Skip to main content

Mathematical Foundations of Probability Theory

  • Chapter
  • First Online:
  • 7422 Accesses

Part of the book series: Problem Books in Mathematics ((PBM))

Abstract

Let \(\Omega =\{ r: r \in [0,1] \cap \mathbb{Q}\}\) denote the set of all rational numbers inside the interval [0,1], let \(\mathcal{A}\) be the algebra of sets that can be expressed as finite unions of non-intersecting sets A of the form {r: a < r < b}, {r: ar < b}, {r: a < rb}, or {r: arb}, and let \(\mathsf{P}(A) = b - a\). Prove that the set-function P(A), \(A \in \mathcal{A}\), is finitely additive but not countably additive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arnold, V.I.: Tsepnye drobi. MCNMO, Moscow (2001)

    Google Scholar 

  2. Arnold, V.I.: Chto takoe matematika. MCNMO, Moscow (2004)

    Google Scholar 

  3. Bertrand, J.: Calcul des Probabilités. Gauthier-Villars, Paris (1889)

    MATH  Google Scholar 

  4. Bulinskiĭ, A.V., Shiryaev, A.N.: Teoriya sluchaĭnyh processov. Fizmatlit, Moscow (2003)

    Google Scholar 

  5. Burkholder, D.L.: Sufficiency in the undominated case. Ann. Math. Stat. 32(4), 1191–1200 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaumont, L., Yor, M.: Exercises in Probability. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  7. Erdësh, P., Rényi, A.: On Cantor’s Series with Divergent ∑ 1 ∕ q n . Academic, New York (1974)

    Google Scholar 

  8. Hazewinkel, M.(ed.): Encyclopaedia of Mathematics. Springer, Berlin (2002)

    Google Scholar 

  9. Kochen, S., Stone, Ch.: A note on the Borel-Cantelli lemma. Ill. J. Math. 8, 248–251 (1964)

    MathSciNet  MATH  Google Scholar 

  10. Lukacs, E.: Developments in Characteristic Function Theory. Macmillan, New York (1983)

    MATH  Google Scholar 

  11. Ortega, J., Wschebor, M.: On the sequence of partial maxima of some random sequences. Stoch. Process. Appl. 16(1), 85–98 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Petrov, V.V.: A generalization of the Borel–Cantelli lemma. Stat. Probab. Lett. 67(3), 233–239 (2004)

    Article  MATH  Google Scholar 

  13. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. Shiryaev, A.N.: Probability-1 and Probability-2 (Russian editions). MCCME, Moscow (2004, 2007)

    Google Scholar 

  15. Spitzer, F.: Principles of Random Walk, 2nd edn. Springer, New York (2001)

    MATH  Google Scholar 

  16. Wall, C.R.: Terminating decimals in the Cantor ternary set. Fibonacci Q. 28(2), 98–101 (1990)

    MATH  Google Scholar 

  17. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shiryaev, A.N. (2012). Mathematical Foundations of Probability Theory. In: Problems in Probability. Problem Books in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3688-1_2

Download citation

Publish with us

Policies and ethics