Skip to main content

Simulation of Complex Networks

  • Chapter
  • First Online:
Book cover Computer Simulation of Thermal Plant Operations
  • 1534 Accesses

Abstract

The concept of a network has been introduced in Chap. 2 as consisting of

  • Branches, a branch being a contiguous series of components through which the working fluid flows,

  • Nodes, being points of connection of branches with each other,

  • Linking stubs, being points of connection to external interfacing components or atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Had we assumed incompressibility of the fluid in the node, we would have been forced to set \(\mathrm{d}\dot{{m}}_{j}/\mathrm{d}t = 0\) for each node. This would lead to an algebraic system for the solution of flows. This system can become singular for some perfectly normal equipment configurations and is therefore to be avoided. Alternatively, we could allow the volume of the node to vary, the sometimes called “rubber-hose” effect, and also to be avoided.

  2. 2.

    The term inertance is also found in the fields of acoustics and respiratory physiology.

  3. 3.

    These letters refer to the those used on the trend graphs to identify points in the procedure.

  4. 4.

    The slightly closer spacing of the individual traces in Fig. 17.12 is the result of the use of somewhat larger pipes in this case.

References

  1. W.H. Press et al Numerical Recipes in C, 2nd Edition, Cambridge University Press, 1992

    Google Scholar 

  2. G.H. Golub, C.F. van Loan Matrix Computations, 3rd Edition John Hopkins Univ. Press, 1996

    Google Scholar 

  3. L. Fox and D.F. Mayers Computing Methods for Scientists and Engineers, Monographs on Numerical Analysis, Oxford University Press, Reprint, 1977

    Google Scholar 

  4. A. Quarteroni, R. Sacco, F. Saleri Numerical Mathematics, 2nd Edition, Springer Texts in Applied Mathematics No. 37, 2007

    Google Scholar 

  5. G. Bader, P. Deuflhard Numerische Mathematik 41, pp 373–398, 1983

    Google Scholar 

  6. P.J. Roache Computational Fluid Dynamics, Revised Edition Academic Press, 1982

    Google Scholar 

  7. A. Prosperetti, G. Tryggvason (Edit.) Computational Methods for Multiphase Systems, Cambridge University Press, Cambridge, UK, 2009

    Google Scholar 

  8. N. Gershfeld The Nature of Mathematical Modeling, Cambridge Univ. Press, 1999

    Google Scholar 

  9. Steinmueller Steam Generation, Vulkan Verlag, Essen, 2nd English Edition, 1994

    Google Scholar 

  10. Wagner, Kurse Properties of water and steam: the industrial standard IAPWS-IF97 for the thermodynamic properties and supplementary equations for other properties; tables based on these equations., Springer Berlin, 1998

    Google Scholar 

  11. K. Scheffler, N. Rosner, J. Straub, U. Grigull Der Neue Internationale Standard der dynamischen Viskosität von Wasser und Dampf, Brennstoff-Wärme-Kraft 30 Nr. 2, February 1978

    Google Scholar 

  12. J.P. Holman Heat Transfer, McGraw Hill New York, 1991

    Google Scholar 

  13. P.J. Stuttaford, P.A. Rubini Assessment of a Radiative Heat Transfer Model for a New Gas Turbine Combustor Preliminary Design Tool, 35th Aerospace Sciences Meeting AIAA 97-0294, 1997

    Google Scholar 

  14. S.P. Fuss, A. Hamins An Estimate of the Correction to be Applied to radiant Flame Measurements due to Attenuation by Atmospheric CO 2 and H 2 O, Fire Safety Journal 37 pgs 181–190, 2002

    Article  Google Scholar 

  15. P. Basu, C. Kefa, L. Jestin Boilers and Burners Design and Theory, Mechanical Engineering Series, Springer Verlag, 2000

    Google Scholar 

  16. P.K. Swamee, A.K. Jain Explicit Equation for Pipe Flow Problems, Journal of Hydraulic Division, ASCE, Vol 102, No. 5, May:657–664, 1976

    Google Scholar 

  17. Perry’s Chemical Engineers’ Handbook, 6th Edition McGraw-Hill

    Google Scholar 

  18. Fan Engineering, Buffalo Forge Company, Buffalo, NY, USA, 1961

    Google Scholar 

  19. B. Eck Ventilatoren, 5th Edition, Springer Verlag Berlin

    Google Scholar 

  20. B. Eck Fans, Pergamon Press London

    Google Scholar 

  21. A.J. Osiadacz Simulation and Analysis of Gas Networks, Gulf Publishing, 1987

    Google Scholar 

  22. Sir Frank Whittle Gas Turbine Aero-Thermodynamics, Pergamon Press, Oxford, UK, 1981

    Google Scholar 

  23. R.K. Turton Principles of Turbomachinery, Chapman and Hall, 2nd Edition, 1985

    Google Scholar 

  24. C.E. Brennen Hydrodynamics of Pumps, Oxford University Press, OUP/Concepts Edi, White River Jn, VT, USA, 1994

    Google Scholar 

  25. M.P. Boyce Gas Turbine Engineering Handbook Butterworth-Heinemann 2nd Edition, 2002

    Google Scholar 

  26. L.G. Tetu Improving Centrifugal Compressor Performance by Optimizing Diffuser Surge Control (Variable Diffuser Geometry) and Flow Control (Inlet Guide Vane) Device Settings International Compressor Engineering Conference 2004, Paper 1719, Purdue University

    Google Scholar 

  27. F. Willems Modeling and Control of Compressor Flow Instabilities Report No. WFW 96.151, Eindhoven University of Technology, Faculty of Mechanical Engineering, 1997

    Google Scholar 

  28. E.M. Greitzer Surge and Rotating Stall in Axial Flow Compressors, Part I: Theoretical Compression System Model, Journal of Engineering for Power, 98:190–198, 1976

    Article  Google Scholar 

  29. F.K. Moore, E.M. Greitzer A Theory of Post-Stall Transients in Axial Compressor Systems: Part II-Application, Journal of Engineering for Gas Turbines for Power, 108:231–239, 1986

    Article  Google Scholar 

  30. J.T. Gravdahl, O. Egeland Control of the Three State Moore-Greitzer Compressor Model using a Close-Coupled Valve, Proc. 1997 European Control Conference, July 1997

    Google Scholar 

  31. J.T. Gravdahl, O. Egeland A Moore-Greitzer Axial Compressor Model with Spool Dynamics, Proc 36th IEEE Conference on Decision and Control, 1997

    Google Scholar 

  32. A. Hafaifa, A. Daoudi, M. Guemana SCADA for Surge Control, Control, pgs 69–71, March 2011

    Google Scholar 

  33. C. Hayashi Nonlinear Oscillations in Physical Systems, McGraw-Hill, 1964

    Google Scholar 

  34. G.G. Mejeoumov Improved Cement Quality and Grinding Efficiency by Means of Closed Mill Circuit Modeling Ph.D Thesis, Texas A&M University, 2007

    Google Scholar 

  35. R.C. Juvinall, K.M. Marshek Fundamentals of Machine Component Design, John Wiley and Sons, Inc., New York, 1991

    Google Scholar 

  36. A.M. Trzynadlowski Control of Induction Motors, Academic Press, San Diego, CA, USA, 2001

    Google Scholar 

  37. T. Perrotin, D. Clodic Fin Efficiency Calculation in Enhanced Fin-and-Tube Heat Exchangers in Dry Conditions, International Congress of Refrigeration 2003, Washington D.C. USA

    Google Scholar 

  38. K.T. Hong, R.L. Webb Calculation of Fin Efficiency for Wet and Dry Fins, HVAC&R Research, Vol 2, No. 1:pp27–41, 1996

    Article  Google Scholar 

  39. S.A. Habbits, T.J. Sheer, H.N. Jawurek, M. Lander, W. Schmitz Simulation and Measurement of the Thermal Performance of Rotary Regenerative Boiler Air Heaters, Proc. of the 11th International Heat Transfer Conference, Vol. 6, Aug 1998, Korea

    Google Scholar 

  40. F. Bowman Introduction to Bessel Functions, Dover Publications, 2nd Edit. New York, 1958

    Google Scholar 

  41. I.N. Sneddon Fourier Transforms, McGraw-Hill Series in Pure and Applied mathematics, 1951

    Google Scholar 

  42. H.S. Carslaw, J.C. Jaeger Conduction of Heat in Solids, Oxford University Press, 2nd Edit. 1959 Clarendon Press, NY, USA, 1947

    Google Scholar 

  43. W.M. Rohsenow, J.P. Hartnett, E.A. Ganic Handbook of Heat Transfer Fundamentals, McGraw-Hill Book Company, London, 1981

    Google Scholar 

  44. W.M. Rohsenow, J.P. Hartnett, Y.I. Cho Handbook of Heat Transfer, 3rd. Edition McGraw-Hill Book Company, New York, 1998

    Google Scholar 

  45. L.M. Jiji Heat Conduction, Jaico Publishing Mumbai, 2003

    Google Scholar 

  46. M.N.Özisik Heat Conduction, 2nd Edit. Wiley, 1993

    Google Scholar 

  47. S. Kakac (Ed.) Boilers, Evaporators and Condensers, Wiley Interscience, 1991

    Google Scholar 

  48. H.C. Hottel, A.F. Sarofim Radiative Transfer, McGraw-Hill, 1967

    Google Scholar 

  49. K. Kuehlert, U. Renz A Comprehensive Radiation Model for Numerical Simulation of Pulverised Coal Flames, Proc. 11th International Heat Transfer Conference (Seoul Korea) Vol 7, 1988

    Google Scholar 

  50. S. Zaichik Application of a Diffusion-Inertia Model for 3-Dimensional Numerical Simulation of Solid Fuel Combustion in Furnace Chambers, Proc. 11th International Heat Transfer Conference (Seoul Korea) Vol 7, 1988

    Google Scholar 

  51. I.T. Shvets et al Heat Engineering, Mir Publishers Moscow - English Translation, 1975

    Google Scholar 

  52. R.B.Stull Meteorology for Scientists and Engineers, 2nd Edition, Brooke/Cole-Thomson Learning, 1999

    Google Scholar 

  53. I.W. Smith The Combustion of Coal Chars: A Review, 19th Symposium (International) on Combustion, The Combustion Institute, pp 1045–1065, 1982

    Google Scholar 

  54. A. McKenzie, I.W. Smith, G.A.D. Szpindler, J. Institute of Fuel, 47, 75, 1974

    Google Scholar 

  55. K.J. Åstrom, R.D. Bell Simple Drum-Boiler Models, IFAC Symposium Power Systems, Modelling and Control Applications, Brussels, Sept 1988

    Google Scholar 

  56. R.D. Bell, K.J. Åstrom A Non-Linear Model for Steam Generation Process, IFAC 12th World Congress, Sydney Australia, 1993

    Google Scholar 

  57. K.J. Åstrom, R.D. Bell A Fourth Order Non-Linear Model for Drum-Boiler Dynamics, 13th Triennial World Conference, San Francisco USA, 1996

    Google Scholar 

  58. Steam - Its Generation and Use The Babcock & Wilcox Company, 1978

    Google Scholar 

  59. S.S. Bogdanovic, S.M. Jovanovic Simulation and Modelling of Once-through Benson and Sulzer Steam Generators, IFAC Symposium Power Systems, Modelling and Control Applications, Brussels, Sept. 1988

    Google Scholar 

  60. W.J. Peet, T.K. Leung Development and Application of a Dynamic Simulation Model for a Drum Type Boiler with Turbine Bypass, International Power Conference, Singapore, March 1995

    Google Scholar 

  61. W. Traupel Thermische Turbomachinen, Vols I and II, 3rd Edition, Springer Verlag, Berlin

    Google Scholar 

  62. A.S. Leyzerovich Steam Turbines for Modern Fossil-Fuel Power Plants, Fairmont Press, 2008

    Google Scholar 

  63. D. Butterworth and G.F. Hewitt Two Phase Flow and Heat Transfer, Harwell Series, Oxford Uni Press, 1977

    Google Scholar 

  64. G. Brown Heat transmission by condensation of steam on a spray of water drops, Inst. Mech. Engrs. Proc. Discussion on heat transfer, pp 49–52, 1951

    Google Scholar 

  65. J.R.S. Thom Prediction of pressure drop during forced circulation boiling of water, Int. J. of Heat and Mass Transfer 7 (1964) pgs. 709–824

    Article  Google Scholar 

  66. R.W. Lockhart, R.C. Martinelli Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes, Chemical Engineering Progress Symposium 45(1), pp. 39–48

    Google Scholar 

  67. R.C. Martinelli, D.B. Nelson Prediction of Pressure Drop during Forced-Circulation Boiling of Water, Transactions of the ASME 70(6) 45(1), pp. 695–702

    Google Scholar 

  68. G.B. Wallis One-Dimensional Two-Phase Flow, McGraw-Hill Book Company, New York, 1996

    Google Scholar 

  69. D. Chisholm A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow, Int. J. Heat and Mass transfer, 10(12), pp. 1767–1778, 1973

    Article  Google Scholar 

  70. D. Chisholm The Influence of Mass Velocity on Friction Pressure Gradients during Steam-Water Flow, Thermodynamic and Fluid Mechanics Group Convection, Inst. of Mech. Engrs Proceedings, Bristol Vol. 182 Pt. 3H, pp. 336–341, 1968

    Google Scholar 

  71. D. Chisholm Pressure Gradients during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels, Int. J. Heat and Mass Transfer 16(2), pp. 347–358

    Google Scholar 

  72. S.M. Ghiaasiaan Two-phase Flow, Boiling and Condensation in Conventional and Miniature Systems, Cambridge University Press, 2008

    Google Scholar 

  73. A. Grzebielec, A. Rusowicz Thermal Resistance of Steam Condensation in Horizontal Tube Bundles, Journal of Power Technologies 91(1) pp. 41–48, 2011

    Google Scholar 

  74. J.G. Collier Convective Boiling and Condensation, 2nd. Edition, McGraw-Hill Book Company, New York, 1996

    Google Scholar 

  75. C.J. Baroczy A Systematic Correlation for Two-Phase Pressure Drop, Chemical Engineering Progress Symposium 62(44), pp. 232–239, 1966

    Google Scholar 

  76. S.G. Bankhoff A Variable Density Single Fluid Model Two-Phase Flow with Particular Reference to Steam-Water, J. Heat Transfer 11(Series 13) 265–272 1960 Meeting, Ispra Italy, 1979

    Google Scholar 

  77. L. Friedel Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two Phase Pipe Flow, Paper E2, European Two Phase Flow Group Meeting, Ispra Italy ,1979

    Google Scholar 

  78. A. Cicchitti, C. Lombardi, M. Silvestri, G. Soldaini, R. Zavatorelli Two-phase Cooling Experiments - Pressure Drop, Heat Transfer and Burn-out Measurements, Energia Nucleare 7(6) 407–425, 1960

    Google Scholar 

  79. K.E. Gungor and R.H.S. Winterton A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer, 29(3), 351–358, 1986

    Article  MATH  Google Scholar 

  80. K.E. Gungor, R.H.S. Winterton Simplified general correlation for saturated flow boiling and comparisons of correlations with data, Chemical Engineering Research and Design. 65 148–156, 1987

    Google Scholar 

  81. D. Steiner, J. Taborek Flow Boiling Heat Transfer of Single Components in Vertical Tubes, Heat Transfer Eng., 13, pp. 4368, 1992

    Google Scholar 

  82. VDI Wärme-Atlas, VDI-Verlag Düsseldorf Germany, 1993

    Google Scholar 

  83. A.J. Ghajar Non-Boiling Heat Transfer in Gas-Liquid Flow in Pipes - A Tutorial, J. of the Braz. Soc. of Mech. Sci. and Eng.27, 1, pp. 46–73, Jan-March 2005

    Google Scholar 

  84. J.C. Chen A correlation for boiling heat transfer to saturated fluids in convective flow, ASME Paper 63-HT-34, Boston, 1963

    Google Scholar 

  85. H. Muller-Steinhagen, K. Heck A Simple Pressure Drop Correlation for Two-Phase Flow in Pipes, Chem. Engr. Process, 20, pp.297–308, 1986

    Article  Google Scholar 

  86. G. Riemenschneider Analyse der Anlagendynamik eines Steinkohlbefeurerten Grossdampferzeugers mit vorgeschalteter Gasturbine, Energieerzeugung, Reihe 6 Nr. 228, 1989

    Google Scholar 

  87. TRAC-PD2 An Advanced Best-Estimate Computer Program for PWR LOCA Analysis, NUREG/CR-2054, Los Alamos Scientific Laboratory

    Google Scholar 

  88. S.M. Zivi Estimation of steady-state steam void fraction by means of the principle of minimum entropy production, J. Heat Transfer 86, 247–52, 1964

    Article  Google Scholar 

  89. A.A. Armand, G.G. Treschev Investigation of the Resistance During the Movement of Steam Water Mixtures in a Heated Boiler Pipe at High Pressures, AERE-Lib/Trans. 816, Jan. 1959

    Google Scholar 

  90. M.A. Woldesemayat, A.J. Ghajar Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes, Int. Journal of Multiphase Flow, 33 pp. 347–370 Elsevier, 2007

    Google Scholar 

  91. R. Doležal Two-phase pressure loss in heated boiler tubes, VGB Kraftswerktechnik 52 (1972) Nr 1, pgs 11–15

    Google Scholar 

  92. R. Doležal Vorgänge beim Anfahren eines Dampferzeugers, Vulkan Verlag, 1977

    Google Scholar 

  93. B.P. Vitalis, P.J. Hunt Constant and Sliding Pressure Options for New Supercritical Plants, Technical Publication, Riley Power, Power-Gen International, Las Vegas, 2005

    Google Scholar 

  94. M. Palkes, E.S. Sadlon, A. Salem State-of-the-Art Large Capacity Sliding Pressure Supercritical Steam Generators, ABB SPERI Power Generation Conference, 1994

    Google Scholar 

  95. H.G. Kwatny, J.W. Bauerle Simulation analysis of the stability of coal-fired furnaces at low loads, Second IFAC Workshop on Modelling and Control of Electric Power Plants, Drexel University, Philadelphia Sept 16–18, 1986

    Google Scholar 

  96. F. Brandt Brennstoffe und Verbrennungsrechung, FDBR Fachbuchreihe Band 1, Vulkan Verlag, 1981

    Google Scholar 

  97. S.M. Cho Furnace Combustion and Heat Transfer in Large Utility Boilers, Vol 1 Proc 11th International Heat Transfer Conference, Korea, 1998

    Google Scholar 

  98. I. Nedelkovski, I. Vilos, T. Geramitcioski Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer, World Academy of Science and Engineering and Technology 5, 2005

    Google Scholar 

  99. L.D. Berman, S.N. Fuks Mass Transfer in Condensers with Horizontal Tubes when Steam Contains Air, Teploenergetika, 5, pp. 66–74, 1958

    Google Scholar 

  100. E.N. Fuller, P.D. Schettler, J.C. Giddings New Method for Prediction of Binary Gas Phase Diffusion Coefficients, Industrial and Engineering Chemistry, 58(5), 19, 1966

    Google Scholar 

  101. Heat Exchange Institute Standards for Steam Surface Condensers, 9th Edition, 2001

    Google Scholar 

  102. H.R. Jacobs, D.S. Cook Direct Condensation on Non-circulating Drop, Proc. 6th Int. Heat Transfer Conf., Toronto, 2, pp.389–393, 1978

    Google Scholar 

  103. K.N. Murty Surface Condensers 1. Find the most compact surface condenser, Chemical Engineering, January 18, 1988

    Google Scholar 

  104. J. van Standen, L. Pretorius, M.P. Meyer Simulation of Heat Exchange in Large Air Cooled Condensers, Proc 11th International Heat Transfer Conference Vol 6, Korea, 1998

    Google Scholar 

  105. P. Johnman, K. Hitze, E. Fyvie, H. Morris, D. Gosden, B. Taber Eraring Power Station, Technical Paper, Advanced Process Control, The Warren Centre, Sydney University, Australia, October 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Kelly, P. (2013). Simulation of Complex Networks. In: Computer Simulation of Thermal Plant Operations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4256-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4256-1_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4255-4

  • Online ISBN: 978-1-4614-4256-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics