Skip to main content

How Can Chips Live Under Radiation?

  • Chapter
  • First Online:
Nyquist AD Converters, Sensor Interfaces, and Robustness
  • 2412 Accesses

Abstract

Interactions of different types of radiation in silicon are discussed together with effects on devices. Long-term irradiations cause ‘Total-Ionization-Dose’ degradation and ‘Single Event Effects’ occur when dense ionization upsets a small area in a chip. At the CERN Large Hadron Collider LHC we expect a severe radiation environment, yet sophisticated chips are needed. Some remedies against radiation effects are illustrated. One can use changes in technology, in device geometry, in circuit design or in layout. At system level one can recover loss of functions or data. Trends in CMOS technology call for continuous study of behaviour of new devices under radiation. The increased use of chips for critical functions everywhere imposes study of rare effects of radiation, not only in extreme conditions. With large areas of silicon in operation worldwide, low probabilities do result in real incidents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Failures due to inadequate computer programming in some cases seems to happen more frequently and obscure upsets by radiation impacts.

References

  1. Binder D, Smith EC, Holman AB (1975) Satellite anomalies from galactic cosmic rays. IEEE Trans Nucl Sci NS-22:2675

    Article  Google Scholar 

  2. Ziegler JF, Lanford WA (1979) Effects of cosmic rays on computer memories. Science 206:776–788

    Article  Google Scholar 

  3. Normand E (1996) Single-event effects in avionics. IEEE Trans Nucl Sci NS-43:461

    Article  Google Scholar 

  4. Saks NS, Ancona MG, Modolo JA (1984) Radiation effects in MOS capacitors with very thin oxides at 80K. IEEE Trans Nucl Sci NS-31:1249

    Article  Google Scholar 

  5. Anelli G, Campbell M, Delmastro M, Faccio F, Florian S, Giraldo A, Heijne E, Jarron P, Kloukinas K, Marchioro A, Moreira P, Snoeys W (1999) Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects. IEEE Trans Nucl Sci NS-46:1690

    Article  Google Scholar 

  6. Dingwall AGF, Stricker RE (1977) C2L: a new high-speed high-density bulk CMOS technology. IEEE J Solid-St Circ SC-12:344

    Article  Google Scholar 

  7. McLean FB, Oldham TR (1982) Charge funneling in n- and p-type Si substrates. IEEE Trans Nucl Sci NS-29:2018

    Google Scholar 

  8. Datasheet Synopsys. www.synopsys.com/products/tcad/tcad.html

  9. El-Mamouni F, Zhang EX, Pate ND, Hooten N, Schrimpf RD, Reed RA, Galloway KF, McMorrow D, Warner J, Simoen E, Claeys C, Griffoni A, Linten D, Vizkelethy G (2011) Laser- and heavy ion-induced charge collection in bulk FinFETs. IEEE Trans Nucl Sci NS-58:2563–2569

    Article  Google Scholar 

  10. Kabza H, Schulze H-J, Gerstenmaier Y, Voss P, Wilhelmi J, Schmid W, Pfirsch F, Platzoder K (1994) Cosmic radiation as a cause for power device failure and possible countermeasures. In: IEEE Cat 94CH3377-9 Proceedings of 6th international symposium power semiconductor devices & IC, Davos, pp 9–12

    Google Scholar 

  11. Atkinson NM, Ahlbin JR, Witulski AF, Gaspard NJ, Holman WT, Bhuva BL, Zhang EX, Chen L, Massengill LW (2011) Effect of transistor density and charge sharing on single-event transients in 90-nm bulk CMOS. IEEE Trans Nucl Sci NS-58:2578–2584

    Article  Google Scholar 

  12. Zanchi A, Buchner S, Hafer C, Hisano S, Kerwin DB (2011) Investigation and mitigation of analog SET on a bandgap reference in triple-well CMOS using pulsed laser techniques. IEEE Trans Nucl Sci NS-58:2570–2577

    Article  Google Scholar 

  13. Aarnio PA, Huhtinen M (1993) Hadron fluxes in inner parts of LHC detectors. Nucl Instrum Methods A336:98

    Google Scholar 

  14. Dentan M, Abbon P, Borgeaud P, Delagnes E, Fourches N, Lachartre D, Lugiez F, Paul B, Rouger M, Truche R, Blanc JP, Leroux C, Delevoye-Orsier E, Pelloie JL, de Pontcharra J, Flament O, Guebhard JM, Leray J-L, Montaron J, Musseau O, Vitez A, Blanquart L, Aubert J-J, Bonzom V, Delpierre P, Habrard MC, Mekkaoui A, Potheau R, Ardelean J, Hrisoho A, Breton D (1996) DMILL, a mixed analog-digital radiation-hard BiCMOS technology for high energy physics electronics. IEEE Trans Nucl Sci NS-43:1763

    Article  Google Scholar 

  15. Calin T, Nicolaidis M, Velazco R (1996) Upset hardened memory design for submicron CMOS technology. IEEE Trans Nucl Sci NS-43:2874–2878

    Article  Google Scholar 

  16. Sanda PN, Kellington JW, Kudva P, Kalla R, McBeth RB, Ackaret J, Lockwood R, Schumann J, Jones CR (2007) Soft-error resilience of the IBM POWER6 processor. IBM J Res Dev 52:275

    Article  Google Scholar 

  17. Faccio F, Cervelli G (2005) Radiation-induced edge effects in deep submicron CMOS transistors. IEEE Trans Nucl Sci NS-52:2413–2420

    Article  Google Scholar 

  18. Song J-J, Choi BK, Zhang EX, Schrimpf RD, Fleetwood DM, Park C-H, Jeong Y-H, Kim O (2011) Fin width and bias dependence of the response of triple-gate MOSFETs to total dose irradiation. IEEE Trans Nucl Sci NS-58:2871–2875

    Article  Google Scholar 

  19. Ziegler JF. Trends in electronic reliability – effects of terrestrial cosmic rays. http://www.srim.org/SER/SERTrends.htm

  20. Kandiah K, Whiting FB (1978) Low frequency noise in junction field effect transistors. Solid-St Electron 21:1079

    Article  Google Scholar 

  21. Kandiah K, Deighton MO, Whiting FB (1989) A physical model for random telegraph signal currents in semiconductor devices. J Appl Phys 66:937–946

    Article  Google Scholar 

  22. Virmontois C, Goiffon V, Magnan P, Saint-Pe O, Girard S, Petit S, Rolland G, Bardoux A (2011) Total ionizing dose versus displacement damage dose induced dark current random telegraph signals in CMOS image sensors. IEEE Trans Nucl Sci NS-58:3085–3094

    Article  Google Scholar 

Books

  • Holme-Siedle A, Adams L (1993) Handbook of radiation effects. Oxford Science, Oxford. ISBN 0 19 856347 7

    Google Scholar 

  • Ma TP, Dressendorfer PV (eds) (1989) Ionizing radiation effects in MOS devices & circuits. Wiley,New York. ISBN 0-471-84893-X

    Google Scholar 

  • Messenger GC, Ash MS (1986) The effects of radiation on electronic systems. Van Nostrand Reinhold,New York. ISBN 0-442-25417-2

    Google Scholar 

  • Pantelides ST (1986) Deep centers in semiconductors. Gordon and Breach,New York. ISBN 2-88124-109-3

    Google Scholar 

  • van Lint VAJ et al (1980) Mechanisms of radiation effects in electronic materials. Wiley-Interscience (out of print)

    Google Scholar 

Proceedings

  • Series of Proceedings of IEEE nuclear and space radiation effects conferences in December issues of IEEE Trans Nucl Sci NS – from 1965 till present

    Google Scholar 

  • Series of Proceedings of European conference on radiation effects on components and systems RADECS 1991, 1993, 1995, 1997 etc., now also in IEEE TNS

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, Royaumont, Paris, 1964

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, Dunod, 1965

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, Reading, 1972. IOP Conf Series 16. ISBN 0 85498 106 3

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, Freiburg, 1974. IOP Conf Series 23. ISBN 0 85498 113 6

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, Dubrovnik, 1976. IOP Conf Series. ISBN 0 85498 xxxxx

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, Nice, 1978. IOP Conf Series 46. ISBN 0-85498-137-3

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, North Holland, Amsterdam, 1982. Reprint Physica 116 B+C, etc.

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, Berkeley, 1999. Elsevier Reprint Physica B 273–274

    Google Scholar 

  • Series of Proceedings of international conference on defects (and radiation effects) in semiconductors, Berkeley, 2007. Elsevier Reprint Physica B 401–402

    Google Scholar 

Download references

Acknowledgements

Many people have contributed to the know-how at CERN in radiation effects in chips. Contrary to my original fears, it has been quite possible to meet with many scientists and learn about this subject in open scientific meetings. The IEEE has played an important role from the beginning. It is through these contacts and through the yearly NSREC and RADECS that progress continues to be made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik H. M. Heijne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heijne, E.H.M. (2013). How Can Chips Live Under Radiation?. In: van Roermund, A., Baschirotto, A., Steyaert, M. (eds) Nyquist AD Converters, Sensor Interfaces, and Robustness. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4587-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4587-6_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4586-9

  • Online ISBN: 978-1-4614-4587-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics