. Offersen B, HØjris I, Overgaard M. Radiation heart morbidity after adjuvant radiotherapy of early breast cancer-is it still an issue? Radiother Oncol. 2011;100:157–9.

    Article  PubMed  Google Scholar 

  48. Whipp E, Beresford M, Sawyer E, Halliwell M. True local recurrence rate in the conserved breast after magnetic resonance imaging-targeted radiotherapy. J Radiat Oncol Biol Phys. 2010;76:984–90.

    Article  Google Scholar 

  49. Sharma R, Spierer M, Mutyala S, et al. Change in seroma volume during whole-breast radiation therapy. J Radiat Oncol Biol Phys. 2009;75:89–93.

    Article  Google Scholar 

  50. Remouchamps VM, Letts N, Yan D, et al. Three-dimensional evaluation of intra- and interfraction immobilization of lung and chest wall using active breathing control: a reproducibility study with breast cancer patients. Int J Radiat Oncol Biol Phys. 2003;57:968–78.

    Article  PubMed  Google Scholar 

  51. Herman MG, Balter JM, Jaffray DA, et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med Phys. 2001;28:712–37.

    Article  PubMed  CAS  Google Scholar 

  52. Huntzinger C, Munro P, Johnson S, et al. Dynamic targeting image-guided radiotherapy. Med Dosim. 2006;31:113–25.

    Article  PubMed  Google Scholar 

  53. Goksel E, Malcok E, Garipagaoglu M, et al. Monitoring of maintainability of deep inspiration phase via cine acquisition, in patients with breast carcinoma receiving radiotherapy; 29th ESTRO meeting. Radiother Oncol. 2010;95 Suppl 1:560.

    Google Scholar 

  54. Dobbs J, Greener T, Driver D, Prepared by a Working Party of The British Institute of Radiology, Geometric Uncertainties in Radiotherapy, In: Geometric Uncertainties in Radiotherapy of the Breast, The British Institute of Radiology. Oxford, UK: Alden Group Limited; 2003. p. 47–75.

    Google Scholar 

  55. McGee KP, Fein DA, Hanlon A, et al. The value of set up portal films as an estimate of a patient’s position throughout fractionated tangential breast irradiation: an on-line study. Int J Radiat Oncol Biol Phys. 1997;37:223–8.

    Article  PubMed  CAS  Google Scholar 

  56. Pradier O, Schmidberger H, Weiss E, et al. Accuracy of alignment in breast irradiation: a retrospective analysis of clinical practice. Br J Radiol. 1999;72:685–90.

    PubMed  CAS  Google Scholar 

  57. Valdagni R, Italia C. Early breast cancer irradiation after concervation surgery: quality control by portal localisation films. Radiother Oncol. 1991;22:311–3.

    Article  PubMed  CAS  Google Scholar 

  58. Lingos TI, Recht A, Vicini F, et al. Radiation pneumonitis in breast cancer patient treated with conservative surgery and radiation therapy. Int J Radiat Oncol Biol Phys. 1991;21:335–60.

    Article  Google Scholar 

  59. Neal AJ, Yarnold JR. Estimating the volume of lung irradiated during tangential breast irradiation using the central lung distance. Br J Radiol. 1995;68:1004–8.

    Article  PubMed  CAS  Google Scholar 

  60. Fein DA, McGee KP, Schultheiss TE, et al. Intra- and interfractional reproducibility of tangential breast fields: a prospective on-line portal imaging study. Int J Radiat Oncol Biol Phys. 1996;34:733–40.

    Article  PubMed  CAS  Google Scholar 

  61. Chen GTY, Sharp GC, Mori S. A review of image-guided radiotherapy. Radiol Phys Technol. 2009;2:1–12.

    Article  PubMed  Google Scholar 

  62. Feldkamp IA, Davis LC, Kress JW. Practical cone beam algorithm. J Opt Soc Am A. 1984; 1:612–9.

    Article  Google Scholar 

  63. Jaffray DA. Emergent technologies for 3-dimensional image guided radiation delivery. Semin Radiat Oncol. 2005;15:208–16.

    Article  PubMed  Google Scholar 

  64. White E, Cho J, Vallis K, et al. Cone beam computed tomography guidance for setup of patients receiving accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys. 2007; 68:547–54.

    Article  PubMed  Google Scholar 

  65. Fatunase T, Wang Z, Yoo S, et al. Assessment of the residual error in soft tissue setup in patients undergoing partial breast irradiation: results of a prospective study using cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;70:1025–34.

    Article  PubMed  Google Scholar 

  66. Kim L, Wong J, Yan D. On-line localization of the lumpectomy cavity using surgical clips. Int J Radiat Oncol Biol Phys. 2007;69:1305–9.

    Article  PubMed  Google Scholar 

  67. Welsh JS. Helical tomotherapy in the community setting: a personal account. Commun Oncol. 2009;6:463.

    Article  Google Scholar 

  68. Wong JR, Grim L, Uematsu M, et al. Image guided radiotherapy for prostat cancer by CT Lineer accelerator combination: prostat movements and dosimetric considerations. Int J Radiat Oncol Biol Phys. 2005;61:561–9.

    Article  PubMed  Google Scholar 

  69. Fung AY, Grimm SY, Wong JR, et al. Computed tomography localization of radiation treatment delivery versus conventional localization with bony landmarks. J Apply Clin Med Phys. 2003;4:112–9.

    Article  Google Scholar 

  70. Berrang TS, Truong PT, Popescu C, et al. 3D ultrasound can contribute to planning CT to define the target for partial breast radiotherapy. Int J Radiat Oncol Biol Phys. 2009;73:375–83.

    Article  PubMed  Google Scholar 

  71. Azar FS, Metaxas DN, Schnall MD. Methods for modeling and predicting mechanical deformations of the breast under external perturbations. Med Image Anal. 2002;6:1–27.

    Article  PubMed  Google Scholar 

  72. Gierga D, Riboldi M, Turcotte J, et al. Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys. 2008;70:1239–46.

    Article  PubMed  Google Scholar 

  73. Tezcanli EK, Goksel EO, Yıldız E, et al. Radiotherapy planning without breath control is not capable of compensating for whole intrafraction heart and its components’ volumes and dose changes. Breast Cancer Res Treat. 2011;126:85–92.

    Article  PubMed  Google Scholar 

  74. Li G, Citrin D, Camphausen K, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat. 2008;7:67–81.

    PubMed  CAS  Google Scholar 

  75. Keall PJ, Joshi S, Vedam SS, et al. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys. 2005;32:942–51.

    Article  PubMed  Google Scholar 

  76. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology. Med Phys. 2006;33:3874–900.

    Article  PubMed  Google Scholar 

  77. Qi XS, White J, Rabinovitch R, et al. Respiratory organ motion and dosimetric impact on breast and nodal irradiation. Int J Radiat Oncol Biol Phys. 2010;78:609–17.

    Article  PubMed  Google Scholar 

  78. Jagsi R, Moran JM, Kessler ML, et al. Respiratory motion of the heart and positional reproducibility under active breathing control. Int J Radiat Oncol Biol Phys. 2007;68:253–8.

    Article  PubMed  Google Scholar 

  79. Sixel KE, Aznar MC, Ung YC. Deep inspiration breath-hold to reduce irradiated heart volume in breast cancer patients. Int. J Radiat Oncol Biol Phys. 2001;49:199–204.

    Article  CAS  Google Scholar 

  80. Lu HM, Cash E, Chen MH, et al. Reduction of cardiac volume in left-breast treatment fields by respiratory maneuvers: a CT study. Int J Radiat Oncol Biol Phys. 2000;47:895–904.

    Article  PubMed  CAS  Google Scholar 

  81. Stranzl H, Zurl B. Postoperative irradiation of left-sided breast cancer patients and cardiac toxicity. Does deep inspiration breath-hold (DIBH) technique protect the heart? Strahlenther Onkol. 2008;184:354–8.

    Article  PubMed  Google Scholar 

  82. Halperin EC, Perez CA, Brady LW. Perez and Brady’s Principles and practice of radiation oncology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 284–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isik Aslay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aslay, I., Kucucuk, H., Senkesen, O., Garipagaoglu, M. (2013). Inverse Planning, Intensity Modulated Radiation Therapy, and Image-Guided Radiation Therapy. In: Haydaroglu, A., Ozyigit, G. (eds) Principles and Practice of Modern Radiotherapy Techniques in Breast Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5116-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5116-7_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5115-0

  • Online ISBN: 978-1-4614-5116-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics