Skip to main content

Fast Analysis of Periodic Antennas and Metamaterial-Based Waveguides

  • Chapter
  • First Online:
  • 3421 Accesses

Abstract

A tailored version of the Characteristic Basis Function Method (CBFM) is presented as a matrix compression technique for the method-of-moments (MoM) to rapidly compute the impedance, radiation, and propagation characteristics of large periodic structures, including antenna arrays and metamaterial-based waveguides. The compression is achieved by employing physics-based Characteristic Basis Functions (CBFs), which are generated numerically and in a time-efficient manner by exploiting array symmetries. The supports of these CBFs partially overlap between electrically interconnected array elements to preserve the continuity of the surface current across common boundaries. The translation symmetry is also exploited to expedite the meshing process of the structure, to construct the reduced matrix equation, and to rapidly compute the antenna radiation patterns. The Adaptive Cross Approximation (ACA) algorithm is applied to reduce the matrix fill-time even further. The numerical examples demonstrate high accuracy and excellent memory compressing capabilities of the considered method. Among the problems, we consider a very large array of nested subarray antennas employing more than 1E6 low-level basis functions, which is solved directly, in-core, through a multilevel CBFM approach, and we analyze a metamaterial-based gap waveguide through a CBFM-enhanced MoM approach employing the parallel-plate Green’s function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This chapter is largely based upon Maaskant’s PhD dissertation [21].

  2. 2.

    Alternatively, in [47], each column of the matrix product \(\boldsymbol{\mathsf{Z}}_{pq}\boldsymbol{\mathsf{J}}_{q}\) is computed efficiently as an AIM matrix vector product.

  3. 3.

    The accuracy of a more practical microstrip-fed 8 ×7 dual-polarized TSA array is discussed in [25], which involves a combination of electrodynamic and quasi-static field models [15].

References

  1. Bebendorf M (2000) Approximation of boundary element matrices. Numer Math 86(4):565–589

    Article  MathSciNet  MATH  Google Scholar 

  2. Bekers DJ, van Eijndhoven SJL, van de Ven AAF, Borsboom PP, Tijhuis AG (2006) Eigencurrent analysis of resonant behavior in finite antenna arrays. IEEE Trans Microw Theory Tech 54(6):2821–2829

    Article  Google Scholar 

  3. Bleszynski E, Bleszynski M, Jaroszewicz T (1996) AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Sci 31(5):1225–1251

    Article  Google Scholar 

  4. Bozzi M, Georgiadis A, Wu K (2011) Review of substrate-integrated waveguide circuits and antennas. Microw Antennas Propag IET 5(8):909–920

    Article  Google Scholar 

  5. Çivi OA, Pathak PH, Chou HT, Nepa P (2000) A hybrid uniform geometrical theory of diffraction – moment method for efficient analysis of electromagnetic radiation/scattering from large finite planar arrays. Radio Sci 35(2):607–620

    Article  Google Scholar 

  6. Craeye C (2006) A fast impedance and pattern computation scheme for finite antenna arrays. IEEE Trans Antennas Propag 54(10):3030–3034

    Article  MathSciNet  Google Scholar 

  7. Craeye C, Tijhuis AG, Schaubert DH (2003) An efficient MoM formulation for finite-by-ininite arrays of two-dimensional antennas arranged in a three dimensional structure. IEEE Trans Antennas Propag 51(9):2054–2056

    Article  Google Scholar 

  8. Delaunay B (1934) Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7:793–800

    Google Scholar 

  9. Delgado C, Catedra MF, Mittra R (2008) Efficient multilevel approach for the generation of characteristic basis functions for large scatters. IEEE Trans Antennas Propag 56(7):2134–2137

    Article  MathSciNet  Google Scholar 

  10. Garcia E, Delgado C, de Adana FS, Cátedra F, Mittra R (2007) Incorporating the multilevel fast multipole method into the characteristic basis function method to solve large scattering and radiation problems. In: Proceedings of IEEE AP-S international symposium, Honolulu, pp 1285–1288

    Google Scholar 

  11. Golub GH, van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins, Baltimore/London

    MATH  Google Scholar 

  12. Harrington RF (1961) Time-Harmonic electromagnetic fields. McGraw-Hill, New York/London

    Google Scholar 

  13. Harrington RF (1968) Field computation by moment methods. The Macmillan, New York

    Google Scholar 

  14. Heinstadt J (1993) New approximation technique for current distribution in microstrip array antennas. Microw Opt Technol 29:1809–1810

    Google Scholar 

  15. Ivashina MV, Redkina EA, Maaskant R (2007) An accurate model of a wide-band microstrip feed for slot antenna arrays. In: Proceedings of IEEE AP-S international symposium, Honolulu, pp 1953–1956

    Google Scholar 

  16. Kildal PS, Alfonso E, Valero-Nogueira A, Rajo-Iglesias E (2009) Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel Propag Lett 8(1):84–87

    Article  Google Scholar 

  17. Kurz S, Rain O, Rjasanow S (2002) The adaptive cross-approximation technique for the 3-D boundary-element method. IEEE Trans Magn 38(2):421–424

    Article  Google Scholar 

  18. Lancellotti V, de Hon BP, Tijhuis AG (2009) An eigencurrent approach to the analysis of electrically large 3-d structures using linear embedding via Green’s operators. IEEE Trans Antennas Propag 57(11):3575–3585

    Article  Google Scholar 

  19. Laviada J, Las-Heras F, Pino MR, Mittra R (2009) Solution of electrically large problems with multilevel characteristic basis functions. IEEE Trans Antennas Propag 57(10):3189–3198

    Article  MathSciNet  Google Scholar 

  20. Lu WB, Cui TJ, Qian ZG, Yin XX, Hong W (2004) Accurate analysis of large-scale periodic structures using an efficient sub-entire-domain basis function method. IEEE Trans Antennas Propag 52(11):3078–3085

    Article  Google Scholar 

  21. Maaskant R (2010) Analysis of large antenna systems. Ph.D. thesis, Eindhoven University of Technology, Eindhoven. http://alexandria.tue.nl/extra2/201010409.pdf

  22. Maaskant R, Mittra R, Tijhuis AG (2007) Application of trapezoidal-shaped characteristic basis functions to arrays of electrically interconnected antenna elements. In: Proceedings of international conference on electromagnetic in advanced applications (ICEAA), Torino, pp 567–571

    Google Scholar 

  23. Maaskant R, Mittra R, Tijhuis AG (2008) Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm. IEEE Trans Antennas Propag 56(11):3440–3451

    Article  Google Scholar 

  24. Maaskant R, Mittra R, Tijhuis AG (2009) Fast solution of multi-scale antenna problems for the square kilomtre array (SKA) radio telescope using the characteristic basis function method (CBFM). Appl Comput Electromagn Soc J 24(2):174–188

    Google Scholar 

  25. Maaskant R, Ivashina MV, Iupikov O, Redkina EA, Kasturi S, Schaubert DH (2011) Analysis of large microstrip-fed tapered slot antenna arrays by combining electrodynamic and quasi-static field models. IEEE Trans Antennas Propag 56(6):1798–1807

    Article  Google Scholar 

  26. Maaskant R, Mittra R, Tijhuis AG (2011) Multilevel characteristic basis function method (MLCBFM) for the analysis of large antenna arrays. Spec Sect Comput Electromagn Large Antenna Arrays Radio Sci Bull 336(336):23–34

    Google Scholar 

  27. Maaskant R, Takook P, Kildal PS (2012) Fast analysis of gap waveguides using the characteristic basis function method and the parallel-plate green’s function. In: Proceedings of international conference on electromagnetic in advanced applications (ICEAA), Cape Town, pp 788–791

    Google Scholar 

  28. Matekovits L, Vecchi G, Dassano G, Orefice M (2001) Synthetic function analysis of large printed structures: the solution space sampling approach. In: Proceedings of IEEE AP-S international symposium, Boston, pp 568–571

    Google Scholar 

  29. Matekovits L, Laza VA, Vecchi G (2007) Analysis of large complex structures with the synthetic-functions approach. IEEE Trans Antennas Propag 55(9):2509–2521

    Article  Google Scholar 

  30. Matekovits L, Vecchi G, Bercigli M, Bandinelli M (2009) Synthetic-functions analysis of large aperture-coupled antennas. IEEE Trans Antennas Propag 57(7):1936–1943

