Skip to main content

Hydrogeochemical Models

  • Chapter
  • First Online:

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 4))

Abstract

Mathematical models are tools to integrate the processes affecting transport and fate of contaminants in the subsurface. The transport processes of advection and dispersion have been described in the previous chapter, while biogeochemical reaction processes were presented in Chapter 2. Here we adopt the standard continuum or Darcy-scale representation of a porous medium (Bear, 1979) and use the mass balance principle to couple all relevant processes within the quantitative framework of the advection-dispersion-reaction equation. In theory, any reaction or mass-transfer process can be incorporated into the mass balance equations, as long as the process can be described with a suitable mathematical relationship. Mathematical models that couple both hydrologic transport and biogeochemical reaction processes are called “hydrogeochemical models” or “reactive transport models.” These models are invaluable tools to aid groundwater management and remediation design decisions. They can be used to improve understanding of the coupling between mixing and reaction processes, and they serve as a framework for interpreting, integrating and synthesizing laboratory and field information. In practice, hydrogeochemical models can be applied to aid site-specific assessments of alternative remediation designs (e.g., different reagent delivery strategies) and make predictions of future system behavior. For site-specific applications, the hydrogeochemical model is a mathematical representation of the site conceptual model, which describes all the key features of the geology, hydrogeology, groundwater flow system, system boundaries, contaminant sources and distribution. See Anderson and Woessner (1992) for further discussion. For reacting chemicals, the conceptual model also must include a description of all the important site-specific geochemical and microbiological reactions (Davis et al., 2004).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allison JD, Brown DS, Gradac KJN. 1991. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual. EPA/600/3-91/021. U.S. Environmental Protection Agency (USEPA), Office of Research and Development, Washington DC, USA, 106 p.

    Google Scholar 

  • Anderson MA, Woessner WW. 1992. Applied Groundwater Modeling, Simulation of Flow and Advective Transport. Academic Press Inc., San Diego, CA, USA. 391 p.

    Google Scholar 

  • Ball WP, Roberts PV. 1991. Long term sorption of halogenated organic chemicals by aquifer materials. 2. Intraparticle diffusion. Environ Sci Technol 25:1237–1249.

    CAS  Google Scholar 

  • Barry DA, Prommer H, Miller CT, Engesgaard P, Brun A, Zheng C. 2002. Modelling the fate of oxidisable organic contaminants in groundwater. Adv Water Resour 25:945–983.

    CAS  Google Scholar 

  • Bauer RD, Rolle M, Bauer S, Eberhardt C, Grathwohl P, Kolditz O, Meckenstock RU, Griebler C. 2009. Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. J Contam Hydrol 105:56–68.

    CAS  Google Scholar 

  • Bear J. 1979. Hydraulics of Groundwater. McGraw-Hill, New York, NY, USA. 569 p.

    Google Scholar 

  • Benner SG, Blowes DW, Molson JWH. 2001. Modeling preferential flow in reactive barriers: Implications for performance and design. Ground Water 39:371–379.

    CAS  Google Scholar 

  • Bethke C. 2008. Geochemical and Biogeochemical Reaction Modeling. Oxford University Press, Cambridge, United Kingdom. 543 p.

    Google Scholar 

  • Binning PJ, Celia MA. 2008. Pseudokinetics arising from the upscaling of geochemical equilibrium. Water Resour Res 44:W07410, doi:10.1029/2007WR006147.

    Google Scholar 

  • Brauner J, Widdowson M. 2001. Numerical simulation of a natural attenuation experiment with a petroleum hydrocarbon NAPL source. Ground Water 39:939–52.

    CAS  Google Scholar 

  • Brennan RA, Sanford RA, Werth CJ. 2006. Chitin and corncobs as electron donor sources for the reductive dechlorination of tetrachloroethene. Water Res 40:2125–2134.

    CAS  Google Scholar 

  • Brown CL, Pope GA, Abriola LM, Sepehrnoori K. 1994. Simulation of surfactant-enhanced aquifer remediation. Water Resour Res 30:2959–2078.

    CAS  Google Scholar 

  • Brun A, Engesgaard P. 2002. Modelling of transport and biogeochemical processes in pollution plumes: Literature review and model development. J Hydrol 256:211–227.

    CAS  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ. 2005. Inverse problem in hydrogeology. Hydrogeo J 13:206–222.

    Google Scholar 

  • Chilakapati A, Williams M, Yabusaki S, Cole C, Szecsody J. 2000. Optimal design of an in situ Fe(II) barrier: Transport limited reoxidation. Environ Sci Technol 34:5215–5221.

    CAS  Google Scholar 

  • Christ JA, Abriola LM. 2007. Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. Adv Water Resour 30:1547–1561.

    CAS  Google Scholar 

  • Christ JA, Goltz MN, Huang J. 1999. Development and application of an analytical model to aid design and implementation of in situ remediation technologies. J Contam Hydrol 37:295–317.

    CAS  Google Scholar 

  • Chu M, Kitanidis PK, McCarty PL. 2005. Modeling microbial reactions at the plume fringe subject to transverse mixing in porous media: When can the rates of microbial reaction be assumed to be instantaneous? Water Resour Res. 41:W06002.

    Google Scholar 

  • Cirpka OA. 2002. Choice of dispersion coefficients in reactive transport calculations on smoothed fields. J Contam Hydrol 58:261–282.

    CAS  Google Scholar 

  • Cirpka OA. 2005. Effects of sorption on transverse mixing in transient flows. J Contam Hydrol 78:207–229.

    CAS  Google Scholar 

  • Cirpka OA, Kitanidis PK. 1999. An advective-dispersive stream tube approach for the transfer of conservative-tracer data to reactive transport. Water Resour Res 36:1209–2220.

    Google Scholar 

  • Cirpka OA, Valocchi AJ. 2007. Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv Water Resour 30:1668–1679.

    CAS  Google Scholar 

  • Cirpka OA, Frind EO, Helming R. 1999. Numerical simulation of biodegradation controlled by transverse mixing. J Contam Hydrol 40:159–182.

    CAS  Google Scholar 

  • Cirpka OA, Schwede RL, Luo J, Dentz M. 2008. Concentration statistics for mixing-controlled reactive transport in random heterogeneous media. J Contam Hydrol 98:61–74.

    CAS  Google Scholar 

  • Clement TP, Sun Y, Hooker BS, Petersen JN. 1998. Modeling multispecies reactive transport in ground water. Ground Water Monit Remediat 18:79–92.

    CAS  Google Scholar 

  • Clement TP, Johnson CD, Sun YW, Klecka GM, Bartlett C. 2000. Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site. J Contam Hydrol 42:113–140.

    CAS  Google Scholar 

  • Clement TP, Truex MJ, Lee P. 2002. A case study for demonstrating the application of U.S. EPA's monitored natural attenuation screening protocol at a hazardous waste site. J Contam Hydrol 59:133–162.

    CAS  Google Scholar 

  • Cline SR, West OR, Siegrist RL, Holden WL. 1997. Performance of in Situ chemical oxidation field demonstrations at DOE sites. American Society of Civil Engineers (ASCE) Geotechnical Conference, Minneapolis, MN, USA, October 5, Special Publication 71:338–348.

    Google Scholar 

  • Coulibaly KM, Long CM, Borden RC. 2006. Transport of edible oil emulsions in clayey sands: One-dimensional column results and model development. J Hydrol Eng 11:230–237.

    Google Scholar 

  • Curtis GP. 2005. Documentation and Applications of the Reactive Geochemical Transport Model RATEQ, Draft Report for Comment. Rockville, MD: U.S. Nuclear Regulatory Commission. Report NUREG/CR-6871. 97 p.

    Google Scholar 

  • Curtis GP, Davis JA, Naftz DL. 2006. Simulation of reactive transport of uranium(VI) in groundwater with variable chemical conditions. Water Resour Res 42:W04404, doi:10.1029/2005WR003979.

    Google Scholar 

  • Davis JA, Yabusaki SB, Steefel CI, Zachara JM, Curtis GP, Redden GD, Criscenti LJ, Honeyman BD. 2004. Assessing conceptual models for subsurface reactive transport of inorganic contaminants. EOS, Transactions, American Geophysical Union 85:449–455.

    Google Scholar 

  • de Marsily G, Combes P, Goblet P. 1992. Comment on “Ground water models cannot be validated,” by Konikow LF, Bredehoeft JD. Adv Water Resour 15:367–369.

    Google Scholar 

  • Doherty J. 2002. Manual for PEST, 5th ed. Watermark Numerical Computing, Brisbane, Queensland, Australia.

    Google Scholar 

  • Doherty J. 2003. Ground water model calibration using pilot points and regularization. Ground Water 41:170–177.

    CAS  Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S, Davies S, Forney L, Heuer H, Kawka O, Mayotte T, Sepulveda-Torres L, Smalla K, Sneathen M, Tiedje J, Voice T, Wiggert DC, Witt ME, Criddle CS. 1998. Pilot-scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32:3598–3611.

    CAS  Google Scholar 

  • Evans PJ, Koenigsberg SS. 2001. A bioavailable ferric iron assay and relevance to reductive dechlorination. In Leeson A, Alleman BC, Alvarez PJ, Magar VS, eds, Bioaugmentation, Biobarriers, and Biogeochemistry. Battelle Press, Columbus, OH, USA, pp 167–174.

    Google Scholar 

  • Faybishenko B, Hazen TC, Long PE, Brodie E, Conrad M, Hubbard S, Christensen J, Joyner D, Borglin S, Chakraborty R, Williams K, Peterson J, Chen J, Brown S, Tokunaga T, Wan J, Firestone M, Newcomer D, Resch C, Cantrell K, Willett A, Koenigsberg S. 2008. In situ long-term reductive bioimmobilization of Cr(VI) in groundwater using hydrogen release compound. Environ Sci Technol 42:8478–8485.

    CAS  Google Scholar 

  • Fang YL, Yeh GT, Burgos WD. 2003. A general paradigm to model reaction-based biogeochemical process in batch systems. Water Resour Res 39:1083–1108.

    Google Scholar 

  • Fennell DE, Gossett JM. 1998. Modeling the production of and competition for hydrogen in a dechlorinating culture. Environ Sci Technol 32:2450–2460.

    CAS  Google Scholar 

  • Fernàndez-Garcia D, Sánchez-Vila X, Guadagnini A. 2008. Reaction rates and effective parameters in stratified aquifers. Adv Water Resour 31:1364–1376.

    Google Scholar 

  • Fruchter JS, Cole CR, Williams MD, Vermeul VR, Amonette JE, Szecsody JE, Istok JD, Humphrey MD. 2000. Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation. Ground Water Monit Remedit 20:66–77.

    CAS  Google Scholar 

  • Gandhi RK, Hopkins GD, Goltz MN, Gorelick SM, McCarty PL. 2002a. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system. Water Resour Res 38:101–1016.

    Google Scholar 

  • Gandhi RK, Hopkins GD, Goltz MN, Gorelick SM, McCarty PL. 2002b. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 2. Comprehensive analysis of field data using reactive transport modeling. Water Resour Res 38:111–1119.

    Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR. 1992. A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974.

    CAS  Google Scholar 

  • Goltz MN, Bouwer EJ, Huang J. 2001. Transport issues and bioremediation modeling for the in situ aerobic co-metabolism of chlorinated solvents. Biodegradation 12:127–140.

    CAS  Google Scholar 

  • Gutierrez-Neri M, Ham PAS, Schotting RJ, Lerner DN. 2009. Analytical modelling of fringe and core biodegradation in groundwater plumes. J Contam Hydrol 107:1–9.

    CAS  Google Scholar 

  • Gwo JP, D`Azevedo EF, Frenzel H, Mayes M, Yeh GT, Jardine PM, Salvage KM, Hoffman FM. 2001. HBGC123D: A high-performance computer model of coupled hydrogeological and biogeochemical processes. Comput Geoscienc 27:1231–1242.

    CAS  Google Scholar 

  • Ham PAS, Schotting RJ, Prommer H, Davis GB. 2004. Effects of hydrodynamic dispersion on plume lengths for instantaneous bimolecular reactions. Adv Water Resour 27:803–813.

    CAS  Google Scholar 

  • Hammond GE, Valocchi AJ, Lichtner PC. 2005. Application of Jacobian-free Newton-Krylov with physics-based preconditioning to biogeochemical transport. Adv Water Resour 28:359–376.

    CAS  Google Scholar 

  • Hassan AE. 2004a. A methodology for validating Numerical Ground Water Models. Ground Water 42:347–362.

    CAS  Google Scholar 

  • Hassan AE. 2004b. Validation of Numerical ground water models used to guide decision making. Ground Water 42:277–290.

    CAS  Google Scholar 

  • Hazen T, Tabak H. 2005. Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclides. Rev Environ Sci Biotechnol 4:157–183.

    CAS  Google Scholar 

  • Henderson TH, Mayer KU, Parker BL, Al TA. 2009. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. J Contam Hydrol 106:195–211.

    CAS  Google Scholar 

  • Hill MC, Tiedeman CR. 2007. Effective Groundwater Model Calibration, With Analysis of Data, Sensitivities, Predictions, and Uncertainty. Wiley, New York, NY, USA. 456 p.

    Google Scholar 

  • Hyndman DW, Dybas MJ, Forney L, Heine R, Mayotte T, Phanikumar MS, Tatara G, Tiedje J, Voice T, Wallace R and others. 2000. Hydraulic characterization and design of a full-scale biocurtain. Ground Water 38:462–474.

    CAS  Google Scholar 

  • Ibaraki M, Schwartz FW. 2001. Influence of natural heterogeneity on the efficiency of chemical floods in source zones. Ground Water 39:660–666.

    CAS  Google Scholar 

  • Innovative Technology Summary Report. 2000. In Situ Redox Manipulation. U.S. Department of Energy Office of Environmental Management, Office of Science and Technology. Report DOE/EM-0499.

    Google Scholar 

  • Istok JD, Amonette JE, Cole CR, Fruchter JS, Humphrey MD, Szecsody JE, Teel SS, Vermeul VR, Williams MD, Yabusaki SB. 1999. In situ redox manipulation by dithionite injection: Intermediate-scale laboratory experiments. Ground Water 37:884–889.

    CAS  Google Scholar 

  • Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A, Chang YJ, White DC. 2004. In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38:468–475.

    CAS  Google Scholar 

  • Janssen GMCM, Cirpka OA, Van Der Zee SEATM. 2006. Stochastic analysis of nonlinear biodegradation in regimes controlled by both chromatographic and dispersive mixing. Water Resour Res 42:W01417, doi:10.1029/2005WR004042.

    Google Scholar 

  • Jeen SW, Mayer KU, Gillham RW, Blowes DW. 2007. Reactive transport modeling of trichloroethene treatment with declining reactivity of iron. Environ Sci Technol 41:1432–1438.

    CAS  Google Scholar 

  • Jin M, Butler GW, Jackson RE, Mariner PE, Pickens JF, Pope GA, Brown CL, McKinney DC. 1997. Sensitivity models and design protocol for partitioning tracer tests in alluvial aquifers. Ground Water 35:964–972.

    CAS  Google Scholar 

  • Jones NL, Clement TP, Hansen CM. 2006. A three-dimensional analytical tool for modeling reactive transport. Ground Water 44:613–617.

    CAS  Google Scholar 

  • Jung Y, Coulibaly KM, Borden RC. 2006. Transport of edible oil emulsions in clayey sands: 3D sandbox results and model validation. J Hydrol Eng 11:238–244.

    Google Scholar 

  • Kao CM, Chen YL, Chen SC, Yeh TY, Wu WS. 2003. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Res 37:4885–4894.

    CAS  Google Scholar 

  • Kapoor V, Gelhar LW, Miralles-Wilhelm F. 1997. Bimolecular second order reactions in spatially varying flows: Segregation induced scale-dependent transformation rates. Water Resour Res 33:527–536.

    Google Scholar 

  • Kitanidis PK. 1994. The concept of the dilution index. Water Resour Res 30:2011–26.

    CAS  Google Scholar 

  • Knutson C, Valocchi A, Werth C. 2007. Comparison of continuum and pore-scale models of nutrient biodegradation under transverse mixing conditions. Adv Water Resour 30:1421–1431.

    CAS  Google Scholar 

  • Konikow LF, Bredehoeft JD. 1992. Ground-water models cannot be validated. Adv Water Resour 15:75–83.

    Google Scholar 

  • Kräutle S, Knabner P. 2005. A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Water Resour Res 41:W09414, doi:10.1029/2004WR003624.

    Google Scholar 

  • Kräutle S, Knabner P. 2007. A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions. Water Resour Res. 43:W03429, doi:10.1029/2005WR004465.

    Google Scholar 

  • Lee ES, Schwartz FW. 2007. Characteristics and applications of controlled-release KMnO4 for groundwater remediation. Chemosphere 66:2058–2066.

    CAS  Google Scholar 

  • Lee I-S, Bae J-H, Yang Y, McCarty PL. 2004. Simulated and experimental evaluation of factors affecting the rate and extent of reductive dehalogenation of chloroethenes with glucose. J Contam Hydrol 74:313–331.

    CAS  Google Scholar 

  • Li XD, Schwartz FW. 2004a. DNAPL mass transfer and permeability reduction during in situ chemical oxidation with permanganate. Geophys Res Let 31:1–5.

    CAS  Google Scholar 

  • Li XD, Schwartz FW. 2004b. DNAPL remediation with in situ chemical oxidation using potassium permanganatey. Part I. Mineralogy of Mn oxide and its dissolution in organic acids. J Contam Hydrol 68:39–53.

    CAS  Google Scholar 

  • Lichtner PC. 1996. Continuum formulation of multicomponent-multiphase reactive transport. Rev Mineral 34:1–81.

    CAS  Google Scholar 

  • Liedl R, Valocchi AJ, Dietrich P, Grathwohl P. 2005. Finiteness of steady state plumes. Water Resour Res 41:1–8.

    Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nat 339:297–300.

    CAS  Google Scholar 

  • Lu G, Clement TP, Zheng C, Wiedemeier TH. 1999. Natural attenuation of BTEX compounds: Model development and field-scale application. Ground Water 37:707–717.

    CAS  Google Scholar 

  • Luo J, Cirpka OA, Fienen MN, Wu W-m, Mehlhorn TL, Carley J, Jardine PM, Criddle CS, Kitanidis PK. 2006. A parametric transfer function methodology for analyzing reactive transport in nonuniform flow. J Contam Hydrol 83:27–41.

    CAS  Google Scholar 

  • Luo J, Weber F-A, Cirpka OA, Wu W-M, Nyman JL, Carley J, Jardine PM, Criddle CS, Kitanidis PK. 2007. Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. J Contam Hydrol 92:129–148.

    CAS  Google Scholar 

  • Luo J, Dentz M, Carrera J, Kitanidis P. 2008. Effective reaction parameters for mixing controlled reactions in heterogeneous media. Water Resour Res 44:W02416, doi:10.1029/2006WR005658.

    Google Scholar 

  • Maurer M, Rittmann BE. 2004a. Formulation of the CBC-model for modelling the contaminants and footprints in natural attenuation of BTEX. Biodegradation 15:419–434.

    CAS  Google Scholar 

  • Maurer M, Rittmann BE. 2004b. Modeling intrinsic bioremediation for interpret observable biogeochemical footprints of BTEX biodegradation: The need for fermentation and abiotic chemical processes. Biodegradation 15:405–417.

    CAS  Google Scholar 

  • Mayer KU, Blowes DW, Frind EO. 2001. Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. Water Resour Res 37:3091–3103.

    CAS  Google Scholar 

  • Mayer KU, Frind EO, Blowes DW. 2002. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38:1174–1194.

    Google Scholar 

  • McCarty PL. 1997. Breathing with chlorinated solvents. Sci 276:1521–1522.

    CAS  Google Scholar 

  • McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT, Carrothers TJ. 1998. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol 32:88–100.

    CAS  Google Scholar 

  • McLaughlin D, Townley LR. 1996. A reassessment of the groundwater inverse problem. Water Resour Res 32:1131–1161.

    Google Scholar 

  • Molins S, Carrera JS, Ayora C, Saaltink MW. 2004. A formulation for decoupling components in reactive transport problems. Water Resour Res 40:W10301, doi:10.1029/2003WR002970.

    Google Scholar 

  • Moore C, Doherty J. 2006. The cost of uniqueness in groundwater model calibration. Adv Water Resour 29:605–623.

    Google Scholar 

  • NRC (National Research Council). 2000. Natural Attenuation for Groundwater Remediation. Water Science and Technology Board. National Academy Press, Washington DC, USA.

    Google Scholar 

  • NRC. 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation. Water Science and Technology Board. National Academy Press, Washington DC, USA.

    Google Scholar 

  • Neuman SP. 1990. Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26:1749–1758.

    Google Scholar 

  • Neuman SP. 2003. Maximum likelihood Bayesian averaging of uncertain model predictions. Stochastic Env Res Risk Assess 17:291–305.

    Google Scholar 

  • Oostrom M, Wietsma TW, Covert MA, Vermeul VR. 2007. Zero-valent iron emplacement in permeable porous media using polymer additions. Ground Water Monit Remediat 27:122–130.

    CAS  Google Scholar 

  • Oya S, Valocchi AJ. 1997. Characterization of traveling waves and analytical estimation of pollutant removal in one-dimensional subsurface bioremediation modeling. Water Resour Res 33:1117–1127.

    CAS  Google Scholar 

  • Parker JC, Park E. 2004. Modeling field-scale dense nonaqueous phase dissolution kinetics in heterogeneous aquifers. Water Resour Res 40:W05109, doi:10.1029/2003WR002807.

    Google Scholar 

  • Parkhurst DL, Appelo CAJ. 1999. User's Guide to PHREEQC (version 2) – A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations. Report 99–4259. U.S. Geological Survey (USGS), Water-Resources Investigations, Washington DC, USA.

    Google Scholar 

  • Parkhurst DL, Thorstenson DC, Plummer LN. 1980. PHREEQE--A Computer Program for Geochemical Calculations. Report 80–96. USGS, Water Resources Investigations, Washington DC, USA. 195 p.

    Google Scholar 

  • Parkhurst DL, Kipp KL, Engesgaard P, Charlton SR. 2004. PHAST – A Program for Simulating Ground-Water Flow, Solute Transport, and Multicomponent Geochemical Reactions. Report 6-A8. USGS, Washington DC, USA.

    Google Scholar 

  • Patterson RR, Fendorf S, Fendorf M. 1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31:2039–2044.

    CAS  Google Scholar 

  • Pavlostathis SG, Prytula MT, Yeh DH. 2003. Potential and limitations of microbial reductive dechlorination for bioremediation applications. Water Air Soil Pollut Focus 3:117–129.

    CAS  Google Scholar 

  • Phanikumar MS, Hyndman DW, Zhao X, Dybas MJ. 2005. A three-dimensional model of microbial transport and biodegradation at the Schoolcraft, Michigan, site. Water Resour Res 41:1–17.

    Google Scholar 

  • Poeter E, Anderson D. 2005. Multimodel ranking and inference in ground water modeling. Ground Water 43:597–605.

    CAS  Google Scholar 

  • Poeter EP, Hill MC. 1999. UCODE: A computer code for universal inverse modeling. Comput Geosci 25:457–462.

    Google Scholar 

  • Prommer H, Davis GB, Barry DA. 1999. Geochemical changes during biodegradation of petroleum hydrocarbons: Field investigations and biogeochemical modeling. Org Geochem 30:423–435.

    CAS  Google Scholar 

  • Prommer H, Barry DA, Davis GB. 2000. Numerical modeling for design and evaluation of groundwater remediation schemes. Ecol Model 128:181–195.

    CAS  Google Scholar 

  • Prommer H, Barry DA, Davis GB. 2002. Modeling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. J Contam Hydrol 59:113–131.

    CAS  Google Scholar 

  • Prommer H, Barry DA, Zheng C. 2003. MODFLOW/MT3DMS based reactive multicomponent transport modeling. Ground Water 41:247–257.

    CAS  Google Scholar 

  • Prommer H, Tuxen N, Bjerg PL. 2006. Fringe-controlled natural attenuation of phenoxy acids in a landfill plume: Integration of field-scale processes by reactive transport modeling. Environ Sci Technol 40:4732–4738.

    CAS  Google Scholar 

  • Quezada CR, Clement TP, Lee K-K. 2004. Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors. Adv Water Resour 27:507–520.

    Google Scholar 

  • Rittmann BE. 1993. The significance of biofilms in porous media. Water Resour Res 29:2195–2208.

    CAS  Google Scholar 

  • Rittmann BE, McCarty PL. 2001. Environmental Biotechnology. McGraw Hill, Boston, MA, USA. 754 p.

    Google Scholar 

  • Roberts PV, Hopkins GD, Mackay DM, Semprini L. 1990. A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 1, methodology and field site characterization. Ground Water 28:591–604.

    CAS  Google Scholar 

  • Robinson BA, Viswanathan HS, Valocchi AJ. 2000. Efficient numerical techniques for modeling multicomponent ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components. Adv Water Resour 23:307–324.

    Google Scholar 

  • Saenton S, Illangasekare T. 2007. Upscaling of mass transfer rate coefficient for the numerical simulation of dense nonaqueous phase liquid dissolution in heterogeneous aquifers. Water Resour Res 43:W02428, doi:10.1029/2005WR004274.

    Google Scholar 

  • Salvage KM, Yeh GT. 1998. Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD). J Hydrol 209:27–52.

    CAS  Google Scholar 

  • Schafer W, Therrien R. 1995. Simulating transport and removal of xylene during remediation of a sandy aquifer. J Contam Hydrol 19:205–236.

    Google Scholar 

  • Scheibe TD, Fang Y, Murray CJ, Roden EE, Chen J, Chien Y-J, Brooks SC, Hubbard SS. 2006. Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer. Geosphere 2:220–235.

    Google Scholar 

  • Schirmer M, Molson JW, Frind EO, Barker JF. 2000. Biodegradation modeling of a dissolved gasoline plume applying independent laboratory and field parameters. J Contam Hydrol 46:339–374.

    CAS  Google Scholar 

  • Schroth MH, Oostrom M, Wietsma TW, Istok JD. 2001. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. J Contam Hydrol 50:79–98.

    CAS  Google Scholar 

  • Semprini L, McCarty PL. 1991. Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics: Part 1. Biostimulation of methanotrophic bacteria. Ground Water 29:365–374.

    CAS  Google Scholar 

  • Semprini L, Dolan ME, Mathias MA, Hopkins GD, McCarty PL. 2007. Laboratory, field, and modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane. Adv Water Resour 30:1528–1546.

    CAS  Google Scholar 

  • Simunek J, Valocchi AJ. 2002. Geochemical Transport. In Topp C, Dane J, eds, Methods of Soil Analysis, Part I, Physical Methods. Soil Science Society of America, Madison, WI, USA, Chapter 6.9.

    Google Scholar 

  • Srinivasan V, Clement TP, Lee KK. 2007. Domenico solution – Is it valid? Ground Water 45:136–146.

    CAS  Google Scholar 

  • Steefel CI, MacQuarrie KTB. 1996. Approaches to modeling of reactive transport in porous media. Rev Mineral 34:82–129.

    Google Scholar 

  • Sun Y, Petersen JN, Clement TP. 1999. Analytical solutions for multiple species reactive transport in multiple dimensions. J Contam Hydrol 35:429–440.

    CAS  Google Scholar 

  • Szecsody JE, Fruchter JS, Sklarew DS, Evans JC. 2000. In Situ Redox Manipulation of Subsurface Sediments from Fort Lewis, Washington: Iron Reduction and TCE Dechlorination Mechanisms. Report PNNL-13178. Pacific Northwest National Laboratory, Richland, WA, USA.

    Google Scholar 

  • Szecsody JE, Fruchter JS, Phillips JL, Rockhold ML, Vermeul VR, Williams MD, Devary BJ, Liu Y. 2005. Effect of Geochemical and Physical Heterogeneity on the Hanford 100 D Area In Situ Redox Manipulation Barrier Longevity. Report PNNL-15499 Rev. 1. Pacific Northwest National Laboratory, Richland, WA, USA.

    Google Scholar 

  • Tebes-Stevens CL, Valocchi AJ. 2000. Calculation of reaction parameter sensitivity coefficients in multicomponent subsurface transport models. Adv Water Resour 23:591–611.

    Google Scholar 

  • Tebes-Stevens C, Valocchi AJ, Van Briesen JM, Rittmann BE. 1998. Multicomponent transport with coupled geochemical and microbiological reactions: Model description and example simulations. J Hydrol 209:8–26.

    CAS  Google Scholar 

  • Tonkin M, Doherty J, Moore C. 2007. Efficient nonlinear predictive error variance for highly parameterized models. Water Resour Res 43:W07429, doi:10.1029/2006WR005348.

    Google Scholar 

  • Tuxen N, Albrechtsen H-J, Bjerg PL. 2006. Identification of a reactive degradation zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques. J Contam Hydrol 85:179–194.

    CAS  Google Scholar 

  • Valocchi AJ, Malmstead M. 1992. Accuracy of operator splitting for advection-dispersion-reaction problems. Water Resour Res 28:1471–1476.

    CAS  Google Scholar 

  • van der Lee J, De Windt L. 2001. Present state and future directions of modeling of geochemistry in hydrogeological systems. J Contam Hydrol 47:265–282.

    Google Scholar 

  • Vermeul VR, Bjornstad BN, Murray CJ, Newcomer DR, Rockhold ML, Szecsody JE, Williams MD, Xie Y. 2004. In Situ Redox Manipulation Permeable Reactive Barrier Emplacement: Final Report Frontier Hard Chrome Superfund Site, Vancouver, WA. Report PNWD-3361. Battelle Pacific Northwest Division Richland, WA, USA.

    Google Scholar 

  • Viswanathan HS, Robinson BA, Valocchi AJ, Triay IR. 1998. A reactive transport model of neptunium migration from the potential repository at Yucca Mountain. J Hydrol 209:251–280.

    CAS  Google Scholar 

  • Waddill DW, Widdowson MA. 2000. SEAM3D: A Numerical Model for Three-Dimensional Solute Transport and Sequential Electron Acceptor-Based Bioremediation in Groundwater. Report ERDC/EL-TR-00-18. U.S. Army Environmental Research Development Center, Vicksburg, MS, USA.

    Google Scholar 

  • Wang S, Jaffe PR, Li G, Wang SW, Rabitz HA. 2003. Simulating bioremediation of uranium-contaminated aquifers; uncertainty assessment of model parameters. J Contam Hydrol 64:283–307.

    CAS  Google Scholar 

  • Westall JC, Zachary JL, Morel FMM. 1976. MINEQL: A computer program for the calculation of chemical equilibrium composition of aqueous systems. Report 18. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

    Google Scholar 

  • White MD, Oostrom M. 1998. Modeling surfactant-enhanced nonaqueous-phase liquid remediation of porous media. Soil Sci 163:931–940.

    CAS  Google Scholar 

  • White MD, Oostrom M. 2006. STOMP Subsurface Transport Over Multiple Phases, Version 4.0, User's Guide. Pacific Northwest National Laboratory, Richland, WA, USA.

    Google Scholar 

  • Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT. 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Xu T, Pruess K. 2001. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology. Am J Sci 301:16–33.

    CAS  Google Scholar 

  • Xu T, Sonnenthal E, Spycher N, Preuss K. 2004. TOUGHREACT User's Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variable Saturated Geologic Media. Report Report LBNL-55460. Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 192 p.

    Google Scholar 

  • Xu T, Apps JA, Pruess K. 2005. Mineral sequestration of carbon dioxide in a sandstone-shale system. Chem Geol 217:295–318.

    CAS  Google Scholar 

  • Xu T, Sonnenthal E, Spycher N, Pruess K. 2006. TOUGHREACT – A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32:145–165.

    CAS  Google Scholar 

  • Yabusaki S. 2001. Multicomponent reactive transport in an in situ zero-valent iron cell. Environ Sci Technol 35:1493–1503.

    CAS  Google Scholar 

  • Yan YE, Schwartz FW. 1999. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J Contam Hydrol 37:343–365.

    CAS  Google Scholar 

  • Yeh G-T, Salvage KM, Gwo JP, Zachara JM, and Szecsody JE. 1998. HydroBioGeoChem: A Coupled Model of Hydrologic Transport and Mixed Biogeochemical Kinetic/Equilibrium Reactions in Saturated-Unsaturated Media. Oak Ridge National Laboratory, Oak Ridge, TN, USA.

    Google Scholar 

  • Yeh GT, Ward DS. 1980. FEMWATER: A finite-element model of water flow through saturated-unsaturated porous media. ORNL-5567, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. 162 p.

    Google Scholar 

  • Yeh GT, Tripathi VS. 1990. HYDROGEOCHEM: A Coupled Model of Hydrologic Transport and Geochemical Equilibrium in Reactive Multicomponent Systems. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

    Google Scholar 

  • Yeh GT, Tripathi VS. 1991. A model for simulating transport of reactive multispecies components: Model development and demonstration. Water Resour Res 27:3075–3094.

    CAS  Google Scholar 

  • Yeh GT, Sun JS, Jardine PM, Burgos WD, Fang Y, Li M-H. 2004. HYDROGEOCHEM 5.0: A Three-Dimensional Model of Coupled Fluid Flow, Thermal Transport, and HYDROGEOCHEMical Transport Through Variably Saturated Conditions – Version 5.0. Report ORNL/TM-2004/107. Oak Ridge National Laboratory, Oak Ridge, TN, USA.

    Google Scholar 

  • Zhang F, Yeh G-T, Parker JC, Brooks SC, Pace MN, Kim Y-J, Jardine PM, Watson DB. 2007. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions. J Contam Hydrol 92:10–32.

    CAS  Google Scholar 

  • Zhang H, Schwartz FW. 2000. Simulating the in situ oxidative treatment of chlorinated ethylenes by potassium permanganate. Water Resour Res 36:3031–3042.

    CAS  Google Scholar 

  • Zheng C, Wang PP. 1999. MT3DMS: A Modular Three-Dimensional Multispecies Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide. Report Contract Report SERDP-99-1. U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA.

    Google Scholar 

  • Zyvoloski G, Kwicklis E, Eddebbarh AA, Arnold B, Faunt C, Robinson BA. 2003. The site-scale saturated zone flow model for Yucca Mountain: Calibration of different conceptual models and their impact on flow paths. J Contam Hydrol 62–63:731–750.

    Google Scholar 

Download references

Acknowledgement

Financial support was provided by the U.S. Department of Energy through a SciDAC-2 project “Modeling Multiscale-Multiphase-Multicomponent Subsurface Reactive Flows using Advanced Computing.” I am grateful to Prabhakar Clement, who provided valuable advice in developing Table 4.3.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valocchi, A.J. (2012). Hydrogeochemical Models. In: Kitanidis, P., McCarty, P. (eds) Delivery and Mixing in the Subsurface. SERDP ESTCP Environmental Remediation Technology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2239-6_4

Download citation

Publish with us

Policies and ethics