Skip to main content

Introduction to Mitochondria in the Heart

  • Chapter
  • First Online:

Abstract

In this introductory chapter to Mitochondria Role in Cardiovascular Diseases, we will discuss those primary defects in mitochondrial and nuclear genomes that cause alterations in major aspects of mitochondrial metabolism. They include defects in OXPHOS and TCA cycle activity and regulation, mitochondrial membrane proteins, channels and transporters, transcription, translation and posttranslation modification factors, mitochondrial ribosomal proteins, mtDNA replication and repair, as well as mitochondrial dynamic. How these defects contribute to pathogenesis of cardiovascular diseases will be described in detail later in dedicated chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Taegtmeyer H. Cardiac metabolism as a target for the treatment of heart failure. Circulation. 2004;110(8):894–6.

    Article  PubMed  Google Scholar 

  2. Neubauer S. The failing heart–an engine out of fuel. N Engl J Med. 2007;356(11):1140–51.

    Article  PubMed  Google Scholar 

  3. Rosca MG, Hoppel CL. Mitochondria in heart failure. Cardiovasc Res. 2010;88(1):40–50.

    Article  PubMed  CAS  Google Scholar 

  4. McMurray JJ, Pfeffer MA. Heart failure. Lancet. 2005;365(9474):1877–89.

    Article  PubMed  Google Scholar 

  5. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.

    Article  PubMed  CAS  Google Scholar 

  6. Dayer M, Cowie MR. Heart failure: diagnosis and healthcare burden. Clin Med. 2004;4(1):13–8.

    PubMed  Google Scholar 

  7. Scheffler IE. Mitochondria. Chichester: John Wiley & Sons, Ltd.; 1999.

    Book  Google Scholar 

  8. Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science. 1999;283(5407):1476–81.

    Article  PubMed  CAS  Google Scholar 

  9. Andersson SG, Karlberg O, Canback B, Kurland CG. On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci. 2003;358(1429):165–77. discussion 177–169.

    Article  PubMed  CAS  Google Scholar 

  10. Tzagoloff A. Mitochondria. New York: Plenum Press; 1982.

    Google Scholar 

  11. Sagan L. On the origin of mitosing cells. J Theor Biol. 1967;14(3):255–74.

    Article  PubMed  CAS  Google Scholar 

  12. Dyall SD, Brown MT, Johnson PJ. Ancient invasions: from endosymbionts to organelles. Science. 2004;304(5668):253–7.

    Article  PubMed  CAS  Google Scholar 

  13. Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440(7084):623–30.

    Article  PubMed  CAS  Google Scholar 

  14. de Duve C. The origin of eukaryotes: a reappraisal. Nat Rev Genet. 2007;8(5):395–403.

    Article  PubMed  CAS  Google Scholar 

  15. Gross J, Bhattacharya D. Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet. 2009;10(7):495–505.

    Article  PubMed  CAS  Google Scholar 

  16. Holland HD. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):903–15.

    Article  PubMed  CAS  Google Scholar 

  17. Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, what happens, and Why? Plant Physiol. 1998;118(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  18. Dimmer KS, Scorrano L. (De)constructing mitochondria: what for? Physiology (Bethesda). 2006;21:233–41.

    Article  CAS  Google Scholar 

  19. Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.

    Article  PubMed  CAS  Google Scholar 

  20. Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88(1):16–29.

    Article  PubMed  CAS  Google Scholar 

  21. Hoppel CL, Tandler B, Fujioka H, Riva A. Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol. 2009;41(10):1949–56.

    Article  PubMed  CAS  Google Scholar 

  22. Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C. Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2005;289(2):H868–72.

    Article  PubMed  CAS  Google Scholar 

  23. Blachly-Dyson E, Forte M. VDAC channels. IUBMB Life. 2001;52(3–5):113–8.

    PubMed  CAS  Google Scholar 

  24. Rostovtseva TK, Tan W, Colombini M. On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr. 2005;37(3):129–42.

    Article  PubMed  CAS  Google Scholar 

  25. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res. 2004;61(3):372–85.

    Article  PubMed  CAS  Google Scholar 

  26. Di Lisa F, Canton M, Menabo R, Kaludercic N, Bernardi P. Mitochondria and cardioprotection. Heart Fail Rev. 2007;12(3–4):249–60.

    Article  PubMed  CAS  Google Scholar 

  27. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163.

    Article  PubMed  CAS  Google Scholar 

  28. Baines CP. The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol. 2009;46(6):850–7.

    Article  PubMed  CAS  Google Scholar 

  29. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36:413–59.

    Article  PubMed  CAS  Google Scholar 

  30. Ashrafian H, Frenneaux MP. Metabolic modulation in heart failure: the coming of age. Cardiovasc Drugs Ther. 2007;21(1):5–7.

    Article  PubMed  Google Scholar 

  31. Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981;211(4481):448–52.

    Article  PubMed  CAS  Google Scholar 

  32. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281(Pt 1):21–40.

    PubMed  CAS  Google Scholar 

  33. Ingwall JS. ATP and the heart. Norwell, MA: Kluwer; 2002.

    Book  Google Scholar 

  34. Guimbal C, Kilimann MW. A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem. 1993;268(12):8418–21.

    PubMed  CAS  Google Scholar 

  35. Lopaschuk GD, Collins-Nakai RL, Itoi T. Developmental changes in energy substrate use by the heart. Cardiovasc Res. 1992;26(12):1172–80.

    Article  PubMed  CAS  Google Scholar 

  36. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.

    Article  PubMed  CAS  Google Scholar 

  37. Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res. 2005;66(2):222–32.

    Article  PubMed  CAS  Google Scholar 

  38. Pi Y, Goldenthal MJ, Marin-Garcia J. Mitochondrial channelopathies in aging. J Mol Med. 2007;85(9):937–51.

    Article  PubMed  CAS  Google Scholar 

  39. Druzhyna NM, Wilson GL, LeDoux SP. Mitochondrial DNA repair in aging and disease. Mech Ageing Dev. 2008;129(7–8):383–90.

    Article  PubMed  CAS  Google Scholar 

  40. Lesnefsky EJ, Hoppel CL. Oxidative phosphorylation and aging. Ageing Res Rev. 2006;5(4):402–33.

    Article  PubMed  CAS  Google Scholar 

  41. Paradies G, Ruggiero FM. Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. Biochim Biophys Acta. 1990;1016(2):207–12.

    Article  PubMed  CAS  Google Scholar 

  42. McMillin JB, Taffet GE, Taegtmeyer H, Hudson EK, Tate CA. Mitochondrial metabolism and substrate competition in the aging Fischer rat heart. Cardiovasc Res. 1993;27(12):2222–8.

    Article  PubMed  CAS  Google Scholar 

  43. Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol. 1991;173(6):2026–34.

    PubMed  CAS  Google Scholar 

  44. Schlame M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res. 2008;49(8):1607–20.

    Article  PubMed  CAS  Google Scholar 

  45. Joshi AS, Zhou J, Gohil VM, Chen S, Greenberg ML. Cellular functions of cardiolipin in yeast. Biochim Biophys Acta. 2009;1793(1):212–8.

    Article  PubMed  CAS  Google Scholar 

  46. Sparagna GC, Lesnefsky EJ. Cardiolipin remodeling in the heart. J Cardiovasc Pharmacol. 2009;53(4):290–301.

    Article  PubMed  CAS  Google Scholar 

  47. Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN. Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell. 2003;14(4):1583–96.

    Article  PubMed  CAS  Google Scholar 

  48. Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet. 2005;6(11):815–25.

    Article  PubMed  CAS  Google Scholar 

  49. Malka F, Lombes A, Rojo M. Organization, dynamics and transmission of mitochondrial DNA: focus on vertebrate nucleoids. Biochim Biophys Acta. 2006;1763(5–6):463–72.

    Article  PubMed  CAS  Google Scholar 

  50. Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003;115(5):629–40.

    Article  PubMed  CAS  Google Scholar 

  51. Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009;71:177–203.

    Article  PubMed  CAS  Google Scholar 

  52. Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88(2):611–38.

    Article  PubMed  CAS  Google Scholar 

  53. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18(4):357–68.

    Article  PubMed  CAS  Google Scholar 

  54. Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. 2004;95(6):568–78.

    Article  PubMed  CAS  Google Scholar 

  55. Dufour CR, Wilson BJ, Huss JM, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 2007;5(5):345–56.

    Article  PubMed  CAS  Google Scholar 

  56. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847–56.

    Article  PubMed  CAS  Google Scholar 

  57. Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and ­oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol. 2003;551(Pt 2):491–501.

    Article  PubMed  CAS  Google Scholar 

  58. Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.

    Article  PubMed  CAS  Google Scholar 

  59. Dagda RK, Cherra 3rd SJ, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284(20):13843–55.

    Article  PubMed  CAS  Google Scholar 

  60. Gottlieb RA, Gustafsson AB. Mitochondrial turnover in the heart. Biochim Biophys Acta. 2011;1813(7):1295–301.

    Article  PubMed  CAS  Google Scholar 

  61. Soubannier V, McBride HM. Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta. 2009;1793(1):154–70.

    Article  PubMed  CAS  Google Scholar 

  62. Hausenloy DJ, Ruiz-Meana M. Not just the powerhouse of the cell: emerging roles for mitochondria in the heart. Cardiovasc Res. 2010;88(1):5–6.

    Article  PubMed  CAS  Google Scholar 

  63. Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977;180(2):248–57.

    Article  PubMed  CAS  Google Scholar 

  64. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3–4):222–30.

    Article  PubMed  CAS  Google Scholar 

  65. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005;70(2):200–14.

    Article  CAS  Google Scholar 

  66. Rush JD, Koppenol WH. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c. J Biol Chem. 1986;261(15):6730–3.

    PubMed  CAS  Google Scholar 

  67. Rush JD, Maskos Z, Koppenol WH. Distinction between hydroxyl radical and ferryl species. Methods Enzymol. 1990;186:148–56.

    Article  PubMed  CAS  Google Scholar 

  68. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005–28.

    PubMed  CAS  Google Scholar 

  69. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11(6):1373–414.

    Article  PubMed  CAS  Google Scholar 

  70. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability ­transition in cardiac myocytes. J Exp Med. 2000;192(7):1001–14.

    Article  PubMed  CAS  Google Scholar 

  71. Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal. 2006;8(9–10):1651–65.

    Article  PubMed  CAS  Google Scholar 

  72. Regula KM, Ens K, Kirshenbaum LA. Mitochondria-assisted cell suicide: a license to kill. J Mol Cell Cardiol. 2003;35(6):559–67.

    Article  PubMed  CAS  Google Scholar 

  73. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205–19.

    Article  PubMed  CAS  Google Scholar 

  74. Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death. Cardiovasc Res. 2008;77(2):334–43.

    Article  PubMed  CAS  Google Scholar 

  75. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med. 2009;361(16):1570–83.

    Article  PubMed  CAS  Google Scholar 

  76. Baines CP. The cardiac mitochondrion: nexus of stress. Annu Rev Physiol. 2010;72:61–80.

    Article  PubMed  CAS  Google Scholar 

  77. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.

    Article  PubMed  CAS  Google Scholar 

  78. Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003;93(4):292–301.

    Article  PubMed  CAS  Google Scholar 

  79. Halestrap A. Biochemistry: a pore way to die. Nature. 2005;434(7033):578–9.

    Article  PubMed  CAS  Google Scholar 

  80. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985;85(2):247–89.

    Article  PubMed  CAS  Google Scholar 

  81. Cannell MB, Cheng H, Lederer WJ. The control of calcium release in heart muscle. Science. 1995;268(5213):1045–9.

    Article  PubMed  CAS  Google Scholar 

  82. Bers DM. Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Front Biosci. 2002;7:d1697–711.

    Article  PubMed  CAS  Google Scholar 

  83. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    Article  PubMed  CAS  Google Scholar 

  84. Yang Z, Steele DS. Effects of cytosolic ATP on spontaneous and triggered Ca2+-induced Ca2+ release in permeabilised rat ventricular myocytes. J Physiol. 2000;523(Pt 1):29–44.