    Article  MATH  Google Scholar 

  31. Mittra R, Ma JF, Lucente E, Monorchio A (2005) CBMOM–an iteration free MoM approach for solving large multiscale em radiation and scattering problems. In: Proceedings of IEEE AP-S international symposium, Washington DC, pp 2–5

    Google Scholar 

  32. Neto A, Maci S, Vecchi G, Sabbadini M (2000) A truncated Floquet wave diffraction method for the full wave analysis of large phased arrays – part ii: generalization to 3-D cases. IEEE Trans Antennas Propag 48(3):601–611

    Article  Google Scholar 

  33. Prakash V, Mittra R (2003) Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations. Microw Opt Technol 36:95–100

    Article  Google Scholar 

  34. Rao S, Wilton D, Glisson A (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418

    Article  Google Scholar 

  35. Schaubert DH, Boryssenko AO (2004) Subarrays of Vivaldi antennas for very large apertures. In: Proceedings of 34th European microwave conference, Amsterdam, pp 1533–1536

    Google Scholar 

  36. Schaubert DH, Kasturi S, Elsallal MW, van Cappellen WA (2006) Wide bandwidth Vivaldi antenna arrays – some recent developments. In: Proceedings of European conference on antennas and propagation (EuCAP), Nice, pp 1–4

    Google Scholar 

  37. Shanks D (1955) Non-linear transformation of divergent and slowly convergent sequences. J Math Phys 34:1–42

    MathSciNet  MATH  Google Scholar 

  38. Skrivervik AK, Mosig JR (1993) Analysis of finite phased arrays of microstrip patches. IEEE Trans Antennas Propag 41(9):1105–1114

    Article  Google Scholar 

  39. Stevanovic I, Mosig JR (2004) Subdomain multilevel approach with fast MBF interactions. In: Proceedings of IEEE AP-S international symposium, Monterey, pp 367–370

    Google Scholar 

  40. Suter E, Mosig JR (2000) A subdomain multilevel approach for the efficient MoM analysis of large planar antennas. Microw Opt Technol 26(4):270–277

    Article  Google Scholar 

  41. Takook P, Maaskant R, Kildal PS (2012) Comparison of parallel-plate greens function acceleration techniques. In: Proceedings of European conference on antennas and propagation (EuCAP), Prague, pp 1–5

    Google Scholar 

  42. Tiberi G, Monorchio A, Manara G, Mittra R (2003) Hybridizing asymptotic and numerically rigorous techniques for solving electromagnetic scattering problems using the characterisitic basis functions (CBFs). In: Proceedings of IEEE AP-S international symposium, Columbus, pp. 22–27

    Google Scholar 

  43. Tomasic B, Hessel A (1999) Analysis of finite arrays – a new approach. IEEE Trans Antennas Propag 47(3):555–564

    Article  Google Scholar 

  44. Trefethen LN, Bau D (eds) (1997) Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  45. Vandenbosch GAE, Demuynck FJ (1998) The expansion wave concept – part ii: a new way to model mutual coupling in microstrip arrays. IEEE Trans Antennas Propag 46(3):407–413

    Article  Google Scholar 

  46. Vandenbosch GAE, Van de Cappelle AR (1992) Use of combined expansion scheme to analyze microstrip antennas with the method of moments. Radio Sci 27(6):911–916

    Article  Google Scholar 

  47. Vita PD, Freni A, Matekovits L, Pirinoli P, Vecchi G (2007) A combined AIM-SFX approach for large complex arrays. In: Proceedings of IEEE AP-S international symposium, Honolulu, pp 3452–3455

    Google Scholar 

  48. Yeo J, Prakash V, Mittra R (2003) Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM). Microw Opt Technol 39:456–464

    Article  Google Scholar 

  49. Zhao K, Vouvakis MN, Lee JF (2005) The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans Electromagn Compat 47(4):763–773

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Maaskant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maaskant, R. (2014). Fast Analysis of Periodic Antennas and Metamaterial-Based Waveguides. In: Mittra, R. (eds) Computational Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4382-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4382-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4381-0

  • Online ISBN: 978-1-4614-4382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics