Skip to main content

Rate-Dependent, Large-Displacement Deformation of Vertically Aligned Carbon Nanotube Arrays

  • Conference paper
  • First Online:

Abstract

Rate dependent mechanical response of the vertically aligned carbon nanotube arrays (VA-CNTs) has been examined with large-displacement indentation tests. The VA-CNTs are observed to exhibit elastic deformation at small displacement and then plastic deformation at large displacement. Under the cylindrical, flat-ended punch, the nanotube arrays collapse plastically at positions of immediately beneath the indenter face. The plastic zone remains stable at large displacement, because the stress/strain field under a flat cylindrical punch is relatively constant. From the normalized indentation stress-displacement curve, the critical indentation pressure (Pm), a measure of collapsing stress of the CNT arrays, is obtained. The speeds of the indenter have been varied, from 0.5 to 4 μm/s. The large displacement deformation is influenced by the effective strain rate of the material. The critical indentation pressure increases with the increase with the strain rates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401):512–514

    Article  Google Scholar 

  2. Kreupl F, Graham AP, Duesberg GS, Steinhogl W, Liebau M, Unger E, Honlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408

    Article  Google Scholar 

  3. Xu J, Fisher TS (2006) Enhancement of thermal interface materials with carbon nanotube arrays. Int J Heat Mass Transfer 49:1658–1666

    Article  Google Scholar 

  4. Cola BA, Xu J, Fisher TS (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Transfer 52(15–16):3490–3503

    Article  Google Scholar 

  5. Misra A, Greer JR, Daraio C (2008) Strain rate effects in the mechanical response of polymer-anchored carbon nanotue foams. Adv Mater 21:334–338

    Article  Google Scholar 

  6. Liu Y, Qian WZ, Zhang Q, Cao AY, Li ZF, Zhou WP, Ma Y, Wei F (2008) Hierarchical agglomerates of carbon nanotubes as high-pressure cushions. Nano Lett 8:1323

    Article  Google Scholar 

  7. Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8(9):2762–2766

    Article  Google Scholar 

  8. Zhang S, Zhu L, Wong C-P, Kumar S (2009) Polymer-infiltrated aligned carbon nanotube fibers by in situ polymerization. Macromol Rapid Commun 30(22):1936–1939

    Article  Google Scholar 

  9. Ma W, Liu L, Zhang Z, Yang R, Liu G, Zhang T (2009) High strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett 9(8):2855–2861

    Article  Google Scholar 

  10. Patton ST, Zhang Q, Qu L, Dai L, Voevodin AA, Baur J (2009) Electromechanical characterization of carbon nanotube grown on carbon fibers. J Appl Phys 106:104313

    Article  Google Scholar 

  11. Zhang Q, Lu YC, Du F, Dai L, Baur J, Foster DC (2010) Viscoelastic creep of vertically aligned carbon nanotubes. J Phys D: Appl Phys 43:315401

    Article  Google Scholar 

  12. Mesarovic SD, McCarter CM, Bahr DF, Radhakrishnan H, Richards RF, Richards CD, McClain D, Jiao J (2007) Mechanical behavior of a carbon nanotube turf. Scr Mater 56:157–160

    Article  Google Scholar 

  13. McCarter CM, Richards RF, Mesarovic SD, Richards CD, Bahr DF, McClain D, Jiao J (2006) Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J Mater Sci 41:7872–7878

    Article  Google Scholar 

  14. Pathak S, Cambaz ZG, Kalidindi SR, Swadener JG, Gogotsi Y (2009) Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 47(8):1969–1976

    Article  Google Scholar 

  15. Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310(5752):1307–1313

    Article  Google Scholar 

  16. Hutchens SB, Hall LJ, Greer JR (2010) In situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles. Adv Funct Mater 20(14):2338–2346

    Article  Google Scholar 

  17. Maschmann MR, Zhang Q, Wheeler R, Du F, Dai F, Baur J (2011) In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces 3:648–653

    Article  Google Scholar 

  18. Sneddon IN (1946) Boussinesq’s problem for a flat-ended cylinder. Proc Cambridge Philos Soc 42:29

    Article  MathSciNet  MATH  Google Scholar 

  19. Barquins M, Maugis D (1982) Adhesive contact of axisymmetric punches on an elastic half-space-the modified Hertz-Hubers stress tensor for contacting spheres. J Mech Theor Appl 1:331–57

    MATH  Google Scholar 

  20. Bajpai V, Dai L, Ohashi T (2004) Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J Am Chem Soc 126:5070–5071

    Article  Google Scholar 

  21. Wright SC, Huang Y, Fleck NA (1992) Deep penetration of polycarbonate by a cylindrical punch. Mech Mater 13:277

    Article  Google Scholar 

  22. Lu YC, Shinozaki DM (1998) Deep penetration microindentation testing of high density polyethylene. Mater Sci Eng A 249:134–144

    Article  Google Scholar 

  23. Lu YC, Shinozaki DM (2008) Characterization and modeling of large displacement micro-/nano-indentation of polymeric solids. ASME J Eng Mater Technol 130:041001

    Article  Google Scholar 

  24. Lu YC, Kurapati S, Yang F (2008) Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes. J Phys D: Appl Phys 41:115415

    Article  Google Scholar 

  25. Lo JCW, Lu Y, Shinozaki DM (2005) Kink band formation during microindentation of oriented polyethylene. Mater Sci Eng A 396(15):77–86

    Google Scholar 

  26. Shinozaki DM, Lo JCW, Lu YC (2008) Depth-dependent displacement modulated indentation in oriented polypropylene. Mater Sci Eng A 491:182–191

    Article  Google Scholar 

  27. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, Clarendon

    MATH  Google Scholar 

  28. Tabor D (1951) The hardness of metals. Oxford University Press, Clarendon

    Google Scholar 

  29. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  30. Wilsea M, Johnson KL, Ashby MF (1975) Indentation of foamed plastics. Int J Mech Sci 17:457–460

    Article  Google Scholar 

  31. Olurin OB, Fleck NA, Ashby MF (2000) Indentation resistance of an aluminum foam. Scr Mater 43:983–989

    Article  Google Scholar 

  32. Flores-Johnson EA, Li QM (2010) Indentation into polymeric foams. Int J Solids Struct 47:1987–1995

    Article  MATH  Google Scholar 

  33. Sargent P, Ashby MF (1992) Indentation creep. Mater Sci Technol 8:594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics

About this paper

Cite this paper

Lu, Y.C., Joseph, J., Maschmann, M.R., Dai, L., Baur, J. (2013). Rate-Dependent, Large-Displacement Deformation of Vertically Aligned Carbon Nanotube Arrays. In: Antoun, B., Qi, H., Hall, R., Tandon, G., Lu, H., Lu, C. (eds) Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4241-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4241-7_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4240-0

  • Online ISBN: 978-1-4614-4241-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics