Skip to main content

Human Papillomavirus DNA Testing: What, How, and When

  • Chapter
  • First Online:
Book cover HPV and Cervical Cancer

Abstract

More than 20 years ago, a relationship between Human Papillomavirus (HPV) infection and cervical cancer was recognized. Since then, important strides in understanding the virus have been made, particularly in the following areas: modes of transmission and risk factors associated with transmission, the oncogenic potential of specific viral types and the mechanism by which they cause cancer, and the spectrum of infection, ranging from asymptomatic carrier states to overt warts, preneoplastic lesions, and invasive cancer. Sophisticated new tests for the detection of HPV for screening for cervical cancer precursors and invasive cancer and for the triage of abnormal cervical cytology also have been developed as reported by American College of Obstetricians and Gynecologists (Obstet Gynecol 105:905–918, 2005). Recent evidence has shown that the risk of malignant and premalignant cervical disease and HPV infections varies significantly with age. Furthermore, evidence now shows that treatment for cervical disease carries significant risk for future pregnancies. These factors have led to a reevaluation of the guidelines for the management of premalignant cervical disease as reported by American College of Obstetricians and Gynecologists (Obstet Gynecol 112:1419–1444, 2008). Understanding the immunology of HPV has allowed the development of new and more effective treatment modalities for HPV infection and the development of primary prevention modalities, including HPV vaccines as reported by American College of Obstetricians and Gynecologists (Obstet Gynecol 105:905–918, 2005). Invasive cervical cancer is the second most common female cancer worldwide, with about 493,000 new cases per year. About 273,000 women die from cervical cancer each year, 85% of which take place in developing countries. Cervical cancer has a slow progress from pre-invasive cervical intraepithelial neoplasia (CIN) to invasive phases, meaning that the disease can be diagnosed while in the phase of pre-invasive lesion, and treated successfully thanks to the regular screening of asymptomatic women. Additional diagnostic procedures for preinvasive lesions of the uterine cervix like deoxyribonuclaic acid (DNA) cytometry (flow cytometry) can point to dysplasia that can progress to severe stages, such as high-grade (HG) squamous intraepithelial lesions (H-SIL). If the level of chromosomal disturbance is higher (aneuploidy), it is more probable that H-SIL will develop. Laser screening of cells extracted with modern cytologic screening liquid-based cytology enables us to automatically measure ploidy (chromosome regularity, or irregularity) and polymerase chain reaction (PCR) provides analysis of HPV types. These methods are recommended for a routine check-up of borderline cervical lesions in order to anticipate ones likely to regress or progress as reported by Grubisić et al. (Coll Antropol 33:1431–1436, 2009). HPV also causes a proportion of other cancers, including vulvar, vaginal, anal, penile, and oropharyngeal cancers. Although cervical cancer screening, primarily with the Papanicolaou (Pap) smear, has reduced the incidence of this cancer in industrialized countries, cervical cancer remains the second most common cause of death from cancer in women worldwide, because the developing world has lacked the resources for widespread, high-quality screening. In addition to advances in Pap smear technology, the identification of HPV as the etiologic agent has produced two recent advances that may have a major impact on approaches to reduce the incidence of this disease. The first is the development of a preventive vaccine, the current versions of which appear to prevent close to 100% of persistent genital infection and disease caused by HPV-16 and HPV-18. Future second-generation vaccines may be able to protect against oncogenic infections by a broader array of HPV types. The second is the incorporation of HPV testing into screening programs. In women aged >30 years, HPV testing can identify HG CIN earlier than Pap smears with acceptable rates of specificity. These results, together with the high sensitivity of HPV testing, suggest that such testing could permit increased intervals for screening. An inexpensive HPV test in development, if successful, may be incorporated as part of an economically viable “screen-and-treat” approach in the developing world. The manner in which vaccination and screening programs are integrated will need to be considered carefully so that they are efficient in reducing the overall incidence of cervical cancer as reported by Lowy et al. (Cancer 113:1980–1993, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnantis NJ, Sotiriadis A, Paraskevaidis E (2003) The current status of HPV DNA testing. Eur J Gynaecol Oncol 24:351–356

    PubMed  CAS  Google Scholar 

  • Agorastos T, Sotiriadis A, Chatzigeorgiou K (2010) Can HPV testing replace the pap smear? Ann N Y Acad Sci 1205:51–56

    Article  PubMed  Google Scholar 

  • Amortegui AJ, Meyer MP (1990) In-situ hybridization for the diagnosis and typing of human papillomavirus. Clin Biochem 23:301–306

    Article  PubMed  CAS  Google Scholar 

  • Apgar BS, Brotzman G (1999) HPV testing in the evaluation of the minimally abnormal Papanicolaou smear. Am Fam Physician 59:2794–2801

    PubMed  CAS  Google Scholar 

  • Arbyn M, Cuzick J (2009) International agreement to join forces in synthesizing evidence on new methods for cervical cancer prevention. Cancer Lett 278:1–2

    Article  PubMed  CAS  Google Scholar 

  • Arbyn M, Paraskevaidis E, Martin-Hirsch P et al (2005) Clinical utility of HPV-DNA detection: triage of minor cervical lesions, follow-up of women treated for high-grade CIN: an update of pooled evidence. Gynecol Oncol 99:S7–S11

    Article  PubMed  CAS  Google Scholar 

  • Arbyn M, Sasieni P, Meijer CJ et al (2006) Clinical applications of HPV testing: a summary of meta-analyses. Vaccine 24(Suppl 3):S78–S89, Chapter 9

    Article  Google Scholar 

  • Arbyn M, Martin-Hirsch P, Buntinx F et al (2009) Triage of women with equivocal or low-grade cervical cytology results: a meta-analysis of the HPV test positivity rate. J Cell Mol Med 13:648–659

    Article  PubMed  Google Scholar 

  • Austin RM (2003) Human papillomavirus reporting: minimizing patient and laboratory risk. Arch Pathol Lab Med 127:973–977

    PubMed  Google Scholar 

  • Avrich E, Sulik S, Nashelsky J (2006) What is the appropriate management for a patient with CIN1 on colposcopy? J Fam Pract 55:145–146

    PubMed  Google Scholar 

  • Belinson SE, Belinson JL (2010) Human papillomavirus DNA testing for cervical cancer screening: practical aspects in developing countries. Mol Diagn Ther 14:215–222

    PubMed  Google Scholar 

  • Bollmann R (2001) DNA-cytometry in dysplasias of the uterine cervix. Zentralbl Gynakol 123:206–210

    Article  PubMed  CAS  Google Scholar 

  • Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16:1–17

    Article  PubMed  CAS  Google Scholar 

  • Burger EA, Kornør H, Klemp M et al (2011) HPV mRNA tests for the detection of cervical intraepithelial neoplasia: a systematic review. Gynecol Oncol 120:430–438

    Article  PubMed  CAS  Google Scholar 

  • Carcopino X, Henry M, Olive D et al (2011) Detection and quantification of human papillomavirus genital infections: virological, epidemiological, and clinical applications. Med Mal Infect 41:68–79

    Article  PubMed  CAS  Google Scholar 

  • Castle PE (2009) The evolving definition of carcinogenic human papillomavirus. Infect Agent Cancer 4:7

    Article  PubMed  CAS  Google Scholar 

  • Coutlée F, Mayrand MH, Provencher D et al (1997) The future of HPV testing in clinical laboratories and applied virology research. Clin Diagn Virol 8:123–141

    Article  PubMed  Google Scholar 

  • Cox JT (1996) Clinical role of HPV testing. Obstet Gynecol Clin North Am 23:811–851

    Article  PubMed  CAS  Google Scholar 

  • Cox JT (2006) The development of cervical cancer and its precursors: what is the role of human papillomavirus infection? Curr Opin Obstet Gynecol 18(Suppl 1):s5–s13

    Article  PubMed  Google Scholar 

  • Cox JT (2009) History of the use of HPV testing in cervical screening and in the management of abnormal cervical screening results. J Clin Virol 45(Suppl 1):S3–S12

    Article  PubMed  Google Scholar 

  • Cox JT, American Society for Colposcopy and Cervical Pathology (2003) The clinician’s view: role of human papillomavirus testing in the American society for colposcopy and cervical pathology guidelines for the management of abnormal cervical cytology and cervical cancer precursors. Arch Pathol Lab Med 127:950–958

    PubMed  Google Scholar 

  • Cronjé HS (2004) Screening for cervical cancer in developing countries. Int J Gynaecol Obstet 84:101–108

    Article  PubMed  Google Scholar 

  • Crosbie EJ, Kitchener HC (2006) Human papillomavirus in cervical screening and vaccination. Clin Sci (Lond) 110:543–552

    Article  CAS  Google Scholar 

  • Crum CP, Barber S, Roche JK (1991) Pathobiology of papillomavirus-related cervical diseases: prospects for immunodiagnosis. Clin Microbiol Rev 4:270–285

    PubMed  CAS  Google Scholar 

  • Crum CP, Abbott DW, Quade BJ (2003) Cervical cancer screening: from the Papanicolaou smear to the vaccine era. J Clin Oncol 21:224s–230s

    Article  PubMed  Google Scholar 

  • Cuschieri KS, Cubie HA (2005) The role of human papillomavirus testing in cervical screening. J Clin Virol 32(Suppl 1):S34–S42

    Article  PubMed  Google Scholar 

  • Cuzick J, Arbyn M, Sankaranarayanan R (2008) Overview of human papillomavirus-based and other novel options for cervical cancer screening in developed and developing countries. Vaccine 26(Suppl 10):K29–K41

    Article  PubMed  Google Scholar 

  • Davey DD, Greenspan DL, Kurtycz DF et al (2010) Atypical squamous cells, cannot exclude high-grade squamous intraepithelial lesion: review of ancillary testing modalities and implications for follow-up. J Low Genit Tract Dis 14:206–214

    Article  PubMed  Google Scholar 

  • Doorbar J, Cubie H (2005) Molecular basis for advances in cervical screening. Mol Diagn 9:129–142

    Article  PubMed  Google Scholar 

  • Douglas JM Jr, Werness BA (1989) Genital human papillomavirus infections. Clin Lab Med 9:421–444

    PubMed  Google Scholar 

  • Drake M, Medley G, Mitchell H (1987) Cytologic detection of human papillomavirus infection. Obstet Gynecol Clin North Am 14:431–450

    PubMed  CAS  Google Scholar 

  • Dürst M, Glitz D, Schneider A et al (1992) Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 189:132–140

    Article  PubMed  Google Scholar 

  • Ferenczy A, Jenson AB (1996) Tissue effects and host response. The key to the rational triage of cervical neoplasia. Obstet Gynecol Clin North Am 23:759–782

    Article  PubMed  CAS  Google Scholar 

  • Franco EL (2000) Statistical issues in human papillomavirus testing and screening. Clin Lab Med 20:345–367

    PubMed  CAS  Google Scholar 

  • Franco EL (2003) Primary screening of cervical cancer with human papillomavirus tests. J Natl Cancer Inst Monogr 31:89–96, Chapter 13

    Article  PubMed  Google Scholar 

  • Franco EL, Cuzick J (2008) Cervical cancer screening following prophylactic human papillomavirus vaccination. Vaccine 26(Suppl 1):A16–A23

    Article  PubMed  Google Scholar 

  • Franco EL, Ferenczy A (2007) Cervical cancer screening following the implementation of prophylactic human papillomavirus vaccination. Future Oncol 3:319–327

    Article  PubMed  Google Scholar 

  • Franco EL, Cuzick J, Hildesheim A et al (2006) Issues in planning cervical cancer screening in the era of HPV vaccination. Vaccine 24(Suppl 3):S171–S177, Chapter 20

    Article  Google Scholar 

  • Franco EL, Coutlée F, Ferenczy A (2009a) Integrating human papillomavirus vaccination in cervical cancer control programs. Public Health Genomics 12:352–361

    Article  PubMed  Google Scholar 

  • Franco EL, Mahmud SM, Tota J et al (2009b) The expected impact of HPV vaccination on the accuracy of cervical cancer screening: the need for a paradigm change. Arch Med Res 40:478–485

    Article  PubMed  Google Scholar 

  • Gissmann L, Boshart M, Dürst M et al (1984) Presence of human papillomavirus in genital tumors. J Invest Dermatol 83:26s–28s

    Article  PubMed  CAS  Google Scholar 

  • Goldie SJ, Goldhaber-Fiebert JD, Garnett GP (2006a) Public health policy for cervical cancer prevention: the role of decision science, economic evaluation, and mathematical modeling. Vaccine 24(Suppl 3):S155–S163, Chapter 18

    Article  Google Scholar 

  • Goldie SJ, Kim JJ, Myers E (2006b) Cost-effectiveness of cervical cancer screening. Vaccine 24(Suppl 3):S164–S170, Chapter 19

    Article  Google Scholar 

  • Gray SH, Walzer TB (2004) New strategies for cervical cancer screening in adolescents. Curr Opin Pediatr 16:344–349

    Article  PubMed  Google Scholar 

  • Grce M, Matovina M, Milutin-Gasperov N et al (2010) Advances in cervical cancer control and future perspectives. Coll Antropol 34:731–736

    PubMed  Google Scholar 

  • Hillemanns P, Thaler C, Kimmig R (1997) Epidemiology and diagnosis of cervical intraepithelial neoplasia – is the present concept of screening and diagnosis still current? Gynakol Geburtshilfliche Rundsch 37:179–190

    Article  PubMed  CAS  Google Scholar 

  • Hubbard RA (2003) Human papillomavirus testing methods. Arch Pathol Lab Med 127:940–945

    PubMed  CAS  Google Scholar 

  • Huh W, Einstein MH, Herzog TJ et al (2010) What is the role of HPV typing in the United States now and in the next five years in a vaccinated population? Gynecol Oncol 117:481–485

    Article  PubMed  Google Scholar 

  • Iftner T, Villa LL (2003) Human papillomavirus technologies. J Natl Cancer Inst Monogr 31:80–88, Chapter 12

    Article  PubMed  Google Scholar 

  • Jin XW, Xu H (2001) Cervical cancer screening from Pap smear to human papillomavirus DNA testing. Compr Ther 27:202–208

    Article  PubMed  CAS  Google Scholar 

  • Jin XW, Cash J, Kennedy AW (1999) Human papillomavirus typing and the reduction of cervical cancer risk. Cleve Clin J Med 66:533–539

    PubMed  CAS  Google Scholar 

  • Kalof AN, Cooper K (2006) p16INK4a immunoexpression: surrogate marker of high-risk HPV and high-grade cervical intraepithelial neoplasia. Adv Anat Pathol 13:190–194

    Article  PubMed  CAS  Google Scholar 

  • Kinney W, Stoler MH, Castle PE (2010) Special commentary: patient safety and the next generation of HPV DNA tests. Am J Clin Pathol 134:193–199

    Article  PubMed  Google Scholar 

  • Kostopoulou E, Samara M, Kollia P et al (2011) Different patterns of p16 immunoreactivity in cervical biopsies: correlation to lesion grade and HPV detection, with a review of the literature. Eur J Gynaecol Oncol 32:54–61

    PubMed  CAS  Google Scholar 

  • Kyrgiou M, Tsoumpou I, Vrekoussis T et al (2006) The up-to-date evidence on colposcopy practice and treatment of cervical intraepithelial neoplasia: the Cochrane colposcopy & cervical cytopathology collaborative group (C5 group) approach. Cancer Treat Rev 32:516–523

    Article  PubMed  CAS  Google Scholar 

  • Kyrgiou M, Valasoulis G, Founta C et al (2010) Clinical management of HPV-related disease of the lower genital tract. Ann N Y Acad Sci 1205:57–68

    Article  PubMed  CAS  Google Scholar 

  • Lancaster WD, Jenson AB (1987) Human papillomavirus infection and anogenital neoplasia: speculations for the future. Obstet Gynecol Clin North Am 14:601–609

    PubMed  CAS  Google Scholar 

  • Levêque J, Classe JM, Marret H et al (2005) Contribution of viral typing in cytological anomalies of the cervix. J Gynecol Obstet Biol Reprod (Paris) 34:427–439

    Google Scholar 

  • Levine L, Lucci JA 3rd, Dinh TV (2003) Atypical glandular cells: new Bethesda terminology and management guidelines. Obstet Gynecol Surv 58:399–406

    PubMed  Google Scholar 

  • Lörincz AT (1987) Detection of human papillomavirus infection by nucleic acid hybridization. Obstet Gynecol Clin North Am 14:451–469

    PubMed  Google Scholar 

  • Lörincz AT, Richart RM (2003) Human papillomavirus DNA testing as an adjunct to cytology in cervical screening programs. Arch Pathol Lab Med 127:959–968

    PubMed  Google Scholar 

  • Lynge E, Rebolj M (2009) Primary HPV screening for cervical cancer prevention: results from European trials. Nat Rev Clin Oncol 6:699–706

    Article  PubMed  Google Scholar 

  • Lynge E, Antilla A, Arbyn M et al (2009) What’s next? Perspectives and future needs of cervical screening in Europe in the era of molecular testing and vaccination. Eur J Cancer 45:2714–2721

    Article  PubMed  Google Scholar 

  • Malinowski DP (2005) Molecular diagnostic assays for cervical neoplasia: emerging markers for the detection of high-grade cervical disease. Biotechniques 38(Suppl):17–23

    Article  Google Scholar 

  • McDougall JK, Beckmann AM, Kiviat NB (1986) Methods for diagnosing papillomavirus infection. Ciba Found Symp 120:86–103

    PubMed  CAS  Google Scholar 

  • Melchers WJ, Claas HC, Quint WG (1991) Use of the polymerase chain reaction to study the relationship between human papillomavirus infections and cervical cancer. Eur J Clin Microbiol Infect Dis 10:714–727

    Article  PubMed  CAS  Google Scholar 

  • Mergui JL, Levêque J (2008) What kind of follow-up after surgical treatment for high-grade cervix lesion? Gynecol Obstet Fertil 36:441–447

    Article  PubMed  Google Scholar 

  • Mergui JL, Polena V, David-Montefiore E et al (2008) Guidelines for the follow-up of women treated for high-grade cervical neoplasia. J Gynecol Obstet Biol Reprod (Paris) 37(Suppl 1):S121–S130

    Google Scholar 

  • Monsonego J (2004) Colposcopy: the value of HPV testing in clinical practice. Gynecol Obstet Fertil 32:62–74

    Article  PubMed  CAS  Google Scholar 

  • Monsonego J (2007) Prevention of cervical cancer: screening, progress and perspectives. Presse Med 36:92–111

    Article  PubMed  Google Scholar 

  • Moore KN, Walker JL (2004) High risk human papillomavirus testing: guidelines for use in screening, triage, and follow-up for the prevention and early detection of cervical cancer. J Natl Compr Canc Netw 2:589–596

    PubMed  Google Scholar 

  • Morris BJ, Rose BR (2007) Cervical screening in the 21st century: the case for human papillomavirus testing of self-collected specimens. Clin Chem Lab Med 45:577–591

    Article  PubMed  CAS  Google Scholar 

  • Moscicki AB (2003) Cervical cytology screening in teens. Curr Womens Health Rep 3:433–437

    PubMed  Google Scholar 

  • Mühlberger N, Sroczynski G, Esteban E et al (2008) Cost-effectiveness of primarily human papillomavirus-based cervical cancer screening in settings with currently established Pap screening: a systematic review commissioned by the German federal ministry of health. Int J Technol Assess Health Care 24:184–192

    Article  PubMed  Google Scholar 

  • Mulvany NJ, Allen DG, Wilson SM (2008) Diagnostic utility of p16INK4a: a reappraisal of its use in cervical biopsies. Pathology 40:335–344

    Article  PubMed  CAS  Google Scholar 

  • Myers E, Huh WK, Wright JD et al (2008) The current and future role of screening in the era of HPV vaccination. Gynecol Oncol 109:S31–S39

    Article  PubMed  Google Scholar 

  • Nayar R, Tabbara SO (2003) Atypical squamous cells: update on current concepts. Clin Lab Med 23:605–632

    Article  PubMed  Google Scholar 

  • Nindl I, Greinke C, Zahm DM et al (1997) Human papillomavirus distribution in cervical tissues of different morphology as determined by hybrid capture assay and PCR. Int J Gynecol Pathol 16:197–204

    Article  PubMed  CAS  Google Scholar 

  • Nowak JA (2000) Telomerase, cervical cancer, and human papillomavirus. Clin Lab Med 20:369–382

    PubMed  CAS  Google Scholar 

  • O’Neill CJ, McCluggage WG (2006) p16 expression in the female genital tract and its value in diagnosis. Adv Anat Pathol 13:8–15

    Article  PubMed  Google Scholar 

  • Ogilvie GS, Patrick DM, Schulzer M et al (2005) Diagnostic accuracy of self collected vaginal specimens for human papillomavirus compared to clinician collected human papillomavirus specimens: a meta-analysis. Sex Transm Infect 81:207–212

    Article  PubMed  CAS  Google Scholar 

  • Pagliusi SR, Garland SM (2007) International standard reagents for HPV detection. Dis Markers 23:283–296

    PubMed  CAS  Google Scholar 

  • Pagliusi SR, Dillner J, Pawlita M et al (2006) International standard reagents for harmonization of HPV serology and DNA assays – an update. Vaccine 24(Suppl 3):S193–S200, Chapter 23

    Article  CAS  Google Scholar 

  • Paraskevaidis E, Arbyn M, Sotiriadis A et al (2004) The role of HPV DNA testing in the follow-up period after treatment for CIN: a systematic review of the literature. Cancer Treat Rev 30:205–211

    Article  PubMed  Google Scholar 

  • Petignat P, Faltin DL, Bruchim I et al (2007) Are self-collected samples comparable to physician-collected cervical specimens for human papillomavirus DNA testing? A systematic review and meta-analysis. Gynecol Oncol 105:530–535

    Article  PubMed  Google Scholar 

  • Poljak M, Kocjan BJ (2010) Commercially available assays for multiplex detection of alpha human papillomaviruses. Expert Rev Anti Infect Ther 8:1139–1162

    Article  PubMed  CAS  Google Scholar 

  • Rando RF (1990) Nucleic acid hybridization as a diagnostic tool for the detection of human papillomaviruses. Adv Exp Med Biol 263:89–109

    Article  PubMed  CAS  Google Scholar 

  • Rapini RP (1990) Venereal warts. Prim Care 17:127–144

    PubMed  CAS  Google Scholar 

  • Renshaw AA (2003) Rescreening in cervical cytology for quality control. When bad data is worse than no data or what works, what doesn’t, and why. Clin Lab Med 23:695–708

    Article  PubMed  Google Scholar 

  • Richart RM, Wright TC Jr (1992) Human papillomavirus. Curr Opin Obstet Gynecol 4:662–669

    PubMed  CAS  Google Scholar 

  • Richart RM, Masood S, Syrjänen KJ et al (1998) Human papillomavirus. International academy of cytology task force summary. Diagnostic cytology towards the 21st century: an international expert conference and tutorial. Acta Cytol 42:50–58

    Article  PubMed  CAS  Google Scholar 

  • Riethmuller D, Ramanah R, Pretet JL (2008) Integrating HPV testing for primary screening? J Gynecol Obstet Biol Reprod (Paris) 37(Suppl 1):S139–S151

    Google Scholar 

  • Roman A, Fife KH (1989) Human papillomaviruses: are we ready to type? Clin Microbiol Rev 2:166–190

    PubMed  CAS  Google Scholar 

  • Ronco G (1999) Use of molecular tests of human papilloma virus (HPV) as screening test for cervix cancer: a review. Epidemiol Prev 23:372–377

    PubMed  CAS  Google Scholar 

  • Ronco G, Giorgi Rossi P (2008) New paradigms in cervical cancer prevention: opportunities and risks. BMC Womens Health 8:23

    Article  PubMed  Google Scholar 

  • Sankaranarayanan R, Gaffikin L, Jacob M et al (2005) A critical assessment of screening methods for cervical neoplasia. Int J Gynaecol Obstet 89(Suppl 2):S4–S12

    Article  PubMed  Google Scholar 

  • Sawchuk WS (1991) Ancillary diagnostic tests for detection of human papillomavirus infection. Dermatol Clin 9:277–286

    PubMed  CAS  Google Scholar 

  • Scarinci IC, Garcia FA, Kobetz E et al (2010) Cervical cancer prevention: new tools and old barriers. Cancer 116:2531–2542

    PubMed  Google Scholar 

  • Schiffman MH (1992) Validation of hybridization assays: correlation of filter in situ, dot blot and PCR with Southern blot. IARC Sci Publ 119:169–179

    PubMed  Google Scholar 

  • Schiffman M, Wentzensen N, Wacholder S et al (2011) Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst 103:368–383

    Article  PubMed  Google Scholar 

  • Schmeink CE, Bekkers RL, Massuger LF et al (2011) The potential role of self-sampling for high-risk human papillomavirus detection in cervical cancer screening. Rev Med Virol 21:139–153

    Article  PubMed  Google Scholar 

  • Schneider A, Meinhardt G, De-Villiers EM et al (1987) Sensitivity of the cytologic diagnosis of cervical condyloma in comparison with HPV-DNA hybridization studies. Diagn Cytopathol 3:250–255

    Article  PubMed  CAS  Google Scholar 

  • Sehgal A, Gupta S, Parashari A et al (2009) Urine HPV-DNA detection for cervical cancer screening: prospects and prejudices. J Obstet Gynaecol 29:583–589

    Article  PubMed  CAS  Google Scholar 

  • Sharpless KE, O’Sullivan DM, Schnatz PF (2009) The utility of human papillomavirus testing in the management of atypical glandular cells on cytology. J Low Genit Tract Dis 13:72–78

    Article  PubMed  Google Scholar 

  • Sherman ME, Kurman RJ (1996) The role of exfoliative cytology and histopathology in screening and triage. Obstet Gynecol Clin North Am 23:641–655

    PubMed  CAS  Google Scholar 

  • Soler ME, Blumenthal PD (2000) New technologies in cervical cancer precursor detection. Curr Opin Oncol 12:460–465

    Article  PubMed  CAS  Google Scholar 

  • Solomon D (2003) Role of triage testing in cervical cancer screening. J Natl Cancer Inst Monogr 31:97–101, Chapter 14

    Article  PubMed  Google Scholar 

  • Spitzer M (2007) Screening and management of women and girls with human papillomavirus infection. Gynecol Oncol 107:S14–S18

    Article  PubMed  Google Scholar 

  • Stewart DE, Gagliardi A, Johnston M et al (2007) Self-collected samples for testing of oncogenic human papillomavirus: a systematic review. J Obstet Gynaecol Can 29:817–828

    PubMed  Google Scholar 

  • Stillman MJ, Day SP, Schutzbank TE (2009) A comparative review of laboratory-developed tests utilizing Invader HPV analyte-specific reagents for the detection of high-risk human papillomavirus. J Clin Virol 45(Suppl 1):S73–S77

    Article  PubMed  CAS  Google Scholar 

  • Subramanya D, Grivas PD (2008) HPV and cervical cancer: updates on an established relationship. Postgrad Med 120:7–13

    Article  PubMed  Google Scholar 

  • Swygart C (1997) Human papillomavirus: disease and laboratory diagnosis. Br J Biomed Sci 54:299–303

    PubMed  CAS  Google Scholar 

  • Syrjänen KJ (2005) Immunohistochemistry in assessment of molecular pathogenesis of cervical carcinogenesis. Eur J Gynaecol Oncol 26:5–19

    PubMed  Google Scholar 

  • Syrjänen K, Di Bonito L, Gonçalves L et al (2010) Cervical cancer screening in Mediterranean countries: implications for the future. Cytopathology 21:359–367

    Article  PubMed  Google Scholar 

  • Tiro JA, Saraiya M, Jain N et al (2008) Human papillomavirus and cervical cancer behavioral surveillance in the US. Cancer 113:3013–3030

    Article  PubMed  Google Scholar 

  • Tota J, Mahmud SM, Ferenczy A (2010) Promising strategies for cervical cancer screening in the post-human papillomavirus vaccination era. Sex Health 7:376–382

    Article  PubMed  Google Scholar 

  • Tsoumpou I, Arbyn M, Kyrgiou M et al (2009) p16(INK4a) immunostaining in cytological and histological specimens from the uterine cervix: a systematic review and meta-analysis. Cancer Treat Rev 35:210–220

    Article  PubMed  CAS  Google Scholar 

  • van Oortmarssen GJ, Boer R, Habbema JD (1995) Modelling issues in cancer screening. Stat Methods Med Res 4:33–54

    Article  PubMed  Google Scholar 

  • Varras M (2004) The problems with different management options of women with minor squamous intraepithelial lesions in Pap tests. Clin Exp Obstet Gynecol 31:249–250

    PubMed  CAS  Google Scholar 

  • von Knebel DM (2001b) New molecular tools for efficient screening of cervical cancer. Dis Markers 17:123–128

    Google Scholar 

  • von Knebel Doeberitz M (2001a) Aspects of molecular pathogenesis of cervical cancer in establishing new tumor markers for early detection and diagnosis. Zentralbl Gynakol 123:186–191

    Article  Google Scholar 

  • Whiteside MA, Siegel EM, Unger ER (2008) Human papillomavirus and molecular considerations for cancer risk. Cancer 113:2981–2994

    Article  PubMed  CAS  Google Scholar 

  • Wick MJ (2000) Diagnosis of human papillomavirus gynecologic infections. Clin Lab Med 20:271–287

    PubMed  CAS  Google Scholar 

  • Wilbur DC (2003) Cervical cytology automation: an update for 2003. The end of the quest nears? Clin Lab Med 23:755–774

    Article  PubMed  Google Scholar 

  • Wiwanitkit V (2009) Screening for cervical cancer: which common technique is the most cost-effective choice? Asian Pac J Cancer Prev 10:531–532

    PubMed  Google Scholar 

  • Wright TC Jr (2007) Cervical cancer screening in the 21st century: is it time to retire the PAP smear? Clin Obstet Gynecol 50:313–323

    Article  PubMed  Google Scholar 

  • Wright TC Jr, Bosch FX (2008) Is viral status needed before vaccination? Vaccine 26(Suppl 1):A12–A15

    Article  PubMed  Google Scholar 

  • Wright TC Jr, Cox JT, Massad LS et al (2002) 2001 consensus guidelines for the management of women with cervical cytological abnormalities. JAMA 287:2120–2129

    Article  PubMed  Google Scholar 

  • Wright TC Jr, Schiffman M, Solomon D et al (2004) Interim guidance for the use of human papillomavirus DNA testing as an adjunct to cervical cytology for screening. Obstet Gynecol 103:304–309

    Article  PubMed  Google Scholar 

  • Wright TC Jr, Massad LS, Dunton CJ et al (2007) 2006 consensus guidelines for the management of women with abnormal cervical cancer screening tests. Am J Obstet Gynecol 197:346–355

    Article  PubMed  Google Scholar 

  • Yildiz IZ, Usubütün A, Firat P et al (2007) Efficiency of immunohistochemical p16 expression and HPV typing in cervical squamous intraepithelial lesion grading and review of the p16 literature. Pathol Res Pract 203:445–449

    Article  PubMed  CAS  Google Scholar 

  • Zielinski GD, Bais AG, Helmerhorst TJ et al (2004) HPV testing and monitoring of women after treatment of CIN 3: review of the literature and meta-analysis. Obstet Gynecol Surv 59:543–553

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Comparetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Comparetto, C., Borruto, F. (2012). Human Papillomavirus DNA Testing: What, How, and When. In: Borruto, F., De Ridder, M. (eds) HPV and Cervical Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1988-4_6

Download citation

Publish with us

Policies and ethics