    Article  PubMed  CAS  Google Scholar 

  85. Yang Z, Steele DS. Effects of cytosolic ATP on Ca(2+) sparks and SR Ca(2+) content in permeabilized cardiac myocytes. Circ Res. 2001;89(6):526–33.

    Article  PubMed  CAS  Google Scholar 

  86. Liu T, O’Rourke B. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. J Bioenerg Biomembr. 2009;41(2):127–32.

    Article  PubMed  CAS  Google Scholar 

  87. Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol. 2009;41(10):1957–71.

    Article  PubMed  CAS  Google Scholar 

  88. Dorn 2nd GW, Scorrano L. Two close, too close: sarcoplasmic reticulum-mitochondrial crosstalk and cardiomyocyte fate. Circ Res. 2010;107(6):689–99.

    Article  PubMed  CAS  Google Scholar 

  89. Yamada EW, Huzel NJ. The calcium-binding ATPase inhibitor protein from bovine heart mitochondria. Purification and properties. J Biol Chem. 1988;263(23):11498–503.

    PubMed  CAS  Google Scholar 

  90. Territo PR, Mootha VK, French SA, Balaban RS. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol. 2000;278(2):C423–35.

    PubMed  CAS  Google Scholar 

  91. Moreno-Sanchez R. Contribution of the translocator of adenine nucleotides and the ATP synthase to the control of oxidative phosphorylation and arsenylation in liver mitochondria. J Biol Chem. 1985;260(23):12554–60.

    PubMed  CAS  Google Scholar 

  92. Denton RM, McCormack JG. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol. 1990;52:451–66.

    Article  PubMed  CAS  Google Scholar 

  93. Balaban RS. Cardiac energy metabolism homeostasis: role of ­cytosolic calcium. J Mol Cell Cardiol. 2002;34(10):1259–71.

    Article  PubMed  CAS  Google Scholar 

  94. Bender E, Kadenbach B. The allosteric ATP-inhibition of ­cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett. 2000;466(1):130–4.

    Article  PubMed  CAS  Google Scholar 

  95. Hill MF, Singal PK. Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation. 1997;96(7):2414–20.

    Article  PubMed  CAS  Google Scholar 

  96. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962;41:1776–804.

    Article  PubMed  CAS  Google Scholar 

  97. DiMauro S, Bonilla E, Zeviani M, Nakagawa M, DeVivo DC. Mitochondrial myopathies. Ann Neurol. 1985;17(6):521–38.

    Article  PubMed  CAS  Google Scholar 

  98. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331(6158):717–9.

    Article  PubMed  CAS  Google Scholar 

  99. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30.

    Article  PubMed  CAS  Google Scholar 

  100. Falk MJaS N. Mitochondrial genetic diseases. Curr Opin Pediatr. 2010;22:711–6.

    Article  Google Scholar 

  101. Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders–past, present and future. Biochim Biophys Acta. 2004;1659(2–3):115–20.

    PubMed  CAS  Google Scholar 

  102. Cree LM, Samuels DC, Chinnery PF. The inheritance of pathogenic mitochondrial DNA mutations. Biochim Biophys Acta. 2009;1792(12):1097–102.

    Article  PubMed  CAS  Google Scholar 

  103. DiMauro S, Garone C. Historical perspective on mitochondrial medicine. Dev Disabil Res Rev. 2010;16(2):106–13.

    Article  PubMed  Google Scholar 

  104. Wallace DC. Bioenergetics and the epigenome: interface between the environment and genes in common diseases. Dev Disabil Res Rev. 2010;16(2):114–9.

    Article  PubMed  Google Scholar 

  105. Wong LJ. Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev. 2010;16(2):154–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marín-García, J. (2013). Introduction to Mitochondria in the Heart. In: Mitochondria and Their Role in Cardiovascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4599-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4599-9_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4598-2

  • Online ISBN: 978-1-4614-4599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics