Skip to main content

Immunobiology of Dendritic Cells and the Influence of HIV Infection

  • Chapter
  • First Online:
Book cover HIV Interactions with Dendritic Cells

Abstract

Recent progress in phenotyping of human dendritic cells (DCs) has allowed a closer alignment of the classification and functions of murine and human dendritic cell subsets. Marked differences in the functions of these human DC subsets and their response to HIV infection have become apparent, relevant to HIV pathogenesis and vaccine and microbicide development. Systems biology approaches to studying HIV uptake and infection of dendritic cells has revealed how markedly HIV subverts their functions, especially in relation to the trafficking pathways and viral transfer to T cells. Furthermore the interactions between DCs and other innate immune cells, NK cells, NKT cells and gamma delta T cells are now known to influence DC and T cell function and are also disturbed by HIV infection in vitro and in vivo. Such cellular interactions are potential targets for vaccine adjuvants and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts S, Van Loo P, Thijs G, Mayer H, de Martin R, Moreau Y, De Moor B (2005) OUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucleic Acids Res 33(Web Server issue):W393–W396. doi:33/suppl_2/W393 [pii] 10.1093/nar/gki354

    PubMed  CAS  Google Scholar 

  • Allan JS, Coligan JE, Barin F, McLane MF, Sodroski JG, Rosen CA, Haseltine WA, Lee TH, Essex M (1985) Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228(4703):1091–1094

    PubMed  CAS  Google Scholar 

  • Alter G, Altfeld M (2011) Mutiny or scrutiny: NK cell modulation of DC function in HIV-1 infection. Trends Immunol 32(5):219–224. doi:10.1016/j.it.2011.02.003

    PubMed  CAS  Google Scholar 

  • Alters SE, Gadea JR, Holm B, Lebkowski J, Philip R (1999) IL-13 can substitute for IL-4 in the generation of dendritic cells for the induction of cytotoxic T lymphocytes and gene therapy. J Immunother 22(3):229–236

    PubMed  CAS  Google Scholar 

  • Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296(5571):1323–1326. doi:10.1126/science.1070884

    PubMed  CAS  Google Scholar 

  • Asselin-Paturel C, Brizard G, Pin JJ, Briere F, Trinchieri G (2003) Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 171(12):6466–6477

    PubMed  CAS  Google Scholar 

  • Auffray C, Fogg DK, Narni-Mancinelli E, Senechal B, Trouillet C, Saederup N, Leemput J, Bigot K, Campisi L, Abitbol M, Molina T, Charo I, Hume DA, Cumano A, Lauvau G, Geissmann F (2009) CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 206(3):595–606. doi:10.1084/jem.20081385

    PubMed  CAS  Google Scholar 

  • Bajenoff M, Breart B, Huang AY, Qi H, Cazareth J, Braud VM, Germain RN, Glaichenhaus N (2006) Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med 203(3):619–631. doi:10.1084/jem.20051474

    PubMed  CAS  Google Scholar 

  • Barreira da Silva R, Munz C (2011) Natural killer cell activation by dendritic cells: balancing inhibitory and activating signals. Cell Mol Life Sci 68(21):3505–3518. doi:10.1007/s00018-011-0801-8

    PubMed  CAS  Google Scholar 

  • Bernhard OK, Lai J, Wilkinson J, Sheil MM, Cunningham AL (2004) Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4. J Biol Chem 279(50):51828–51835. doi:10.1074/jbc.M402741200 M402741200 [pii]

    PubMed  CAS  Google Scholar 

  • Boasso A, Royle CM, Doumazos S, Aquino VN, Biasin M, Piacentini L, Tavano B, Fuchs D, Mazzotta F, Lo Caputo S, Shearer GM, Clerici M, Graham DR (2011) Overactivation of plasmacytoid dendritic cells inhibits antiviral T-cell responses: a model for HIV immunopathogenesis. Blood 118(19):5152–5162. doi:10.1182/blood-2011-03-344218

    PubMed  CAS  Google Scholar 

  • Bogunovic M, Ginhoux F, Wagers A, Loubeau M, Isola LM, Lubrano L, Najfeld V, Phelps RG, Grosskreutz C, Scigliano E, Frenette PS, Merad M (2006) Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. J Exp Med 203(12):2627–2638. doi:10.1084/jem.20060667

    PubMed  CAS  Google Scholar 

  • Bonardi V, Cherkis K, Nishimura MT, Dangl JL (2012) A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 24(1):41–50. doi:10.1016/j.coi.2011.12.006

    PubMed  CAS  Google Scholar 

  • Bonjardim CA, Ferreira PC, Kroon EG (2009) Interferons: signaling, antiviral and viral evasion. Immunol Lett 122(1):1–11. doi:10.1016/j.imlet.2008.11.002

    PubMed  CAS  Google Scholar 

  • Bosnjak L, Miranda-Saksena M, Koelle DM, Boadle RA, Jones CA, Cunningham AL (2005) Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 174(4):2220–2227

    PubMed  CAS  Google Scholar 

  • Breloer M, Fleischer B (2008) CD83 regulates lymphocyte maturation, activation and homeostasis. Trends Immunol 29(4):186–194. doi:10.1016/j.it.2008.01.009

    PubMed  CAS  Google Scholar 

  • Brilot F, Strowig T, Munz C (2008) NK cells interactions with dendritic cells shape innate and adaptive immunity. Front Biosci 13:6443–6454. doi:3165 [pii]

    PubMed  CAS  Google Scholar 

  • Bukowski JF, Morita CT, Brenner MB (1999) Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11(1):57–65

    PubMed  CAS  Google Scholar 

  • Cambi A, Gijzen K, de Vries JM, Torensma R, Joosten B, Adema GJ, Netea MG, Kullberg BJ, Romani L, Figdor CG (2003) The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33(2):532–538. doi:10.1002/immu.200310029

    PubMed  CAS  Google Scholar 

  • Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257(5068):383–387

    PubMed  CAS  Google Scholar 

  • Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L, Ferlazzo G (2008) Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(−) cells and display an impaired capability to kill tumor cells. Cancer 112(4):863–875. doi:10.1002/cncr.23239

    PubMed  Google Scholar 

  • Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360(6401):258–261. doi:10.1038/360258a0

    PubMed  CAS  Google Scholar 

  • Caux C, Massacrier C, Dubois B, Valladeau J, Dezutter-Dambuyant C, Durand I, Schmitt D, Saeland S (1999) Respective involvement of TGF-beta and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors. J Leukoc Biol 66(5):781–791

    PubMed  CAS  Google Scholar 

  • Cederarv M, Soderberg-Naucler C, Odeberg J (2009) HCMV infection of PDCs deviates the NK cell response into cytokine-producing cells unable to perform cytotoxicity. Immunobiology 214(5):331–341. doi:S0171-2985(08)00139-3 [pii] 10.1016/j.imbio.2008.10.009

    PubMed  CAS  Google Scholar 

  • Chatwell L, Holla A, Kaufer BB, Skerra A (2008) The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45(7):1981–1994. doi:S0161-5890(07)00819-X [pii]10.1016/j.molimm.2007.10.030

    PubMed  CAS  Google Scholar 

  • Chehimi J, Campbell DE, Azzoni L, Bacheller D, Papasavvas E, Jerandi G, Mounzer K, Kostman J, Trinchieri G, Montaner LJ (2002) Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol 168(9):4796–4801

    PubMed  CAS  Google Scholar 

  • Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, Longhi MP, Jeffrey KL, Anthony RM, Kluger C, Nchinda G, Koh H, Rodriguez A, Idoyaga J, Pack M, Velinzon K, Park CG, Steinman RM (2010) Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143(3):416–429. doi:10.1016/j.cell.2010.09.039

    PubMed  CAS  Google Scholar 

  • Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226. doi:ni1141 [pii]10.1038/ni1141

    PubMed  CAS  Google Scholar 

  • Conry SJ, Milkovich KA, Yonkers NL, Rodriguez B, Bernstein HB, Asaad R, Heinzel FP, Tary-Lehmann M, Lederman MM, Anthony DD (2009) Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic human immunodeficiency virus infection attributable to impairments in both PDC and NK cell function. J Virol 83(21):11175–11187. doi:JVI.00753-09 [pii] 10.1128/JVI.00753-09

    PubMed  CAS  Google Scholar 

  • Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F, Poccia F, Gessani S (2005) Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J Immunol 174(1):252–260

    PubMed  CAS  Google Scholar 

  • Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C, Jais JP, D’Cruz D, Casanova JL, Trouillet C, Geissmann F (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33(3):375–386. doi:10.1016/j.immuni.2010.08.012

    PubMed  CAS  Google Scholar 

  • Cumberbatch M, Singh M, Dearman RJ, Young HS, Kimber I, Griffiths CE (2006) Impaired Langerhans cell migration in psoriasis. J Exp Med 203(4):953–960. doi:10.1084/jem.20052367

    PubMed  CAS  Google Scholar 

  • Cunningham AL, Carbone F, Geijtenbeek TB (2008) Langerhans cells and viral immunity. Eur J Immunol 38(9):2377–2385. doi:10.1002/eji.200838521

    PubMed  CAS  Google Scholar 

  • Cunningham AL, Donaghy H, Harman AN, Kim M, Turville SG (2010) Manipulation of dendritic cell function by viruses. Curr Opin Microbiol 13(4):524–529. doi:10.1016/j.mib.2010.06.002

    PubMed  CAS  Google Scholar 

  • de Jong MA, de Witte L, Oudhoff MJ, Gringhuis SI, Gallay P, Geijtenbeek TB (2008) TNF-alpha and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J Clin Invest 118(10):3440–3452. doi:10.1172/JCI34721

    PubMed  Google Scholar 

  • de Jong MA, de Witte L, Santegoets SJ, Fluitsma D, Taylor ME, de Gruijl TD, Geijtenbeek TB (2010a) Mutz-3-derived Langerhans cells are a model to study HIV-1 transmission and potential inhibitors. J Leukoc Biol 87(4):637–643. doi:jlb.0809577 [pii] 10.1189/jlb.0809577

    PubMed  Google Scholar 

  • de Jong MA, Vriend LE, Theelen B, Taylor ME, Fluitsma D, Boekhout T, Geijtenbeek TB (2010b) C-type lectin Langerin is a beta-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol Immunol 47(6):1216–1225. doi:S0161-5890(09)00889-X [pii] 10.1016/j.molimm.2009.12.016

    PubMed  Google Scholar 

  • de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, de Vries JE (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174(4):915–924

    PubMed  Google Scholar 

  • de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13(3):367–371. doi:10.1038/nm1541

    PubMed  Google Scholar 

  • Della Chiesa M, Romagnani C, Thiel A, Moretta L, Moretta A (2006) Multidirectional interactions are bridging human NK cells with plasmacytoid and monocyte-derived dendritic cells during innate immune responses. Blood 108(12):3851–3858. doi:10.1182/blood-2006-02-004028

    PubMed  CAS  Google Scholar 

  • Doehle BP, Hladik F, McNevin JP, McElrath MJ, Gale M Jr (2009) Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells. J Virol 83(20):10395–10405. doi:10.1128/JVI.00849-09

    PubMed  CAS  Google Scholar 

  • Dominguez-Soto A, Aragoneses-Fenoll L, Martin-Gayo E, Martinez-Prats L, Colmenares M, Naranjo-Gomez M, Borras FE, Munoz P, Zubiaur M, Toribio ML, Delgado R, Corbi AL (2007) The DC-SIGN-related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood 109(12):5337–5345. doi:blood-2006-09-048058 [pii] 10.1182/blood-2006-09-048058

    PubMed  CAS  Google Scholar 

  • Donaghy H, Bosnjak L, Harman AN, Marsden V, Tyring SK, Meng TC, Cunningham AL (2009) Role for plasmacytoid dendritic cells in the immune control of recurrent human herpes simplex virus infection. J Virol 83(4):1952–1961. doi:10.1128/JVI.01578-08

    PubMed  CAS  Google Scholar 

  • Draghi M, Pashine A, Sanjanwala B, Gendzekhadze K, Cantoni C, Cosman D, Moretta A, Valiante NM, Parham P (2007) NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection. J Immunol 178(5):2688–2698. doi:178/5/2688 [pii]

    PubMed  CAS  Google Scholar 

  • Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263(20):9557–9560

    PubMed  CAS  Google Scholar 

  • Dustin ML, Colman DR (2002) Neural and immunological synaptic relations. Science 298(5594):785–789. doi:10.1126/science.1076386

    PubMed  CAS  Google Scholar 

  • East L, Isacke CM (2002) The mannose receptor family. Biochim Biophys Acta 1572(2–3):364–386. doi:S0304416502003197 [pii]

    PubMed  CAS  Google Scholar 

  • Eidsmo L, Allan R, Caminschi I, van Rooijen N, Heath WR, Carbone FR (2009) Differential migration of epidermal and dermal dendritic cells during skin infection. J Immunol 182(5):3165–3172. doi:10.4049/jimmunol.0802950

    PubMed  CAS  Google Scholar 

  • Fackler OT, Alcover A, Schwartz O (2007) Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 7(4):310–317. doi:10.1038/nri2041

    PubMed  CAS  Google Scholar 

  • Fahrbach KM, Barry SM, Ayehunie S, Lamore S, Klausner M, Hope TJ (2007) Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virol 81(13):6858–6868. doi:10.1128/JVI.02472-06

    PubMed  CAS  Google Scholar 

  • Fantuzzi L, Purificato C, Donato K, Belardelli F, Gessani S (2004) Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol 78(18):9763–9772. doi:10.1128/JVI.78.18.9763-9772.2004

    PubMed  CAS  Google Scholar 

  • Feinberg H, Powlesland AS, Taylor ME, Weis WI (2010) Trimeric structure of langerin. J Biol Chem 285(17):13285–13293. doi:M109.086058 [pii] 10.1074/jbc.M109.086058

    PubMed  CAS  Google Scholar 

  • Feldman S, Stein D, Amrute S, Denny T, Garcia Z, Kloser P, Sun Y, Megjugorac N, Fitzgerald-Bocarsly P (2001a) Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 101(2):201–210. doi:10.1006/clim.2001.5111 S1521-6616(01)95111-3 [pii]

    PubMed  CAS  Google Scholar 

  • Feldman S, Stein D, Amrute S, Denny T, Garcia Z, Kloser P, Sun Y, Megjugorac N, Fitzgerald-Bocarsly P (2001b) Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 101(2):201–210. doi:10.1006/clim.2001.5111

    PubMed  CAS  Google Scholar 

  • Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, Fu J, Hartnell LM, Ruthel GT, Schneider DK, Nagashima K, Bess JW Jr, Bavari S, Lowekamp BC, Bliss D, Lifson JD, Subramaniam S (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A 107(30):13336–13341. doi:10.1073/pnas.1003040107

    PubMed  CAS  Google Scholar 

  • Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T, Bougras G, Muller WA, Moretta L, Munz C (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A 101(47):16606–16611. doi:10.1073/pnas.0407522101

    PubMed  CAS  Google Scholar 

  • Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2(2):77–84. doi:10.1038/nri723

    PubMed  CAS  Google Scholar 

  • Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O’Garra A (1991) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146(10):3444–3451

    PubMed  CAS  Google Scholar 

  • Fonteneau JF, Kavanagh DG, Lirvall M, Sanders C, Cover TL, Bhardwaj N, Larsson M (2003) Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood 102(13):4448–4455. doi:10.1182/blood-2003-06-1801

    PubMed  CAS  Google Scholar 

  • Fonteneau JF, Larsson M, Beignon AS, McKenna K, Dasilva I, Amara A, Liu YJ, Lifson JD, Littman DR, Bhardwaj N (2004) Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 78(10):5223–5232

    PubMed  CAS  Google Scholar 

  • Frank I, Piatak M Jr, Stoessel H, Romani N, Bonnyay D, Lifson JD, Pope M (2002) Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J Virol 76(6):2936–2951

    PubMed  CAS  Google Scholar 

  • Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, Leuba F, Escola JM, Demaurex N, Marsh M, Piguet V (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6(6):488–501. doi:10.1111/j.1600-0854.2005.00293.x

    PubMed  CAS  Google Scholar 

  • Garcia E, Nikolic DS, Piguet V (2008) HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3. Traffic 9(2):200–214. doi:10.1111/j.1600-0854.2007.00678.x

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5):587–597. doi:S0092-8674(00)80694-7 [pii]

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100(5):575–585

    PubMed  CAS  Google Scholar 

  • Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O (1998) Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 187(6):961–966

    PubMed  CAS  Google Scholar 

  • Gerosa F, Gobbi A, Zorzi P, Burg S, Briere F, Carra G, Trinchieri G (2005) The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 174(2):727–734

    PubMed  CAS  Google Scholar 

  • Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, Ochando J, Kissenpfennig A, Malissen B, Grisotto M, Snoeck H, Randolph G, Merad M (2007) Blood-derived dermal langerin  +  dendritic cells survey the skin in the steady state. J Exp Med 204(13):3133–3146. doi:10.1084/jem.20071733

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM (2004) HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101(20):7669–7674. doi:10.1073/pnas.0402431101

    PubMed  CAS  Google Scholar 

  • Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ (1997) The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185(6):1101–1111

    PubMed  CAS  Google Scholar 

  • Gupta P, Collins KB, Ratner D, Watkins S, Naus GJ, Landers DV, Patterson BK (2002) Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J Virol 76(19):9868–9876

    PubMed  CAS  Google Scholar 

  • Hanna J, Mandelboim O (2007) When killers become helpers. Trends Immunol 28(5):201–206. doi:10.1016/j.it.2007.03.005

    PubMed  CAS  Google Scholar 

  • Hanna J, Gonen-Gross T, Fitchett J, Rowe T, Daniels M, Arnon TI, Gazit R, Joseph A, Schjetne KW, Steinle A, Porgador A, Mevorach D, Goldman-Wohl D, Yagel S, LaBarre MJ, Buckner JH, Mandelboim O (2004) Novel APC-like properties of human NK cells directly regulate T cell activation. J Clin Invest 114(11):1612–1623. doi:10.1172/JCI22787

    PubMed  CAS  Google Scholar 

  • Harbison CE, Lyi SM, Weichert WS, Parrish CR (2009) Early steps in cell infection by parvoviruses: host-specific differences in cell receptor binding but similar endosomal trafficking. J Virol 83(20):10504–10514. doi:10.1128/JVI.00295-09

    PubMed  CAS  Google Scholar 

  • Harman AN, Wilkinson J, Bye CR, Bosnjak L, Stern JL, Nicholle M, Lai J, Cunningham AL (2006) HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J Immunol 177(10):7103–7113

    PubMed  CAS  Google Scholar 

  • Harman AN, Kraus M, Bye CR, Byth K, Turville SG, Tang O, Mercier SK, Nasr N, Stern JL, Slobedman B, Driessen C, Cunningham AL (2009) HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 114(1):85–94. doi:10.1182/blood-2008-12-194845

    PubMed  CAS  Google Scholar 

  • Harman AN, Lai J, Turville S, Samarajiwa S, Gray L, Marsden V, Mercier SK, Jones K, Nasr N, Rustagi A, Cumming H, Donaghy H, Mak J, Gale M Jr, Churchill M, Hertzog P, Cunningham AL (2011) HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood 118(2):298–308. doi:10.1182/blood-2010-07-297721

    PubMed  CAS  Google Scholar 

  • Harman AN, Lai J, Turville S, Samarajiwa S, Gray L, Marsden V, Mercier S, Jones K, Nasr N, Cumming H, Donaghy H, Mak J, Churchill M, Hertzog P, Cunningham AL (2011b) HIV infection of dendritic cells subverts the interferon induction pathway via IRFI and inhibits Type 1 interferon production. Blood 118(2):298–308

    PubMed  CAS  Google Scholar 

  • Hart OM, Athie-Morales V, O’Connor GM, Gardiner CM (2005) TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunol 175(3):1636–1642

    PubMed  CAS  Google Scholar 

  • Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171(10):5140–5147

    PubMed  CAS  Google Scholar 

  • Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, McElrath MJ (2007) Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 26(2):257–270. doi:10.1016/j.immuni.2007.01.007

    PubMed  CAS  Google Scholar 

  • Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O, Drakesmith H, Davies K, Kessler B, McMichael A, Simmons A (2007) Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8(6):569–577. doi:10.1038/ni1470

    PubMed  CAS  Google Scholar 

  • Hu ZB, Ma W, Zaborski M, MacLeod R, Quentmeier H, Drexler HG (1996) Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia 10(6):1025–1040

    PubMed  CAS  Google Scholar 

  • Hume DA, Summers KM, Raza S, Baillie JK, Freeman TC (2010) Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics 95(6):328–338. doi:10.1016/j.ygeno.2010.03.002

    PubMed  CAS  Google Scholar 

  • Ismaili J, Olislagers V, Poupot R, Fournie JJ, Goldman M (2002) Human gamma delta T cells induce dendritic cell maturation. Clin Immunol 103(3 Pt 1):296–302

    PubMed  CAS  Google Scholar 

  • Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375(6527):151–155. doi:10.1038/375151a0

    PubMed  CAS  Google Scholar 

  • Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S, Whitney JA, Connolly J, Banchereau J, Mellman I (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27(4):610–624. doi:10.1016/j.immuni.2007.08.015

    PubMed  Google Scholar 

  • Ju X, Clark G, Hart DN (2010) Review of human DC subtypes. Methods Mol Biol 595:3–20. doi:10.1007/978-1-60761-421-0_1

    PubMed  Google Scholar 

  • Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192(2):219–226

    PubMed  CAS  Google Scholar 

  • Kalb ML, Glaser A, Stary G, Koszik F, Stingl G (2012) TRAIL(+) human plasmacytoid dendritic cells kill tumor cells in vitro: mechanisms of imiquimod- and IFN-alpha-mediated antitumor reactivity. J Immunol 188(4):1583–1591. doi:10.4049/jimmunol.1102437

    PubMed  CAS  Google Scholar 

  • Kalinski P, Mailliard RB, Giermasz A, Zeh HJ, Basse P, Bartlett DL, Kirkwood JM, Lotze MT, Herberman RB (2005) Natural killer-dendritic cell cross-talk in cancer immunotherapy. Expert Opin Biol Ther 5(10):1303–1315. doi:10.1517/14712598.5.10.1303

    PubMed  CAS  Google Scholar 

  • Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ (2005) Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23(6):611–620. doi:10.1016/j.immuni.2005.10.008

    PubMed  CAS  Google Scholar 

  • Kassim SH, Rajasagi NK, Ritz BW, Pruett SB, Gardner EM, Chervenak R, Jennings SR (2009) Dendritic cells are required for optimal activation of natural killer functions following primary infection with herpes simplex virus type 1. J Virol 83(7):3175–3186. doi:JVI.01907-08 [pii] 10.1128/JVI.01907-08

    PubMed  CAS  Google Scholar 

  • Kawamura T, Gulden FO, Sugaya M, McNamara DT, Borris DL, Lederman MM, Orenstein JM, Zimmerman PA, Blauvelt A (2003) R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc Natl Acad Sci U S A 100(14):8401–8406. doi:10.1073/pnas.1432450100

    PubMed  CAS  Google Scholar 

  • Kawamura K, Kadowaki N, Kitawaki T, Uchiyama T (2006) Virus-stimulated plasmacytoid dendritic cells induce CD4+ cytotoxic regulatory T cells. Blood 107(3):1031–1038. doi:10.1182/blood-2005-04-1737

    PubMed  CAS  Google Scholar 

  • Kawamura T, Koyanagi Y, Nakamura Y, Ogawa Y, Yamashita A, Iwamoto T, Ito M, Blauvelt A, Shimada S (2008) Significant virus replication in Langerhans cells following application of HIV to abraded skin: relevance to occupational transmission of HIV. J Immunol 180(5):3297–3304

    PubMed  CAS  Google Scholar 

  • Khoo US, Chan KY, Chan VS, Lin CL (2008) DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med 86(8):861–874. doi:10.1007/s00109-008-0350-2

    PubMed  CAS  Google Scholar 

  • Kim M, Osborne NR, Zeng W, Donaghy H, Jackson DC, Cunningham AL (2012) NK-CD4 lymphocyte interaction plays a major role in crosstalk with dendritic cells in response to Herpes simplex viral lantigens. J Immunol 188(9): 4158–4170

    Google Scholar 

  • Kornblihtt AR, Umezawa K, Vibe-Pedersen K, Baralle FE (1985) Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J 4(7):1755–1759

    PubMed  CAS  Google Scholar 

  • Laffont S, Seillet C, Ortaldo J, Coudert JD, Guery JC (2008) Natural killer cells recruited into lymph nodes inhibit alloreactive T-cell activation through perforin-mediated killing of donor allogeneic dendritic cells. Blood 112(3):661–671. doi:10.1182/blood-2007-10-120089

    PubMed  CAS  Google Scholar 

  • Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657. doi:10.1038/nature10117

    PubMed  CAS  Google Scholar 

  • Lai J, Bernhard OK, Turville SG, Harman AN, Wilkinson J, Cunningham AL (2009) Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1. J Biol Chem 284(17):11027–11038. doi:10.1074/jbc.M809698200

    PubMed  CAS  Google Scholar 

  • Lambert AA, Gilbert C, Richard M, Beaulieu AD, Tremblay MJ (2008) The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood 112(4):1299–1307. doi:10.1182/blood-2008-01-136473

    PubMed  CAS  Google Scholar 

  • Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH (1986) The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136(12):4480–4486

    PubMed  CAS  Google Scholar 

  • Larregina AT, Morelli AE, Spencer LA, Logar AJ, Watkins SC, Thomson AW, Falo LD Jr (2001) Dermal-resident CD14+ cells differentiate into Langerhans cells. Nat Immunol 2(12):1151–1158. doi:10.1038/ni731

    PubMed  CAS  Google Scholar 

  • Larsson M, Fonteneau JF, Lirvall M, Haslett P, Lifson JD, Bhardwaj N (2002) Activation of HIV-1 specific CD4 and CD8 T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus. AIDS 16(10):1319–1329

    PubMed  CAS  Google Scholar 

  • Lauwerys BR, Garot N, Renauld JC, Houssiau FA (2000) Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol 165(4):1847–1853

    PubMed  CAS  Google Scholar 

  • Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS (2002) T cell receptor signaling precedes immunological synapse formation. Science 295(5559):1539–1542. doi:10.1126/science.1067710

    PubMed  CAS  Google Scholar 

  • Leslie DS, Vincent MS, Spada FM, Das H, Sugita M, Morita CT, Brenner MB (2002) CD1-mediated gamma/delta T cell maturation of dendritic cells. J Exp Med 196(12):1575–1584

    PubMed  CAS  Google Scholar 

  • Liu K, Nussenzweig MC (2010) Origin and development of dendritic cells. Immunol Rev 234(1):45–54. doi:10.1111/j.0105-2896.2009.00879.x

    PubMed  CAS  Google Scholar 

  • Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, Chu FF, Randolph GJ, Rudensky AY, Nussenzweig M (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324(5925):392–397. doi:10.1126/science.1170540

    PubMed  CAS  Google Scholar 

  • Lonati A, Mommaas MA, Pasolini G, Lavazza A, Rowden G, De Panfilis G (1996) Macrophages, but not Langerhans cell-like cells of dendritic lineage, express the CD36 molecule in normal human dermis: relevance to downregulatory cutaneous immune responses? J Invest Dermatol 106(1):96–101

    PubMed  CAS  Google Scholar 

  • Lopez C, Fitzgerald PA, Siegal FP (1983) Severe acquired immune deficiency syndrome in male homosexuals: diminished capacity to make interferon-alpha in vitro associated with severe opportunistic infections. J Infect Dis 148(6):962–966

    PubMed  CAS  Google Scholar 

  • Lopez-Herrera A, Liu Y, Rugeles MT, He JJ (2005) HIV-1 interaction with human mannose receptor (hMR) induces production of matrix metalloproteinase 2 (MMP-2) through hMR-mediated intracellular signaling in astrocytes. Biochim Biophys Acta 1741(1–2):55–64. doi:10.1016/j.bbadis.2004.12.001

    PubMed  CAS  Google Scholar 

  • Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA (2005) Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201(12):2023–2033. doi:jem.20042413 [pii] 10.1084/jem.20042413

    PubMed  CAS  Google Scholar 

  • Loser K, Beissert S (2007) Dendritic cells and T cells in the regulation of cutaneous immunity. Adv Dermatol 23:307–333

    PubMed  Google Scholar 

  • Lund JM, Linehan MM, Iijima N, Iwasaki A (2006) Cutting edge: plasmacytoid dendritic cells provide innate immune protection against mucosal viral infection in situ. J Immunol 177(11):7510–7514

    PubMed  CAS  Google Scholar 

  • MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN (2002) Characterization of human blood dendritic cell subsets. Blood 100(13):4512–4520. doi:10.1182/blood-2001-11-0097

    PubMed  CAS  Google Scholar 

  • Martinelli E, Cicala C, Van Ryk D, Goode DJ, Macleod K, Arthos J, Fauci AS (2007) HIV-1 gp120 inhibits TLR9-mediated activation and IFN-{alpha} secretion in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 104(9):3396–3401. doi:10.1073/pnas.0611353104

    PubMed  CAS  Google Scholar 

  • Mavilio D, Lombardo G, Kinter A, Fogli M, La Sala A, Ortolano S, Farschi A, Follmann D, Gregg R, Kovacs C, Marcenaro E, Pende D, Moretta A, Fauci AS (2006) Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J Exp Med 203(10):2339–2350. doi:10.1084/jem.20060894

    PubMed  CAS  Google Scholar 

  • Mayerova D, Parke EA, Bursch LS, Odumade OA, Hogquist KA (2004) Langerhans cells activate naive self-antigen-specific CD8 T cells in the steady state. Immunity 21(3):391–400. doi:10.1016/j.immuni.2004.07.019

    PubMed  CAS  Google Scholar 

  • McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300(5623):1295–1297. doi:10.1126/science.1084238

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, Libby P, Hansson GK, Shortman K, Dong C, Gabrilovich D, Gabrysova L, Howes A, O’Garra A (2011) Highlights of 10 years of immunology in Nature Reviews Immunology. Nat Rev Immunol 11(10):693–702. doi:10.1038/nri3063

    PubMed  CAS  Google Scholar 

  • Melki MT, Saidi H, Dufour A, Olivo-Marin JC, Gougeon ML (2010) Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk—a pivotal role of HMGB1. PLoS Pathog 6(4):e1000862. doi:10.1371/journal.ppat.1000862

    PubMed  Google Scholar 

  • Miller CJ (1998) Localization of simian immunodeficiency virus-infected cells in the genital tract of male and female rhesus macaques. J Reprod Immunol 41(1–2):331–339

    PubMed  CAS  Google Scholar 

  • Miller CJ, Hu J (1999) T cell-tropic simian immunodeficiency virus (SIV) and simian-human immunodeficiency viruses are readily transmitted by vaginal inoculation of rhesus macaques, and Langerhans’ cells of the female genital tract are infected with SIV. J Infect Dis 179(Suppl 3):S413–S417. doi:10.1086/314795

    PubMed  Google Scholar 

  • Morandi B, Bougras G, Muller WA, Ferlazzo G, Munz C (2006) NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-gamma secretion. Eur J Immunol 36(9):2394–2400. doi:10.1002/eji.200636290

    PubMed  CAS  Google Scholar 

  • Moretta A (2005) The dialogue between human natural killer cells and dendritic cells. Curr Opin Immunol 17(3):306–311. doi:10.1016/j.coi.2005.03.004

    PubMed  CAS  Google Scholar 

  • Moretta L, Ferlazzo G, Bottino C, Vitale M, Pende D, Mingari MC, Moretta A (2006) Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev 214:219–228. doi:10.1111/j.1600-065X.2006.00450.x

    PubMed  CAS  Google Scholar 

  • Moris A, Pajot A, Blanchet F, Guivel-Benhassine F, Salcedo M, Schwartz O (2006) Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 108(5):1643–1651. doi:10.1182/blood-2006-02-006361

    PubMed  CAS  Google Scholar 

  • Morita CT, Li H, Lamphear JG, Rich RR, Fraser JD, Mariuzza RA, Lee HK (2001) Superantigen recognition by gammadelta T cells: SEA recognition site for human Vgamma2 T cell receptors. Immunity 14(3):331–344

    PubMed  CAS  Google Scholar 

  • Moszynski P (2007) Halt to microbicide trial sets back AIDS research. BMJ 334(7588):276

    PubMed  Google Scholar 

  • Mourao-Sa D, Robinson MJ, Zelenay S, Sancho D, Chakravarty P, Larsen R, Plantinga M, Van Rooijen N, Soares MP, Lambrecht B, Reis e Sousa C (2011) CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. Eur J Immunol 41(10):3040–3053. doi:10.1002/eji.201141641

    PubMed  CAS  Google Scholar 

  • Muthumani K, Hwang DS, Choo AY, Mayilvahanan S, Dayes NS, Thieu KP, Weiner DB (2005) HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17(2):103–116. doi:10.1093/intimm/dxh190

    PubMed  CAS  Google Scholar 

  • Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836. doi:10.1038/nri3084

    PubMed  CAS  Google Scholar 

  • Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ (1993) Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol 151(11):6535–6545

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Kawamura T, Kimura T, Ito M, Blauvelt A, Shimada S (2009) Gram-positive bacteria enhance HIV-1 susceptibility in Langerhans cells, but not in dendritic cells, via Toll-like receptor activation. Blood 113(21):5157–5166. doi:10.1182/blood-2008-10-185728

    PubMed  CAS  Google Scholar 

  • Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha PM (2008) HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373(1):85–97. doi:10.1016/j.virol.2007.10.042

    PubMed  CAS  Google Scholar 

  • Onoguchi K, Yoneyama M, Takemura A, Akira S, Taniguchi T, Namiki H, Fujita T (2007) Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282(10):7576–7581. doi:10.1074/jbc.M608618200

    PubMed  CAS  Google Scholar 

  • Otter M, Barrett-Bergshoeff MM, Rijken DC (1991) Binding of tissue-type plasminogen activator by the mannose receptor. J Biol Chem 266(21):13931–13935

    PubMed  CAS  Google Scholar 

  • Parronchi P, Mohapatra S, Sampognaro S, Giannarini L, Wahn U, Chong P, Maggi E, Renz H, Romagnani S (1996) Effects of interferon-alpha on cytokine profile, T cell receptor repertoire and peptide reactivity of human allergen-specific T cells. Eur J Immunol 26(3):697–703. doi:10.1002/eji.1830260328

    PubMed  CAS  Google Scholar 

  • Patterson S, Rae A, Hockey N, Gilmour J, Gotch F (2001) Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J Virol 75(14):6710–6713. doi:10.1128/JVI.75.14.6710-6713.2001

    PubMed  CAS  Google Scholar 

  • Pichlmair A, Reis e Sousa C (2007) Innate recognition of viruses. Immunity 27(3):370–383. doi:10.1016/j.immuni.2007.08.012

    PubMed  CAS  Google Scholar 

  • Piemonti L, Bernasconi S, Luini W, Trobonjaca Z, Minty A, Allavena P, Mantovani A (1995) IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF. Eur Cytokine Netw 6(4):245–252

    PubMed  CAS  Google Scholar 

  • Pohlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA (2003) Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77(7):4070–4080

    PubMed  CAS  Google Scholar 

  • Pollara G, Jones M, Handley ME, Rajpopat M, Kwan A, Coffin RS, Foster G, Chain B, Katz DR (2004) Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion. J Immunol 173(6):4108–4119

    PubMed  CAS  Google Scholar 

  • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C (2010) Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha  +  dendritic cells. J Exp Med 207(6):1261–1271. doi:10.1084/jem.20092618

    PubMed  CAS  Google Scholar 

  • Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282(5388):480–483

    PubMed  CAS  Google Scholar 

  • Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11(6):753–761

    PubMed  CAS  Google Scholar 

  • Randolph GJ, Sanchez-Schmitz G, Liebman RM, Schakel K (2002) The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 196(4):517–527

    PubMed  CAS  Google Scholar 

  • Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120(10):3421–3431. doi:10.1172/JCI42918

    PubMed  CAS  Google Scholar 

  • Rogge L, Barberis-Maino L, Biffi M, Passini N, Presky DH, Gubler U, Sinigaglia F (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185(5):825–831

    PubMed  CAS  Google Scholar 

  • Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180(1):83–93

    PubMed  CAS  Google Scholar 

  • Roseman DS, Baenziger JU (2000) Molecular basis of lutropin recognition by the mannose/GalNAc-4-SO4 receptor. Proc Natl Acad Sci U S A 97(18):9949–9954. doi:10.1073/pnas.170184597 170184597 [pii]

    PubMed  CAS  Google Scholar 

  • Saidi H, Melki MT, Gougeon ML (2008) HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk. PLoS One 3(10):e3601. doi:10.1371/journal.pone.0003601

    PubMed  Google Scholar 

  • Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    PubMed  CAS  Google Scholar 

  • Sancho D, Sousa E, Reis C (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491–529. doi:10.1146/annurev-immunol-031210-101352

    PubMed  CAS  Google Scholar 

  • Schakel K, von Kietzell M, Hansel A, Ebling A, Schulze L, Haase M, Semmler C, Sarfati M, Barclay AN, Randolph GJ, Meurer M, Rieber EP (2006) Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity 24(6):767–777. doi:10.1016/j.immuni.2006.03.020

    PubMed  Google Scholar 

  • Schleypen JS, Von Geldern M, Weiss EH, Kotzias N, Rohrmann K, Schendel DJ, Falk CS, Pohla H (2003) Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int J Cancer 106(6):905–912. doi:10.1002/ijc.11321

    PubMed  CAS  Google Scholar 

  • Schleypen JS, Baur N, Kammerer R, Nelson PJ, Rohrmann K, Grone EF, Hohenfellner M, Haferkamp A, Pohla H, Schendel DJ, Falk CS, Noessner E (2006) Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res 12(3 Pt 1):718–725. doi:10.1158/1078-0432.CCR-05-0857

    PubMed  CAS  Google Scholar 

  • Shattock RJ, Moore JP (2003) Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 1(1):25–34. doi:10.1038/nrmicro729

    PubMed  CAS  Google Scholar 

  • Shen L, Rock KL (2006) Priming of T cells by exogenous antigen cross-presented on MHC class I molecules. Curr Opin Immunol 18(1):85–91. doi:10.1016/j.coi.2005.11.003

    PubMed  CAS  Google Scholar 

  • Shortman K (2012) Ralph Steinman and dendritic cells. Immunol Cell Biol 90(1):1–2. doi:10.1038/icb.2011.91

    PubMed  Google Scholar 

  • Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2(3):151–161. doi:10.1038/nri746

    PubMed  CAS  Google Scholar 

  • Shrestha N, Ida JA, Lubinski AS, Pallin M, Kaplan G, Haslett PA (2005) Regulation of acquired immunity by gamma delta T-cell/dendritic-cell interactions. Ann N Y Acad Sci 1062:79–94. doi:10.1196/annals.1358.011

    PubMed  CAS  Google Scholar 

  • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837

    PubMed  CAS  Google Scholar 

  • Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F, Whitbeck JC, Burke E, Buchmeier MJ, Soilleux EJ, Riley JL, Doms RW, Bates P, Pohlmann S (2003) DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305(1):115–123. doi:S0042682202917307 [pii]

    PubMed  CAS  Google Scholar 

  • Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL (2004) HIV-1-infected dendritic cells up-regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood 104(9):2810–2817. doi:10.1182/blood-2003-07-2314

    PubMed  Google Scholar 

  • Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99(13):8826–8831. doi:10.1073/pnas.092258599

    PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Gutkind JS (2004) Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 5(12):998–1012. doi:nrm1529 [pii] 10.1038/nrm1529

    PubMed  CAS  Google Scholar 

  • Soilleux EJ, Morris LS, Leslie G, Chehimi J, Luo Q, Levroney E, Trowsdale J, Montaner LJ, Doms RW, Weissman D, Coleman N, Lee B (2002) Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71(3):445–457

    PubMed  CAS  Google Scholar 

  • Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L, Huang L, Levy JA, Liu YJ (2001) Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98(4):906–912

    PubMed  CAS  Google Scholar 

  • Stahl P, Schlesinger PH, Sigardson E, Rodman JS, Lee YC (1980) Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell 19(1):207–215. doi:0092-8674(80)90402-X [pii]

    PubMed  CAS  Google Scholar 

  • Stambach NS, Taylor ME (2003) Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 13(5):401–410. doi:10.1093/glycob/cwg045 cwg045 [pii]

    PubMed  CAS  Google Scholar 

  • Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159(10):4772–4780

    PubMed  CAS  Google Scholar 

  • Steinbrook R (2007) One step forward, two steps back—will there ever be an AIDS vaccine? N Engl J Med 357(26):2653–2655. doi:10.1056/NEJMp0708117

    PubMed  CAS  Google Scholar 

  • Strowig T, Brilot F, Munz C (2008) Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol 180(12):7785–7791

    PubMed  CAS  Google Scholar 

  • Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127

    PubMed  CAS  Google Scholar 

  • Takahara K, Omatsu Y, Yashima Y, Maeda Y, Tanaka S, Iyoda T, Clausen BE, Matsubara K, Letterio J, Steinman RM, Matsuda Y, Inaba K (2002) Identification and expression of mouse Langerin (CD207) in dendritic cells. Int Immunol 14(5):433–444

    PubMed  CAS  Google Scholar 

  • Takahara K, Yashima Y, Omatsu Y, Yoshida H, Kimura Y, Kang YS, Steinman RM, Park CG, Inaba K (2004) Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. Int Immunol 16(6):819–829. doi:10.1093/intimm/dxh084dxh084 [pii].

    PubMed  CAS  Google Scholar 

  • Tang L, Yang J, Tang X, Ying W, Qian X, He F (2010) The DC-SIGN family member LSECtin is a novel ligand of CD44 on activated T cells. Eur J Immunol 40(4):1185–1191. doi:10.1002/eji.200939936

    PubMed  CAS  Google Scholar 

  • Tasca S, Tambussi G, Nozza S, Capiluppi B, Zocchi MR, Soldini L, Veglia F, Poli G, Lazzarin A, Fortis C (2003) Escape of monocyte-derived dendritic cells of HIV-1 infected individuals from natural killer cell-mediated lysis. AIDS 17(16):2291–2298. doi:10.1097/01.aids.0000096851.36052.a4

    PubMed  Google Scholar 

  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197(7):823–829. doi:10.1084/jem.20021840 jem.20021840 [pii]

    PubMed  CAS  Google Scholar 

  • Tateno H, Ohnishi K, Yabe R, Hayatsu N, Sato T, Takeya M, Narimatsu H, Hirabayashi J (2010) Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J Biol Chem 285(9):6390–6400. doi:M109.041863 [pii] 10.1074/jbc.M109.041863

    PubMed  CAS  Google Scholar 

  • Taylor ME, Conary JT, Lennartz MR, Stahl PD, Drickamer K (1990) Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem 265(21):12156–12162

    PubMed  CAS  Google Scholar 

  • Taylor ME, Bezouska K, Drickamer K (1992) Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem 267(3):1719–1726

    PubMed  CAS  Google Scholar 

  • Tel J, van der Leun AM, Figdor CG, Torensma R, de Vries IJ (2012) Harnessing human plasmacytoid dendritic cells as professional APCs. Cancer Immunol Immunother. doi:10.1007/s00262-012-1210-z

    Google Scholar 

  • Turville SG, Arthos J, Donald KM, Lynch G, Naif H, Clark G, Hart D, Cunningham AL (2001) HIV gp120 receptors on human dendritic cells. Blood 98(8):2482–2488

    PubMed  CAS  Google Scholar 

  • Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, Cunningham AL (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3(10):975–983. doi:10.1038/ni841

    PubMed  CAS  Google Scholar 

  • Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, Dable J, Stossel H, Romani N, Piatak M Jr, Lifson JD, Pope M, Cunningham AL (2004) Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103(6):2170–2179. doi:10.1182/blood-2003-09-3129

    PubMed  CAS  Google Scholar 

  • Turville SG, Aravantinou M, Stossel H, Romani N, Robbiani M (2008) Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat Methods 5(1):75–85. doi:10.1038/nmeth1137

    PubMed  CAS  Google Scholar 

  • Valladeau J, Duvert-Frances V, Pin JJ, Dezutter-Dambuyant C, Vincent C, Massacrier C, Vincent J, Yoneda K, Banchereau J, Caux C, Davoust J, Saeland S (1999) The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur J Immunol 29(9):2695–2704. doi:10.1002/(SICI)1521-4141(199909)29:09<2695::AID-IMMU2695>3.0.CO;2-Q [pii], 10.1002/(SICI)1521-4141(199909)29:09<2695::AID-IMMU2695>3.0.CO;2-Q

    PubMed  CAS  Google Scholar 

  • Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12(1):71–81. doi:S1074-7613(00)80160-0 [pii]

    PubMed  CAS  Google Scholar 

  • van der Vlist M, Geijtenbeek TB (2010) Langerin functions as an antiviral receptor on Langerhans cells. Immunol Cell Biol 88(4):410–415. doi:10.1038/icb.2010.32

    PubMed  Google Scholar 

  • Villablanca EJ, Mora JR (2008) A two-step model for Langerhans cell migration to skin-draining LN. Eur J Immunol 38(11):2975–2980. doi:10.1002/eji.200838919

    PubMed  CAS  Google Scholar 

  • Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7(7):543–555. doi:10.1038/nri2103

    PubMed  CAS  Google Scholar 

  • Villadangos JA, Shortman K (2010) Found in translation: the human equivalent of mouse CD8+ dendritic cells. J Exp Med 207(6):1131–1134. doi:10.1084/jem.20100985

    PubMed  CAS  Google Scholar 

  • Villadangos JA, Young L (2008) Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29(3):352–361. doi:10.1016/j.immuni.2008.09.002

    PubMed  CAS  Google Scholar 

  • Wald A, Link K (2002) Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J Infect Dis 185(1):45–52. doi:10.1086/338231

    PubMed  Google Scholar 

  • Weissman D, Rabin RL, Arthos J, Rubbert A, Dybul M, Swofford R, Venkatesan S, Farber JM, Fauci AS (1997) Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389(6654):981–985. doi:10.1038/40173

    PubMed  CAS  Google Scholar 

  • Wilflingseder D, Mullauer B, Schramek H, Banki Z, Pruenster M, Dierich MP, Stoiber H (2004) HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. J Immunol 173(12):7497–7505

    PubMed  CAS  Google Scholar 

  • Willems F, Marchant A, Delville JP, Gerard C, Delvaux A, Velu T, de Boer M, Goldman M (1994) Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur J Immunol 24(4):1007–1009. doi:10.1002/eji.1830240435

    PubMed  CAS  Google Scholar 

  • Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M, Rothenfusser S, Wetzel S, Endres S, Hartmann G (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119(5):1096–1102. doi:10.1046/j.1523-1747.2002.19515.x

    PubMed  CAS  Google Scholar 

  • Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol. 6:859–868

    PubMed  Google Scholar 

  • Xu L, Li Q, Ye H, Zhang Q, Chen H, Huang F, Chen R, Zhou R, Zhou W, Xia P, Chen Y, Pan C (2010) The nine-repeat DC-SIGNR isoform is associated with increased HIV-RNA loads and HIV sexual transmission. J Clin Immunol 30(3):402–407. doi:10.1007/s10875-010-9376-7

    PubMed  Google Scholar 

  • Yoneyama H, Matsuno K, Zhang Y, Nishiwaki T, Kitabatake M, Ueha S, Narumi S, Morikawa S, Ezaki T, Lu B, Gerard C, Ishikawa S, Matsushima K (2004) Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int Immunol 16(7):915–928. doi:10.1093/intimm/dxh093dxh093 [pii]

    PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175(5):2851–2858

    PubMed  CAS  Google Scholar 

  • Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC (2006) NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 203(8):1851–1858. doi:10.1084/jem.20060603

    PubMed  CAS  Google Scholar 

  • Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4(8):e1000134. doi:10.1371/journal.ppat.1000134

    PubMed  Google Scholar 

  • Zaba LC, Krueger JG, Lowes MA (2009) Resident and “inflammatory” dendritic cells in human skin. J Invest Dermatol 129(2):302–308. doi:10.1038/jid.2008.225

    PubMed  CAS  Google Scholar 

  • Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, Reinhart TA, Rogan M, Cavert W, Miller CJ, Veazey RS, Notermans D, Little S, Danner SA, Richman DD, Havlir D, Wong J, Jordan HL, Schacker TW, Racz P, Tenner-Racz K, Letvin NL, Wolinsky S, Haase AT (1999) Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286(5443):1353–1357

    PubMed  CAS  Google Scholar 

  • Zhang AL, Colmenero P, Purath U, Teixeira de Matos C, Hueber W, Klareskog L, Tarner IH, Engleman EG, Soderstrom K (2007) Natural killer cells trigger differentiation of monocytes into dendritic cells. Blood 110(7):2484–2493. doi:10.1182/blood-2007-02-076364

    PubMed  CAS  Google Scholar 

  • Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, Zhu J, Knipe DM, Iwasaki A (2003) Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med 197(2):153–162

    PubMed  CAS  Google Scholar 

  • Zhu J, Hladik F, Woodward A, Klock A, Peng T, Johnston C, Remington M, Magaret A, Koelle DM, Wald A, Corey L (2009) Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat Med 15(8):886–892. doi:10.1038/nm.2006

    PubMed  CAS  Google Scholar 

  • Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80. doi:10.1182/blood-2010-02-258558

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony L. Cunningham M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cunningham, A.L., Harman, A., Kim, M., Nasr, N., Lai, J. (2012). Immunobiology of Dendritic Cells and the Influence of HIV Infection. In: Wu, L., Schwartz, O. (eds) HIV Interactions with Dendritic Cells. Advances in Experimental Medicine and Biology, vol 762. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4433-6_1

Download citation

Publish with us

Policies and ethics