Skip to main content

Designing Cloaks and Absorbing Blankets for Scattering Reduction Using Field and Impedance Transformation Techniques

  • Chapter
  • First Online:

Abstract

In this chapter we present an alternative approach to Transformation Optics (TO) for scattering reduction from radar targets and similar scatterers. The approach is based on Field or Impedance Transformation, as opposed to geometry transformation, which is the heart of the TO algorithm.

We begin by identifying some of the difficulties encountered when designing cloaks by following the TO approach, namely practical realization of required material parameters, and overcoming the problems of narrow bandwidth, anisotropy, losses, polarization sensitivity, etc., that are signature attributes of Metamaterials, often used as cloak materials whose parameters are dictated by the TO algorithm.

We show how the alternative approach, proposed herein, leads to absorbers or blankets which reduce the scattering in the reflection region over a wide bandwidth and for arbitrary polarization of the incident wave, using materials with realistic μ and ε that can be fabricated in the lab, as opposed to Metamaterials typically required in the TO design.

Also discussed is absorbers for arbitrarily shaped objects, designed by using a variation of the TO concept, which leads to realistic realizations of blankets comprised of readily available materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568

    Article  Google Scholar 

  2. Leonhardt U, Tyc T (2009) Broadband invisibility by non-Euclidean cloaking. Science 323:110–112

    Article  Google Scholar 

  3. Schurig D, Pendry JB, Smith DR (2006) Calculation of material properties and ray tracing in transformation media. Opt Express 14:9794–9804

    Article  Google Scholar 

  4. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen H, Wu B, Zhang B, Kong JA (2007) Electromagnetic wave interactions with a metamaterial cloak. Phys Rev Lett 99:063903

    Article  Google Scholar 

  6. Smith DR, Urzhumov Y, Kundtz NB, Landy NI (2010) Enhancing imaging systems using transformation optics. Opt Express 18:21238

    Article  Google Scholar 

  7. Cummer SA, Popa B, Schurig D, Smith DR, Pendry J (2006) Full-wave simulations of electromagnetic cloaking structures. Phys Rev E 74:036621

    Article  Google Scholar 

  8. Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901

    Article  Google Scholar 

  9. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  10. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  11. Ruan Z, Fan S (2010) Superscattering of light from subwavelength nanostructures. Phys Rev Lett 105:013901

    Article  Google Scholar 

  12. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339

    Article  Google Scholar 

  13. Chen HY, Chan CT (2007) Transformation media that rotate electromagnetic fields. Appl Phys Lett 90:241105

    Article  Google Scholar 

  14. Leonhardt U, Philbin TG (2009) Transformation optics and the geometry of light. Prog Opt 53:69–152

    Article  Google Scholar 

  15. Chen H, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nat Mater 9:387–396

    Article  Google Scholar 

  16. Huidobro PA, Nesterov ML, Martı´n-Moreno L, Garcı´a-Vidal FJ (2010) Transformation optics for plasmonics. Nano Lett 10:1985–1990

    Article  Google Scholar 

  17. Edwards B, Alu A, Silveirinha MG, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901

    Article  Google Scholar 

  18. Alu A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72:016623

    Article  Google Scholar 

  19. Luo Y, Zhang J, Chen H, Xi S, Wu B-I (2008) Cylindrical cloak with axial permittivity/permeability spatially invariant. Appl Phys Lett 93:033504

    Article  Google Scholar 

  20. Xi S, Chen H, Zhang B, Wu B-I, Kong JA (2010) Route to low-scattering cylindrical cloaks with finite permittivity and permeability. Phys Rev B 79:155122

    Article  Google Scholar 

  21. Alu A, Yaghijan AD, Shore RA, Silveirinha MG (2011) Causality relations in the homogenization of metamaterials. Phys Rev B 84:054305

    Article  Google Scholar 

  22. Cheng Q, Cui T, Jiang W, Cai B (2010) An omnidirectional electromagnetic absorber made of metamaterials. New J Phys 12:063006

    Article  Google Scholar 

  23. Zentgraf T, Liu Y, Mikkelsen MH, Valentine J, Zhang X (2011) Plasmonic Luneburg and Eaton lenses. Nat Nano 6:151–155

    Article  Google Scholar 

  24. Narimanov EE, Kildishev AV (2009) Optical black hole: broadband omnidirectional light absorber. Appl Phys Lett 95:041106

    Article  Google Scholar 

  25. Gong YX, Zhen L, Jiang JT, Xu CY, Shao WZ (2009) Synthesis and microwave electromagnetic properties of CoFe alloy nanoflakes prepared with hydrogen-thermal reduction method. J Appl Phys 106:064302

    Article  Google Scholar 

  26. Zhen L, Gong YX, Jiang JT, Xu CY, Shao WZ, Liu P, Tang J (2011) Synthesis of CoFe/Al2O3 composite nanoparticles as the impedance matching layer of wideband multilayer absorber. J Appl Phys 109:07A332

    Article  Google Scholar 

  27. Tretyakov S, Alitalo P, Luukkonen O, Simovski C (2009) Broadband electromagnetic cloaking of long cylindrical objects. Phys Rev Lett 103:103905

    Article  Google Scholar 

  28. Alitalo P, Tretyakov SA (2010) Electromagnetic cloaking of strongly scattering cylindrical objects by a volumetric structure composed of conical metal plates. Phys Rev B 82:245111

    Article  Google Scholar 

  29. Vehmas J, Alitalo P, Tretyakov SA (2012) Experimental demonstration of antenna blockage reduction with a transmission-line cloak. IET Microw Antennas Propagat 6(7):830–834

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Mittra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mittra, R., Zhou, Y. (2014). Designing Cloaks and Absorbing Blankets for Scattering Reduction Using Field and Impedance Transformation Techniques. In: Mittra, R. (eds) Computational Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4382-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4382-7_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4381-0

  • Online ISBN: 978-1-4614-4382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics