Skip to main content

Dietary Modulation of Colon Cancer: Effects on Intermediary Metabolism, Mucosal Cell Differentiation, and Inflammation

  • Chapter
  • First Online:
Energy Balance and Gastrointestinal Cancer

Abstract

We review the profound effects that components of diets commonly consumed in western societies and linked through population studies to risk for colon cancer have on the development of intestinal cancer in humans and in mouse models. Focus is particularly on levels of vitamin D, interactive with calcium and fat, in establishing probability of tumor development even in mouse genetic models in which there is high penetrance of the disease. These dietary factors have also been used to develop a mouse model of dietary-induced sporadic colon cancer which exhibits similar lag, incidence, and frequency of tumor development, and relative incidence of carcinomas and adenomas, as seen for >90% of colon tumors that arise in the general population later in life. Potential mechanisms influenced by diet that alter probability of tumor development are outlined, including altered patterns of intermediary metabolism, differentiation, and inflammation in the intestinal mucosa, all apparent in the histopathologically normal intestinal mucosa well before neoplastic changes become detectable. This includes pathways by which macrophages signal to intestinal epithelial cells, revealing a new paradigm for how vitamin D may influence tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287:G7–G17

    Article  PubMed  CAS  Google Scholar 

  2. Oshima M, Taketo MM (2002) COX selectivity and animal models for colon cancer. Curr Pharm Des 8:1021–1034

    Article  PubMed  CAS  Google Scholar 

  3. Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, Paulson S et al (2000) Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 60:293–297

    PubMed  CAS  Google Scholar 

  4. Rao CV, Reddy BS (2004) NSAIDs and chemoprevention. Curr Cancer Drug Targets 4:29–42

    Article  PubMed  CAS  Google Scholar 

  5. Clapper ML, Cooper HS, Chang WC (2007) Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions. Acta Pharmacol Sin 28:1450–1459

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki R, Kohno H, Sugie S, Nakagama H, Tanaka T (2006) Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis 27:162–169

    Article  PubMed  CAS  Google Scholar 

  7. Kohno H, Suzuki R, Sugie S, Tanaka T (2005) Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer 5:46

    Article  PubMed  Google Scholar 

  8. Suzuki R, Kohno H, Sugie S, Tanaka T (2004) Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate. Cancer Sci 95:721–727

    Article  PubMed  CAS  Google Scholar 

  9. Murillo G, Nagpal V, Tiwari N, Benya RV, Mehta RG (2010) Actions of vitamin D are mediated by the TLR4 pathway in inflammation-induced colon cancer. J Steroid Biochem Mol Biol 121:403–407

    Article  PubMed  CAS  Google Scholar 

  10. Jacoby RF, Seibert K, Cole CE, Kelloff G, Lubet RA (2000) The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res 60:5040–5044

    PubMed  CAS  Google Scholar 

  11. Itano O, Yang K, Fan K, Kurihara N, Shinozaki H, Abe S et al (2009) Sulindac effects on inflammation and tumorigenesis in the intestine of mice with Apc and Mlh1 mutations. Carcinogenesis 30:1923–1926

    Article  PubMed  CAS  Google Scholar 

  12. Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 104:19977–19982

    Article  PubMed  CAS  Google Scholar 

  13. Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S et al (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 27(12):1671–1681

    Article  PubMed  CAS  Google Scholar 

  14. Ritchie KJ, Walsh S, Sansom OJ, Henderson CJ, Wolf CR (2009) Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci USA 106:20859–20864

    Article  PubMed  CAS  Google Scholar 

  15. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S et al (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295:1726–1729

    Article  PubMed  CAS  Google Scholar 

  16. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069

    Article  PubMed  CAS  Google Scholar 

  17. Yang K, Popova N, Yang W, Lozonschi I, Tadesse S, Kent S et al (2008) Interaction of Muc2 and Apc on Wnt signaling and in intestinal tumorigenesis: potential role of chronic inflammation. Cancer Res 68:7313–7322

    Article  PubMed  CAS  Google Scholar 

  18. Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y et al (2010) A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176:952–967

    Article  PubMed  CAS  Google Scholar 

  19. Shi S, Stanley P (2003) Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA 100:5234–5239

    Article  PubMed  CAS  Google Scholar 

  20. Guilmeau S, Flandez M, Bancroft L, Sellers R, Tear B, Stanley P et al (2008) Intestinal deletion of protein O-fucosyltransferase in the mouse inhibits Notch signaling and causes entero-colitis. Gastroenterology 135:849–860

    Article  PubMed  CAS  Google Scholar 

  21. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    Article  PubMed  CAS  Google Scholar 

  22. Bastie C, -Stomberg E, Ting-Wen L, Dhima E, Pessin J, Augenlicht L (2012) Dietary cholecalciferol and calcium levels in a western-style defined rodent diet alter energy metabolism and inflammatory response in mice. submitted

    Google Scholar 

  23. Willett WC (2001) Diet and cancer: one view at the start of the millennium. Cancer Epidemiol Biomarkers Prev 10:3–8

    PubMed  CAS  Google Scholar 

  24. Marmot M (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. World Cancer Research Fund/American Institute for Cancer Research, Washington, DC, pp 4–29

    Google Scholar 

  25. Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB et al (2006) The role of vitamin D in cancer prevention. Am J Public Health 96:252–261

    Article  PubMed  Google Scholar 

  26. Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, Lipkin M et al (2007) Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med 32:210–216

    Article  PubMed  Google Scholar 

  27. Grau MV, Baron JA, Sandler RS, Haile RW, Beach ML, Church TR et al (2003) Vitamin D, calcium supplementation, and colorectal adenomas: results of a randomized trial. J Natl Cancer Inst 95:1765–1771

    Article  PubMed  CAS  Google Scholar 

  28. Ng K, Meyerhardt JA, Wu K, Feskanich D, Hollis BW, Giovannucci EL et al (2008) Circulating 25-hydroxyvitamin D levels and survival in patients with colorectal cancer. J Clin Oncol 26:2984–2991

    Article  PubMed  CAS  Google Scholar 

  29. Wesa K, Jacobs D, Woo A, Cronin N, Segal M, Coleton L, et al (2010) Vitamin D levels and survival in colorectal cancer. J Clin Oncol 28:abstract number 3615

    Google Scholar 

  30. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58

    Article  PubMed  CAS  Google Scholar 

  31. Garland CF, Grant WB, Mohr SB, Gorham E, Garland FC (2007) What is the dose–response relationship between vitamin D and cancer risk? Nutr Rev 65:S91–S95

    Article  PubMed  Google Scholar 

  32. Bailey RL, Dodd KW, Goldman JA, Gahche JJ, Dwyer JT, Moshfegh AJ et al (2010) Estimation of total usual calcium and vitamin D intakes in the United States. J Nutr 140:817–822

    Article  PubMed  CAS  Google Scholar 

  33. Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML (2009) Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001–2004. Pediatrics 124:e362–e370

    Article  PubMed  Google Scholar 

  34. Nesby-O’Dell S, Scanlon KS, Cogswell ME, Gillespie C, Hollis BW, Looker AC et al (2002) Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 76:187–192

    PubMed  Google Scholar 

  35. Tangpricha V, Pearce EN, Chen TC, Holick MF (2002) Vitamin D insufficiency among free-living healthy young adults. Am J Med 112:659–662

    Article  PubMed  CAS  Google Scholar 

  36. Lee JM, Smith JR, Philipp BL, Chen TC, Mathieu J, Holick MF (2007) Vitamin D deficiency in a healthy group of mothers and newborn infants. Clin Pediatr (Phila) 46:42–44

    Article  Google Scholar 

  37. Webb AR, Pilbeam C, Hanafin N, Holick MF (1990) An evaluation of the relative contributions of exposure to sunlight and of diet to the circulating concentrations of 25-hydroxyvitamin D in an elderly nursing home population in Boston. Am J Clin Nutr 51:1075–1081

    PubMed  CAS  Google Scholar 

  38. Yang WC, Mathew J, Velcich A, Edelmann W, Kucherlapati R, Lipkin M et al (2001) Targeted inactivation of the p21 WAF1/cip1 gene enhances Apc initiated tumor formation and the tumor promoting activity of a Western-style high risk diet by altering cell maturation in the intestinal mucosa. Cancer Res 61:565–569

    PubMed  CAS  Google Scholar 

  39. Yang K, Edelmann W, Fan K, Lau K, Leung D, Newmark H et al (1998) Dietary modulation of carcinoma development in a mouse model for human familial polyposis. Cancer Res 58:5713–5717

    PubMed  CAS  Google Scholar 

  40. Yang K, Kurihara N, Fan K, Newmark H, Rigas B, Bancroft L et al (2008) Dietary induction of colonic tumors in a mouse model of sporadic colon cancer. Cancer Res 68:7803–7810

    Article  PubMed  CAS  Google Scholar 

  41. Yang K, Lipkin M, Newmark H, Rigas B, Daroqui C, Maier S et al (2007) Molecular targets of calcium and vitamin D in mouse genetic models of intestinal cancer. Nutr Rev 65:S134–S137

    Article  PubMed  Google Scholar 

  42. Newmark HL (1987) Nutrient density: an important and useful tool for laboratory animal studies. Carcinogenesis 8:871–873

    Article  PubMed  CAS  Google Scholar 

  43. Newmark HL, Yang K, Lipkin M, Kopelovich L, Liu Y, Fan K et al (2001) A western-style diet induces benign and malignant neoplasms in the colon of normal C57Bl//6 mice. Carcinogenesis 22:1871–1875

    Article  PubMed  CAS  Google Scholar 

  44. Strul H, Kariv R, Leshno M, Halak A, Jakubowicz M, Santo M et al (2006) The prevalence rate and anatomic location of colorectal adenoma and cancer detected by colonoscopy in average-risk individuals aged 40–80 years. Am J Gastroenterol 101:255–262

    Article  PubMed  Google Scholar 

  45. Aslam MN, Paruchuri T, Bhagavathula N, Varani J (2010) A mineral-rich red algae extract inhibits polyp formation and inflammation in the gastrointestinal tract of mice on a high-fat diet. Integr Cancer Ther 9:93–99

    Google Scholar 

  46. Mariadason J, Nicholas C, L’Italien K, Zhuang M, Smartt H, Heerdt B et al (2005) Gene expression profiling of intestinal cell epithelial cell maturation along the crypt-villus axis. Gastroenterology 128:1081–1088

    Article  PubMed  CAS  Google Scholar 

  47. Wang D, Peregrina K, Dhima E, Lin E, Mariadason J, Augenlicht L (2011) Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer. Proc Natl Acad Sci USA 108:10272–10277

    Google Scholar 

  48. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY et al (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–1724.e1-2

    Article  PubMed  CAS  Google Scholar 

  49. Erdelyi I, Levenkova N, Lin EY, Pinto JT, Lipkin M, Quimby FW et al (2009) Western-style diets induce oxidative stress and dysregulate immune responses in the colon in a mouse model of sporadic colon cancer. J Nutr 139:2072–2078

    Article  PubMed  CAS  Google Scholar 

  50. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

    Article  PubMed  CAS  Google Scholar 

  51. Lamprecht SA, Lipkin M (2003) Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer 3:601–614

    Article  PubMed  CAS  Google Scholar 

  52. Lipkin M, Lamprecht SA (2006) Mechanisms of action of vitamin D: recent findings and new questions. J Med Food 9:135–137

    Article  PubMed  CAS  Google Scholar 

  53. Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J et al (2006) Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 36:361–370

    Article  PubMed  CAS  Google Scholar 

  54. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  55. Terzic J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138:2101–2114 e5

    Article  PubMed  CAS  Google Scholar 

  56. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7:139–147

    Article  PubMed  CAS  Google Scholar 

  57. Jenab M, Bueno-de-Mesquita HB, Ferrari P, van Duijnhoven FJ, Norat T, Pischon T et al (2010) Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations: a nested case–control study. BMJ 340:b5500

    Article  PubMed  Google Scholar 

  58. Leslie WD, Miller N, Rogala L, Bernstein CN (2008) Vitamin D status and bone density in recently diagnosed inflammatory bowel disease: the Manitoba IBD Cohort Study. Am J Gastroenterol 103:1451–1459

    Article  PubMed  CAS  Google Scholar 

  59. Froicu M, Zhu Y, Cantorna MT (2006) Vitamin D receptor is required to control gastrointestinal immunity in IL-10 knockout mice. Immunology 117:310–318

    Article  PubMed  CAS  Google Scholar 

  60. Froicu M, Cantorna MT (2007) Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol 8:5

    Article  PubMed  Google Scholar 

  61. Zhu Y, Mahon BD, Froicu M, Cantorna MT (2005) Calcium and 1 alpha, 25-dihydroxyvitamin D3 target the TNF-alpha pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 35:217–224

    Article  PubMed  CAS  Google Scholar 

  62. Yu S, Bruce D, Froicu M, Weaver V, Cantorna MT (2008) Failure of T cell homing, reduced CD4/CD8alphaalpha intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc Natl Acad Sci USA 105:20834–20839

    Article  PubMed  CAS  Google Scholar 

  63. Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J et al (2008) Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 294:G208–G216

    Article  PubMed  CAS  Google Scholar 

  64. Kallay E, Bareis P, Bajna E, Kriwanek S, Bonner E, Toyokuni S et al (2002) Vitamin D receptor activity and prevention of colonic hyperproliferation and oxidative stress. Food Chem Toxicol 40:1191–1196

    Article  PubMed  CAS  Google Scholar 

  65. Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9:737–743

    Article  PubMed  CAS  Google Scholar 

  66. Simmons JD, Mullighan C, Welsh KI, Jewell DP (2000) Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. Gut 47:211–214

    Article  PubMed  CAS  Google Scholar 

  67. Dresner-Pollak R, Ackerman Z, Eliakim R, Karban A, Chowers Y, Fidder HH (2004) The BsmI vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients. Genet Test 8:417–420

    Article  PubMed  CAS  Google Scholar 

  68. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  69. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  PubMed  CAS  Google Scholar 

  70. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  71. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  72. Kaler P, Augenlicht L, Klampfer L (2009) Macrophage-derived IL-1b stimulates Wnt signaling and growth of colon cancer cells; a crosstalk interrupted by vitamin D3. Oncogene 28:3892–3902

    Article  PubMed  CAS  Google Scholar 

  73. Kaler P, Godasi BN, Augenlicht L, Klampfer L (2009) The NFkB/AKT-dependent induction of Wnt signaling in colon cancer cells by macrophages and IL-1b. Cancer Microenviron 2:69–80

    Article  CAS  Google Scholar 

  74. Kaler P, Galea V, Augenlicht L, Klampfer L (2010) Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL1-dependent stabilization of Snail in tumor cells. PLoS One 5(7):e11700

    Article  PubMed  Google Scholar 

  75. Lee G, Goretsky T, Managlia E, Dirisina R, Singh AP, Brown JB et al (2010) Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology 139(3):869–881

    Article  PubMed  CAS  Google Scholar 

  76. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  PubMed  CAS  Google Scholar 

  77. Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713

    Article  PubMed  CAS  Google Scholar 

  78. Sancho E, Batlle E, Clevers H (2003) Live and let die in the intestinal epithelium. Curr Opin Cell Biol 15:763–770

    Article  PubMed  CAS  Google Scholar 

  79. Yeung AT, Patel BB, Li XM, Seeholzer SH, Coudry RA, Cooper HS et al (2008) One-hit effects in cancer: altered proteome of morphologically normal colon crypts in familial adenomatous polyposis. Cancer Res 68:7579–7586

    Article  PubMed  CAS  Google Scholar 

  80. Wang D, Pezo R, Corner G, Sison C, Lesser M, Shenoy SM et al (2010) Altered dynamics of intestinal cell maturation in Apc1638N/+ mice. Cancer Res 70:5348–5357

    Article  PubMed  CAS  Google Scholar 

  81. Aguilera O, Pena C, Garcia JM, Larriba MJ, Ordonez-Moran P, Navarro D et al (2007) The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis 28:1877–1884

    Article  PubMed  CAS  Google Scholar 

  82. Alvarez-Diaz S, Valle N, Garcia JM, Pena C, Freije JM, Quesada V et al (2009) Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells. J Clin Invest 119:2343–2358

    Article  PubMed  CAS  Google Scholar 

  83. Egan JB, Thompson PA, Vitanov MV, Bartik L, Jacobs ET, Haussler MR et al (2010) Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells. Mol Carcinog 49:337–352

    PubMed  CAS  Google Scholar 

  84. Fretz JA, Zella LA, Kim S, Shevde NK, Pike JW (2006) 1,25-Dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription. Mol Endocrinol 20:2215–2230

    Article  PubMed  CAS  Google Scholar 

  85. Larriba MJ, Valle N, Palmer HG, Ordonez-Moran P, Alvarez-Diaz S, Becker KF et al (2007) The inhibition of Wnt/beta-catenin signalling by 1alpha,25-dihydroxyvitamin D3 is abrogated by Snail1 in human colon cancer cells. Endocr Relat Cancer 14:141–151

    Article  PubMed  CAS  Google Scholar 

  86. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA et al (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98:10356–10361

    Article  PubMed  CAS  Google Scholar 

  87. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  PubMed  CAS  Google Scholar 

  88. Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, Garber J et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038

    Article  PubMed  CAS  Google Scholar 

  89. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH 1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261

    Article  PubMed  CAS  Google Scholar 

  90. Liu B, Parsons RE, Hamilton SR, Petersen GM, Lynch HT, Watson P et al (1994) hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res 54:4590–4594

    PubMed  CAS  Google Scholar 

  91. Nicolaides NC, Papadopoulos N, Liu B, Wei Y-F, Carter KC, Ruben SM et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371:75–80

    Article  PubMed  CAS  Google Scholar 

  92. Papadopoulos N, Nicolaides NC, Wei Y-F, Ruben SM, Carter KC, Rosen CA et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629

    Article  PubMed  CAS  Google Scholar 

  93. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J et al (1995) Inactivation of the type II TGF-B receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    Article  PubMed  CAS  Google Scholar 

  94. Warthin AS (1913) Heredity with reference to carcinoma. Arch Intern Med 12:546–555

    Article  Google Scholar 

  95. Lynch HT, Krush AJ (1971) Cancer family G revisited: 1895–1970. Cancer 27:1505–1511

    Article  PubMed  CAS  Google Scholar 

  96. Yan PS, Chen CM, Shi H, Rahmatpanah F, Wei SH, Caldwell CW et al (2001) Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res 61:8375–8380

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard H. Augenlicht Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Klampfer, L. et al. (2012). Dietary Modulation of Colon Cancer: Effects on Intermediary Metabolism, Mucosal Cell Differentiation, and Inflammation. In: Markowitz, S., Berger, N. (eds) Energy Balance and Gastrointestinal Cancer. Energy Balance and Cancer, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2367-6_3

Download citation

Publish with us

Policies and ethics