Skip to main content

Biological Pathways Impacting Cancer Survival: Exercise as a Countermeasure for the Development and Progression of Cachexia

  • Chapter
  • First Online:

Part of the book series: Energy Balance and Cancer ((EBAC,volume 6))

Abstract

This chapter will illustrate the signaling pathways that are influenced by exercise that could impact cancer patient survival as it relates to the treatment and prevention of cachexia. Cancer cachexia involves an unintentional body weight loss, which includes muscle and fat mass loss. Cachexia is most prevalent with cancers of the colon, lung and pancreas, and the development of cachexia coincides with increased patient morbidity, mortality, and a reduction in quality of life. This chapter will focus on the ability of exercise to improve an environment that involves suppressed anabolic signaling pathways, activated catabolic signaling pathways, and disrupted metabolic signaling. These changes will be considered in terms of the impact of processes involved in local and systemic metabolism. Exercise will be examined in respect to both acute changes and chronic exercise adaptations. Additionally, the complexity of this biological response as it pertains to the intensity and duration of exercise will be highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD (2008) Cachexia: a new definition. Clin Nutr 27:793–799

    Article  PubMed  CAS  Google Scholar 

  2. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12:489–495

    Article  PubMed  Google Scholar 

  3. Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P, Fearon KC, Laviano A, Maggio M, Rossi Fanelli F, Schneider SM, Schols A, Sieber CC (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 29:154–159

    Article  PubMed  CAS  Google Scholar 

  4. Bruera E (1997) ABC of palliative care. Anorexia, cachexia, and nutrition. Br Med J 315:1219–1222

    Article  CAS  Google Scholar 

  5. Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871

    Article  PubMed  CAS  Google Scholar 

  6. Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89:381–410

    Article  PubMed  CAS  Google Scholar 

  7. Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29:1774–1785

    Article  PubMed  CAS  Google Scholar 

  8. Romanello V, Sandri M (2010) Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep 12:433–439

    Article  PubMed  CAS  Google Scholar 

  9. White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, Sato S, Carson JA (2011) The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse. PloS One 6:e24650

    Google Scholar 

  10. Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, Zimmers TA (2011) STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One 6:e22538

    Article  PubMed  CAS  Google Scholar 

  11. Gelfi C, Vasso M, Cerretelli P (2011) Diversity of human skeletal muscle in health and disease: contribution of proteomics. J Proteomics 74:774–795

    Google Scholar 

  12. Kim DH, Choi JW, Joo JI, Wang X, Choi DK, Oh TS, Yun JW (2011) Changes in expression of skeletal muscle proteins between obesity-prone and obesity-resistant rats induced by a high-fat diet. J Proteome Res 10:1281–1292

    Google Scholar 

  13. Rayavarapu S, Coley W, Nagaraju K (2012) Endoplasmic reticulum stress in skeletal muscle momeostasis and disease. Curr Rheumatol Rep 14:238–243

    Google Scholar 

  14. Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482

    PubMed  CAS  Google Scholar 

  15. Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 256:C1262–C1266

    PubMed  CAS  Google Scholar 

  16. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, Irwin ML, Wolin KY, Segal RJ, Lucia A, Schneider CM, von Gruenigen VE, Schwartz AL (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sport Exer 42:1409–1426

    Article  Google Scholar 

  17. Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Annu Rev Physiol 39:221–251

    Article  PubMed  CAS  Google Scholar 

  18. Seals DR, Victor RG (1991) Regulation of muscle sympathetic nerve activity during exercise in humans. Exerc Sport Sci Rev 19:313–349

    Article  PubMed  CAS  Google Scholar 

  19. Pedersen BK (2012) Muscular interleukin-6 and its role as an energy sensor. Med Sci Sport Exer 44:392–396

    Article  CAS  Google Scholar 

  20. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, Shaw JE, Bertovic DA, Zimmet PZ, Salmon J, Owen N (2012) Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 35:976–983

    Article  PubMed  Google Scholar 

  21. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56:2655–2667

    Article  PubMed  CAS  Google Scholar 

  22. American College of Sports Medicine (2009) Guidelines for exercise testing and prescription. Wilkins and Williams, Philadelphia

  23. Booth FW, Watson PA (1985) Control of adaptations in protein levels in response to exercise. Fed Proc 44:2293–2300

    PubMed  CAS  Google Scholar 

  24. Dudley GA, Abraham WM, Terjung RL (1982) Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol 53:844–850

    PubMed  CAS  Google Scholar 

  25. Kindermann W, Schnabel A, Schmitt WM, Biro G, Cassens J, Weber F (1982) Catecholamines, growth hormone, cortisol, insulin, and sex hormones in anaerobic and aerobic exercise. Eur J Appl Physiol Occup Physiol 49:389–399

    Article  PubMed  CAS  Google Scholar 

  26. Schwarz L, Kindermann W (1990) Beta-endorphin, adrenocorticotropic hormone, cortisol and catecholamines during aerobic and anaerobic exercise. Eur J Appl Physiol Occup Physiol 61:165–171

    Article  PubMed  CAS  Google Scholar 

  27. Hood DA, Irrcher I, Ljubicic V, Joseph AM (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209:2265–2275

    Article  PubMed  CAS  Google Scholar 

  28. Kemi OJ, Wisloff U (2010) High-intensity aerobic exercise training improves the heart in health and disease. J Cardiopulm Rehabil Prev 30:2–11

    Google Scholar 

  29. Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2):S9–S15

    Article  PubMed  CAS  Google Scholar 

  30. Stark R, Roden M (2007) Mitochondrial function and endocrine diseases. Eur J Clin Invest 37:236–248

    Article  PubMed  CAS  Google Scholar 

  31. Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838

    PubMed  CAS  Google Scholar 

  32. US Department of Health and Human Services (2008) Physical activities guidelines report. US Department of Health and Human Services, Washington DC

    Google Scholar 

  33. Carson JA (1997) The regulation of gene expression in hypertrophying skeletal muscle. Exerc Sport Sci Rev 25:301–320

    Article  PubMed  CAS  Google Scholar 

  34. Carson JA, Baltgalvis KA (2010) Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc Sport Sci Rev 38:168–176

    Article  PubMed  Google Scholar 

  35. Carson JA, Wei L (2000) Integrin signaling’s potential for mediating gene expression in hypertrophying skeletal muscle. J Appl Physiol 88:337–343

    PubMed  CAS  Google Scholar 

  36. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984

    Article  PubMed  CAS  Google Scholar 

  37. Glass DJ (2010) Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care 13:225–229

    Article  PubMed  CAS  Google Scholar 

  38. Rockl KS, Witczak CA, Goodyear LJ (2008) Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60:145–153

    Article  PubMed  CAS  Google Scholar 

  39. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  PubMed  CAS  Google Scholar 

  40. Glass DJ (2010) PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 346:267–278

    Article  PubMed  CAS  Google Scholar 

  41. Miyazaki M, Esser KA (2009) Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol 106:1367–1373

    Article  PubMed  CAS  Google Scholar 

  42. Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1:4

    Article  PubMed  CAS  Google Scholar 

  43. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    Article  PubMed  CAS  Google Scholar 

  44. Goodyear LJ (2008) The exercise pill–too good to be true? N Engl J Med 359:1842–1844

    Article  PubMed  CAS  Google Scholar 

  45. Wong TS, Booth FW (1990) Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise. J Appl Physiol 69:1718–1724

    PubMed  CAS  Google Scholar 

  46. Al-Majid S, McCarthy DO (2001) Resistance exercise training attenuates wasting of the extensor digitorum longus muscle in mice bearing the colon-26 adenocarcinoma. Biol Res Nurs 2:155–166

    Article  PubMed  CAS  Google Scholar 

  47. Hornberger TA, Esser KA (2004) Mechanotransduction and the regulation of protein synthesis in skeletal muscle. Proc Nutr Soc 63:331–335

    Article  PubMed  CAS  Google Scholar 

  48. Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380:795–804

    Article  PubMed  CAS  Google Scholar 

  49. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:C834–C843

    Article  PubMed  CAS  Google Scholar 

  50. Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584:1411–1416

    Article  PubMed  CAS  Google Scholar 

  51. Sandri M (2011) New findings of lysosomal proteolysis in skeletal muscle. Curr Opin Clin Nutr Metab Care 14:223–229

    Article  PubMed  CAS  Google Scholar 

  52. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481:511–515

    Article  PubMed  CAS  Google Scholar 

  53. Li P, Waters RE, Redfern SI, Zhang M, Mao L, Annex BH, Yan Z (2007) Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. Am J Pathol 170:599–608

    Article  PubMed  CAS  Google Scholar 

  54. Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29:1774–1785

    Google Scholar 

  55. White JP, Baltgalvis KA, Puppa MJ, Sato S, Baynes JW, Carson JA (2011) Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am J Physiol Regul Integr Comp Physiol 300:R201–R211

    Google Scholar 

  56. White JP, Baltgalvis KA, Puppa MJ, Sato S, Baynes JW, Carson JA (2011) Muscle oxidative capacity during IL-6 dependent cancer cachexia. Am J Physiol Regul Integr Comp Physiol 300:R201–R211

    Google Scholar 

  57. Puppa MJ, White JP, Sato S, M.A. C, Baynes JW, Carson JA (2011) Gut barrier dysfunction in the ApcMin/+ mouse model of colon cancer cachexia. Biochem Biophys Acta 1812:1601–1606

    Google Scholar 

  58. Hoppeler H (1986) Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med 7:187–204

    Article  PubMed  CAS  Google Scholar 

  59. Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61:534–540

    Article  PubMed  Google Scholar 

  60. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  61. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022

    Article  PubMed  Google Scholar 

  62. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99:15983–15987

    Article  PubMed  CAS  Google Scholar 

  63. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–740

    Article  PubMed  CAS  Google Scholar 

  64. Schieke SM, Phillips D, McCoy JP Jr, Aponte AM, Shen RF, Balaban RS, Finkel T (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281:27643–27652

    Article  PubMed  CAS  Google Scholar 

  65. Reed SA, Sandesara PB, Senf SM, Judge AR (2012) Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 26:987–1000

    Google Scholar 

  66. Campello S, Scorrano L (2010) Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 11:678–684

    Article  PubMed  CAS  Google Scholar 

  67. Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497

    Article  PubMed  CAS  Google Scholar 

  68. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845

    Article  PubMed  CAS  Google Scholar 

  69. Benard G, Karbowski M (2009) Mitochondrial fusion and division: regulation and role in cell viability. Semin Cell Dev Biol 20:365–374

    Article  PubMed  CAS  Google Scholar 

  70. Romanello V, Sandri M (2010) Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep 12:433–439

    Google Scholar 

  71. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590

    Article  PubMed  CAS  Google Scholar 

  72. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862

    Article  PubMed  CAS  Google Scholar 

  73. Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52

    Article  PubMed  CAS  Google Scholar 

  74. Puppa MJ, White JP, Baltgalvis KA, Sato S, Baynes JW, Carson JA (2012) The effect of exercise on IL-6 induced cachexia in the ApcMin/+ mouse. J Cachexia Sarcopenia Muscle 3:117–37

    Google Scholar 

  75. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886

    Article  PubMed  CAS  Google Scholar 

  76. Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858

    Article  PubMed  CAS  Google Scholar 

  77. Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279:E806–E814

    PubMed  CAS  Google Scholar 

  78. Gordon JW, Rungi AA, Inagaki H, Hood DA (2001) Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 90:389–396

    Article  PubMed  CAS  Google Scholar 

  79. Bo H, Zhang Y, Ji LL (2010) Redefining the role of mitochondria in exercise: a dynamic remodeling. Ann N Y Acad Sci 1201:121–128

    Article  PubMed  CAS  Google Scholar 

  80. Cartoni R, Leger B, Hock MB, Praz M, Crettenand A, Pich S, Ziltener JL, Luthi F, Deriaz O, Zorzano A, Gobelet C, Kralli A, Russell AP (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567:349–358

    Article  PubMed  CAS  Google Scholar 

  81. Ding H, Jiang N, Liu H, Liu X, Liu D, Zhao F, Wen L, Liu S, Ji LL, Zhang Y (2010) Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim Biophys Acta 1800:250–256

    Google Scholar 

  82. Ford ES, Giles WH, Mokdad AH (2004) Increasing prevalence of the metabolic syndrome among U.S. adults. Diabetes Care 27:2444–2449

    Article  PubMed  Google Scholar 

  83. Asp ML, Tian M, Wendel AA, Belury MA (2010) Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int J Cancer 126:756–763

    Google Scholar 

  84. Dodesini AR, Benedini S, Terruzzi I, Sereni LP, Luzi L (2007) Protein, glucose and lipid metabolism in the cancer cachexia: a preliminary report. Acta Oncol 46:118–120

    Article  PubMed  CAS  Google Scholar 

  85. Holroyde CP, Skutches CL, Boden G, Reichard GA (1984) Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res 44:5910–5913

    PubMed  CAS  Google Scholar 

  86. Lelbach A, Muzes G, Feher J (2007) Current perspectives of catabolic mediators of cancer cachexia. Med Sci Monit 13:RA168–RA173

    PubMed  CAS  Google Scholar 

  87. Fantus IG (2011) Insulin resistance and cancer: epidemiology, cellular and molecular mechanisms, and clinical implications. Springer, New York, p xi, 298

    Google Scholar 

  88. Colangelo LA, Gapstur SM, Gann PH, Dyer AR, Liu K (2002) Colorectal cancer mortality and factors related to the insulin resistance syndrome. Cancer Epidemiol Biomarkers Prev 11:385–391

    PubMed  Google Scholar 

  89. Lundholm K, Korner U, Gunnebo L, Sixt-Ammilon P, Fouladiun M, Daneryd P, Bosaeus I (2007) Insulin treatment in cancer cachexia: effects on survival, metabolism, and physical functioning. Clin Cancer Res 13:2699–2706

    Article  PubMed  CAS  Google Scholar 

  90. Piffar PM, Fernandez R, Tchaikovski O, Hirabara SM, Folador A, Pinto GJ, Jakobi S, Gobbo-Bordon D, Rohn TV, Fabricio VE, Moretto KD, Tosta E, Curi R, Fernandes LC (2003) Naproxen, clenbuterol and insulin administration ameliorates cancer cachexia and reduce tumor growth in Walker 256 tumor-bearing rats. Cancer Lett 201:139–148

    Article  PubMed  CAS  Google Scholar 

  91. Tomimoto A, Endo H, Sugiyama M, Fujisawa T, Hosono K, Takahashi H, Nakajima N, Nagashima Y, Wada K, Nakagama H, Nakajima A (2008) Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci 99:2136–2141

    Article  PubMed  CAS  Google Scholar 

  92. Kondo T, Kobayashi I, Murakami M (2006) Effect of exercise on circulating adipokine levels in obese young women. Endocr J 53:189–195

    Article  PubMed  CAS  Google Scholar 

  93. Mattusch F, Dufaux B, Heine O, Mertens I, Rost R (2000) Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int J Sports Med 21:21–24

    Article  PubMed  CAS  Google Scholar 

  94. Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    PubMed  CAS  Google Scholar 

  95. Mole PA, Oscai LB, Holloszy JO (1971) Adaptation of muscle to exercise. Increase in levels of palmityl Coa synthetase, carnitine palmityltransferase, and palmityl Coa dehydrogenase, and in the capacity to oxidize fatty acids. J Clin Invest 50:2323–2330

    Article  PubMed  CAS  Google Scholar 

  96. Oscai LB, Holloszy JO (1971) Biochemical adaptations in muscle. II. Response of mitochondrial adenosine triphosphatase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise. J Biol Chem 246:6968–6972

    PubMed  CAS  Google Scholar 

  97. Houmard JA, Shaw CD, Hickey MS, Tanner CJ (1999) Effect of short-term exercise training on insulin-stimulated PI 3-kinase activity in human skeletal muscle. Am J Physiol 277:E1055–E1060

    PubMed  CAS  Google Scholar 

  98. Hawley JA (2004) Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev 20:383–393

    Article  PubMed  CAS  Google Scholar 

  99. Bradley RL, Jeon JY, Liu FF, Maratos-Flier E (2008) Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 295:E586–E594

    Article  PubMed  CAS  Google Scholar 

  100. Duncan GE, Perri MG, Theriaque DW, Hutson AD, Eckel RH, Stacpoole PW (2003) Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults. Diabetes Care 26:557–562

    Article  PubMed  CAS  Google Scholar 

  101. Boudou P, Sobngwi E, Mauvais-Jarvis F, Vexiau P, Gautier JF (2003) Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men. Eur J Endocrinol 149:421–424

    Article  PubMed  CAS  Google Scholar 

  102. Mourier A, Gautier JF, De Kerviler E, Bigard AX, Villette JM, Garnier JP, Duvallet A, Guezennec CY, Cathelineau G (1997) Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements. Diabetes Care 20:385–391

    Article  PubMed  CAS  Google Scholar 

  103. Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slordahl SA, Kemi OJ, Najjar SM, Wisloff U (2008) Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118:346–354

    Article  PubMed  Google Scholar 

  104. Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL (1995) Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95:2195–2204

    Article  PubMed  CAS  Google Scholar 

  105. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  106. Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80:1–6

    Article  PubMed  CAS  Google Scholar 

  107. Lanza IR, Nair KS (2009) Functional assessment of isolated mitochondria in vitro. Methods Enzymol 457:349–372

    Article  PubMed  CAS  Google Scholar 

  108. Chomentowski P, Coen PM, Radikova Z, Goodpaster BH, Toledo FG (2011) Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metabol 96:494–503

    Google Scholar 

  109. Brozinick JT Jr, Etgen GJ Jr, Yaspelkis BB III, Ivy JL (1992) Contraction-activated glucose uptake is normal in insulin-resistant muscle of the obese Zucker rat. J Appl Physiol 73:382–387

    PubMed  CAS  Google Scholar 

  110. King PA, Betts JJ, Horton ED, Horton ES (1993) Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscle. Am J Physiol 265:R447–R452

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Robert Price (University of South Carolina School of Medicine) for assisting with the electron microscopy images. This work is supported by the National Institutes of Health (NCI) RO1CA121249 to James Carson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Carson Ph.D., FACSM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carson, J.A., Puppa, M.J. (2013). Biological Pathways Impacting Cancer Survival: Exercise as a Countermeasure for the Development and Progression of Cachexia. In: Ulrich, C., Steindorf, K., Berger, N. (eds) Exercise, Energy Balance, and Cancer. Energy Balance and Cancer, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4493-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4493-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4492-3

  • Online ISBN: 978-1-4614-4493-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics