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1 Introduction

Many-core chip multiprocessors integrate many processing cores that need a
modular communication infrastructure in order to show their full potential. Scalable
interconnection networks that use a network of switches connected with point-
to-point links can parallelize the communication between these modules and
improve performance significantly [7]. Such on-chip interconnection networks are
already a mainstream technology for ASICs, while they gain significant importance
in FPGA-based systems-on-chip (SOCs) [1]. The first on-chip interconnection
networks mimicked the designs that were architected for large, high-performance
multiprocessors. However, as interconnects migrate to the on-chip environment,
constraints and trade-offs shift, and they should be appropriately adapted to the
characteristics of the implementation fabric [2].

An FPGA can host two forms of interconnection networks: the soft (or overlay)
interconnection networks that are statically mapped on the configurable logic of
the FPGA using LUTs, registers, and RAMs, as any other ordinary circuit [5],
and the dynamically reconfigurable interconnection networks that exploit the
reconfigurable nature of the FPGA and allow the design of customized alternatives
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Fig. 1 Basic building blocks
of a switch

that can be adapted at runtime using both the available logic blocks and even the
reconfiguration network itself [25]. In the first case, the FPGA fabric acts as an
ASIC replacement that hosts a complex multiprocessor system on chip. The system
consists of general-purpose soft processors, application-specific accelerators, as
well as memory and I/O controllers communicating via the soft interconnection
network that transfers the software-generated messages. In the second case, the
system is customized for a specific set of tasks, and any application change requires
its dynamic reconfiguration at the logic level [27]. The performance of the system
depends on how often a reconfiguration is required and how much gain can be
earned by the customization of both the processing elements and the interconnection
network.

Soft interconnection networks are more generic and can support various switch-
ing technologies ranging from statically scheduled circuit-switched operation, with
predetermined and prescheduled routes that avoid contention, to fully dynamic
packet switching that favors statistical multiplexing on the network’s links [15].
In this chapter, we focus on the dynamic approach, assuming wormhole or virtual-
cut-through networks with single- or multiple-word packets. When such networks
are mapped on the FPGA, a critical factor to overall system’s efficiency is (a) the
selection of the appropriate network topology that would reduce the communication
distance and utilize efficiently the on-chip wiring resources and (b) the selection
of the appropriate switch architecture that fits better to the LUT-based nature of
the FPGA and offers area-delay efficient designs [16, 24]. Both factors are closely
interrelated, since the reduction of the communication distance between any two
nodes increases the radix (number of input and output ports) of the switches and
makes their design more difficult. Concentration or the addition of express channels
further increases the radix of the corresponding switches [8].

The switches of the network follow roughly the architecture depicted in Fig. 1.
Incoming packets are stored in input buffers and possibly in output buffers after
crossing the crossbar. Routing logic unwraps incoming packets’ header and deter-
mines their output destination. The inputs that are allowed to send their data over
the crossbar are determined by the switch allocator. The switch allocator accepts
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the requests from each input and decides which one to grant in order to produce
a valid connection pattern for the crossbar. In cases that we want to differentiate
between separate traffic classes, i.e., request/reply packets, and to offer deadlock-
free adaptive routing, we can allow the sharing of network’s channels by virtual
channels (VCs) [6]. The assignment of a valid VC to a packet, before it leaves the
switch, is a responsibility of the VC allocator.

While routing computation can be performed in parallel to the rest operations
by employing lookahead routing [11], and VC allocation can operate in parallel
to switch allocation using speculation [22], switch allocation and traversal remain
closely interrelated, with switch allocation always preceding and guiding switch
traversal. In fact, several designs already proved that switch allocation and traversal
determine the critical path of the switch and limit any potential speed improve-
ments [17]. So far, any innovation regarding the removal of this speed bottleneck
relied mostly to architecture-level solutions that took for granted the characteristics
of the allocators and the crossbar and, without any further modifications, tried to
reorganize them in a more efficient way. Examples of this approach are the pipelined
switch allocation and traversal units that increased the latency of the switches
or prediction-based switches [18, 21]. Although such pure high-level design has
produced highly efficient switches, the question on how better the switch would
be if better building blocks were available remains to be investigated.

In this chapter, we try to answer this question for the case of the switch allocators
and the crossbar that constitute a large part of the switch and determine the delay
of the implementation. Our study will first present and compare the traditional
implementations that are based on separate allocator and crossbar modules, and
then will expand the design space by presenting new soft macros that can handle
allocation and multiplexing concurrently. With the new macros, switch allocation
and switch traversal can be performed simultaneously in the same cycle, while still
offering energy-delay efficient implementations.

The rest of the chapter is organized as follows: Introductory material regarding
the switch allocator alternatives at the architectural and the logic level is given in
Sect. 2. Then, a review of the state-of-the-art separate arbiters and multiplexers
that are used to build the switch allocator and the crossbar is presented in
Sect. 3. Section 4 introduces the new merged arbiter and multiplexer module, while
its efficiency relative to state-of-the-art is investigated experimentally in Sect. 5.
Finally, conclusions are drawn in the last section.

2 Switch Allocation and Traversal

Each input of the switch can hold packets (or flits for wormhole switching) for
multiple outputs. Therefore, it can request one or more outputs every cycle. For a
VC-less switch that has a single FIFO queue per input, only one request per input is
possible. In that case, as shown in Fig. 2, the switch allocator is constructed using a
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Fig. 2 Single arbiter per
output for switches with one
FIFO per input

single arbiter per output of the switch, which decides independently which input to
serve. The grant signals of each arbiter drive the corresponding output multiplexer,
and they are given back to the inputs to acknowledge the achieved connection.

In the case of switches with VCs, the input buffers are organized in multiple-
independent queues, one for each VC. Each input can send multiple requests per
clock cycle. This feature complicates significantly the design of the switch allocator
relative to a VC-less switch. In that case, switch allocation is organized in two
phases since both per-input and per-output arbitrations are needed.1 Even though
the per-input and per-output arbiters operate independently, their eventual outcomes
in switch allocation are very much dependent, each one affecting the aggregate
matching quality of the switch [3, 20].

The two possible switch allocators for an N-input switch with V virtual channels
are shown in Fig. 3. In this figure, the output port requested by each VC is denoted
by an N-bit wide one-hot coded bit vector. In the first case (Fig. 3a), each input is
allowed to send to the outputs only one request. To decide which request to send,
each input arbitrates locally among the requests of each VC. On the contrary, in the
case of output-first allocation, all VCs are free to forward their requests to the output
arbiters (Fig. 3b). In this way, it is possible that two or more VCs of the same input
will receive a grant from different outputs. However, only one of them is allowed to
pass its data to the crossbar. Therefore, a local arbitration needs to take place again
that will resolve the conflict.

The grant signals produced by the input arbiters of an input-first switch allocator
can drive the input local multiplexers in parallel to output arbitration. Therefore,
when switch allocation and crossbar traversal are performed in the same cycle, this
feature of input-first allocation allows some overlap in time between arbitration and

1An alternative to separable allocation is a centralized allocator like the wavefront allocator [26].
The main drawback of this design is the delay that grows linearly with the number of requests,
while the cyclic combinational paths that are inherent to its structure cannot be handled by static
timing analysis tools. The latter constraint can be removed by doubling the already aggravated
delay [13].
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a b

Fig. 4 Multiplexer implementations: (a) AND-OR structure and (b) tree of smaller multiplexers

multiplexing that reduces the delay of the combined operation. Such an overlap is
not possible to output-first allocation, where both stages of arbitration should be first
completed before driving the multiplexers.

In every case, the kernel of switch allocation and traversal involves arbiter and
multiplexer pairs that need to be carefully co-optimized in order to achieve an
overall efficient implementation. For example, the encoding selected for the grant
signals directly affects the design of the multiplexers. In the first case, shown in
Fig. 4a, the grant decision is encoded in one-hot form, where only a single bit is set,
and the multiplexer is implemented using an AND-OR structure. On the contrary,
in Fig. 4b, the multiplexer is implemented as a tree of smaller multiplexers. In this
case, the select lines that configure the paths of each level of the tree are encoded
using weighted binary representation.

The LUT mapping of either form of multiplexers is well explored, and several
optimizations have been presented in open literature. Briefly, the optimizations
presented so far for the implementation of wide multiplexers on an FPGA fabric
involve either the best possible packing of the multiplexer inputs and select signals
in LUTs [4,19] or the engagement of the multiplexers participating in the dedicated
carry logic [28], as well as the mapping of the multiplexers on the embedded
multipliers of the FPGA [14].

Even if the design choices for the multiplexer are practically limited to the
alternatives shown in Fig. 4, the design space for the arbiter is larger. The arbiter,
apart from resolving any conflicting requests for the same resource, it should
guarantee that this resource is allocated fairly to the contenders, granting first the
input with the highest priority. Therefore, for a fair allocation of the resources, we
should be able to change dynamically the priority of the inputs [12]. A generic
dynamic priority arbiter (DPA), as shown in Fig. 5, consists of two parts: the
arbitration logic that decides which request to grant based on the current state of the
priorities and the priority update logic that decides, according to the current grant
vector, which inputs to promote. The priority state associated with each input may
be one or more bits, depending on the complexity of the priority selection policy.
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For example, a single priority bit per input suffices for round-robin policy, while for
more complex weight-based policies such as first come first served (FCFS), multibit
priority quantities are needed [23].

Therefore, the combined mapping of the arbiter–multiplexer pair to the pro-
grammable logic and the interconnect of the FPGA needs further exploration
for unveiling the area-delay characteristics of traditional arbiter and multiplexer
structures borrowed from the ASIC domain and for quantifying the potential benefits
of new proposals.

3 Separate Arbiter and Multiplexer Design Choices

The simplest form of arbitration, called fixed-priority arbitration or priority encod-
ing, assumes that the priorities of the inputs are statically allocated and only the
relative order of the inputs’ connections determines the outcome of the arbiter.
In this case, the request of position 0 (rightmost) has the highest priority and the
request of position N − 1 the lowest. For example, when an 8-port fixed-priority
arbiter receives the request vector (R7 . . .R0) = 01100100, it would grant input 2
since it has the rightmost active request. Two versions of an 8-port priority encoder
driving a multiplexer are shown in Fig. 6. The first one involves a slow ripple-carry
alternative, while the second is based on a fast parallel prefix structure.

In the case of fixed priorities, the combined operation of arbitration and
multiplexing can be performed using only multiplexers. Such a structure is shown in
Fig. 7. The fixed-priority order of assignment is implicitly implemented by the linear
connection of the multiplexers, and thus the use of an arbiter is avoided. Despite its
simplicity, the structure of Fig. 7 is only rarely used, mostly due to its increased
delay.

Fixed priority is not an efficient policy, and hence it is not used in practice.
On the contrary, round-robin arbitration is the most commonly used technique.
Round-robin arbitration logic scans the input requests in a cyclic manner, beginning
from the position that has the highest priority, and grants the first active request.
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Fig. 6 Fixed-priority arbiter driving an AND-OR multiplexer
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For the next arbitration cycle, the priority vector points to the position next to the
granted input. In this way, the granted input receives the lowest priority in the next
arbitration cycle. An example of the operation of a round-robin arbiter for four
consecutive cycles is shown in Fig. 8 (the boxes labeled with a letter correspond
to the active requests).

In the following, we will present three alternatives for the design of round-robin
arbiters that are based on multiple priority encoders and on a customized carry-
lookahead (CLA) structure. We focus on the implementation of the arbitration logic
that scans the input requests in a cyclic manner. The design of the update logic is
only briefly described since it consists of very simple modules that do not cause
any timing violations. Besides, in a single cycle switch allocation and traversal, the
delay of the pointer update logic is hidden, since it operates in parallel to the crossbar
multiplexers.
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3.1 Priority Encoding-Based Round-Robin Arbiters

The design of a priority encoding (PE)-based round-robin arbiter [12] that searches
for the winning request in a circular manner beginning from the position with the
highest priority involves two priority encoders, as shown in Fig. 9. In order to
declare which input has the highest priority, the priority vector P of the arbiter
is thermometer-coded. For example, when P = 11111000 for an 8-input arbiter,
position 3 has the highest priority. The upper PE of Fig. 9 is used to search for a
winning request from the highest-priority position indexed by vector P (hereafter,
we will refer to this position as Ppos), up to position N−1. It does not cycle back to
input 0, even if it could not find a request among the inputs Ppos . . .N − 1. In order
to restrain the upper PE to search only in positions Ppos . . .N − 1, the requests it
receives are masked with the thermometer-coded priority vector P. On the contrary,
the lower PE is driven by the original request lines and searches for a winning
request among all positions.



134 G. Dimitrakopoulos et al.

The two arbitration phases work in parallel, and only one of them has computed
the correct grant vector. The selection between the two outputs is performed by
employing a simple rule. If there are no requests in the range Ppos . . .N − 1, the
correct output is the same as the output of a lower PE. If there is a request in the
range Ppos . . .N − 1, then the correct output is given by the output of the upper PE.
Differentiating between the two cases is performed by using the AG signal of the
upper PE (AG is asserted if any input has been granted). In the following, we will
refer to this architecture as the dual-path PE arbiter.

In the dual-path PE arbiter, the grant vectors follow the one-hot encoding, while
the priority vector is thermometer-coded. Therefore, in order to implement correctly
the round-robin pointer update policy, the grant signals should be transformed to
their equivalent thermometer code. This transformation is performed inside the
pointer update logic of the arbiter.

3.2 LZC-Based Round-Robin Arbiters

Priority encoding identifies the position of the rightmost 1 on the request vector and
keeps it alive at the output. At the same time, the remaining requests are killed, and
the grant vector contains a single 1. Similarly, the process of leading-zero counting
(or detection) counts the number of zeros that appear before the leftmost 1 of a
word. If a transposed request vector is given to the leading-zero counter (LZC), then
priority encoding and leading-zero counting are equivalent, since they both try to
encode the position of the rightmost 1 in a digital word. The difference between
the two methods is the encoding used to denote the selected position. In the case of
priority encoding the grant vector is in one-hot form, while in the case of leading-
zero counting, the output vector follows the weighted binary representation.

A round-robin arbiter that is based on LZCs can be designed by following again
the dual-path approach presented in Fig. 9. The priority encoders are replaced by
the corresponding LZCs that receive the requests transposed. In this case, the grant
vector is composed of log2 N bits that encode the position of the winning request,
and it is connected directly to a tree of multiplexers that switch to the output the
winning data, as shown in Fig. 10 (note that AZ is the All Zero signal of an LZC
and is essentially the complement of the AG signal of a typical arbiter).

The most efficient LZC is presented in [10], where, for the first time, compact
closed-form relations have been presented for the bits of the LZC. The iterative
leading-zero counting equations can be fed directly to a logic synthesis tool and
derive efficient LUT mappings. The employed LZC works in log2 N stages, equal
to the bits required for the weighted binary representation of the winning position.
At each stage, the LZC computes one bit of the output by deciding, via the same
operator, if the number of the leading zeros of the requests is odd or even. The first
stage involves all the requests, while the following stages assume a reduced request
vector. At each stage, the reduced request vector is produced by combining with an



Switch Design for Soft Interconnection Networks 135

Fig. 10 An LZC-based round-robin arbiter driving a multiplexer

OR relation the nonconsecutive pairs of bits of the previous request vector. This OR
reduction is equivalent to a binary tree of OR gates.

3.3 Carry-Lookahead-Based Round-Robin Arbiters

Alternatively, a round-robin arbiter can be built using CLA structures. In this case,
the highest priority is declared using a priority vector P that is encoded in one-hot
form. The main characteristic of the CLA-based arbiters is that they do not require
multiple copies of the same circuit, since they inherently handle the circular nature
of priority propagation [9]. In this case, the priority transfer to the ith position is
modeled recursively via a priority transfer signal named Xi. The ith request gets the
highest priority, i.e., Xi = 1, when either bit Pi of the priority vector is set or when
the previous position i−1 does not have an active request (Ri−1 = 0). Transforming
this rule to a boolean relation we get that

Xi = Pi +Ri−1 ·Xi−1 (1)

When Xi = 1 it means that the ith request has the highest priority to win a grant.
Therefore, the grant signal Gi is asserted when both Xi and Ri are equal to 1:

Gi = Ri ·Xi (2)
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The search for the winning position should be performed in a circular manner
after all positions are examined. Therefore, in order to guarantee the cyclic transfer
of the priority, signal XN−1 out of the most significant position should be fed back
as a carry input to position 0, i.e., X−1 = XN−1. Of course, we cannot connect XN−1

directly to position 0 since this creates a combinational loop. In [9], an alternative
fast circuit has been proposed that avoids the combinational loop and computes all
X bits in parallel using the butterfly-like CLA structure shown in Fig. 11. Similar
circuits can be derived after mapping on the FPGA the simplified and fully unrolled
equations that describe the computation of the priority transfer signal Xi:

Xi = Pi +
n−2

∑
j=0

(
n−1

∏
k= j+1

R|k+1|N

)
P|i+ j+1|N , (3)

where |y|N = y mod N. Finally, since both the grant vector and the priority vector
are encoded in one-hot form, no extra translation circuit is required in the pointer
update unit of this round-robin arbiter.

4 Merged Arbiter and Multiplexer

In this section, we present new soft macros that can handle concurrently arbitration
and multiplexing. In this way, switch allocation and traversal can be performed
efficiently in the same cycle, while still offering energy-delay efficient imple-
mentations. The design of these new efficient macros is based on an algorithmic
transformation of round-robin arbitration to an equivalent sorting-like problem.

Similar to the PE-based round-robin arbiter of Sect. 3.1, the merged round
robin arbiter and multiplexer utilizes an N-bit priority vector P that follows the
thermometer code. As shown in the example of Fig. 12, the priority vector splits
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the input requests in two segments. The high-priority (HP) segment consists of the
requests that belong to high-priority positions where Pi = 1, while the requests,
which are placed in positions with Pi = 0, belong to the low-priority (LP) segment.
The operation of the arbiter is to give a grant to the first (rightmost) active request of
the HP segment and, if not finding any, to give a grant to the first (rightmost) active
request of the LP segment. According to the already known solutions, this operation
involves, either implicitly or explicitly, a cyclic search of the requests, starting from
the HP segment and continuing to the LP segment.

Either at the HP or the LP segment, the pairs of bits (Ri,Pi) can assume any
value. We are interested in giving an arithmetic meaning to these pairs. Therefore,
we treat the bits RiPi as a 2-bit unsigned quantity with a value equal to 2Ri +Pi.
For example, in the case of an 8-input arbiter, the arithmetic symbols we get for a
randomly selected request and priority vector are shown in Fig. 12. From the four
possible arithmetic symbols, i.e., 3, 2, 1, 0, the symbols that represent an active
request are either 3 (from the HP segment) or 2 (from the LP segment). On the
contrary, the symbols 1 and 0 denote an inactive request that belongs to the HP and
the LP segment, respectively.

According to the described arbitration policy and the example priority vector
of Fig. 12, the arbiter should start looking for an active request from position 3,
moving upwards to positions 4, 5, 6, 7, and then to 0, 1, 2 until it finds the first
active request. The request that should be granted lies in position 4, which is the
first (rightmost) request of the HP segment. Since this request belongs to the HP
segment, its corresponding arithmetic symbol is equal to 3. Therefore, granting
the first (rightmost) request of the HP segment is equivalent to giving a grant to
the first maximum symbol that we find when searching from right to left. This
general principle also holds for the case that the HP segment does not contain any
active request. Then, all arithmetic symbols of the HP segment would be equal to
1, and any active request of the LP segment would be mapped to a larger number
(arithmetic symbol 2).
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Therefore, by treating the request and the priority bits as arithmetic symbols, we
can transform the round-robin cyclic search to the equivalent operation of selecting
the maximum arithmetic symbol that lies in the rightmost position. Searching for the
maximum symbol and reporting at the output only its first (rightmost) appearance,
implicitly implements the cyclic transfer of the priority from the HP to the LP
segment, without requiring any true cycle in the circuit. In principle, any maximum
selector does not contain any cycle paths and is built using a tree or a linear
comparison structure. The proposed arbiter is built using a set of small comparison
nodes. Each node receives two arithmetic symbols, one coming from the left and one
from the right side. The maximum of the two symbols under comparison appears at
the output of each node. Also, each node generates one additional control flag that
denotes if the left or the right symbol has won, i.e., it was the largest. In case of a tie,
when equal symbols are compared, this flag always points to the right. In this way,
the first (rightmost) symbol is propagated to the output as dictated by the operation
of the arbiter.

In every case, the winning path is clearly defined by the direction flags produced
by the comparison nodes. Thus, if we use these flags to switch the data words that are
associated with the corresponding arithmetic symbols, we can route at the output the
data word that is associated with the winning request. This combined operation can
be implemented by adding a 2-to-1 multiplexer next to each comparison node and
connecting the direction flag to the select line of the multiplexer. The structure of
both a binary tree and a linear merged arbiter multiplexer with 8 inputs, along with
a running example of their operation, is shown in Fig. 13. Following the example,
we observe that the first, in a round-robin order, data word A4 is correctly routed at
the output.

Although the tree-structured merged arbiter multiplexer has smaller delay than
the linear-structured one, the latter can take advantage of the dedicated mux-carry
logic of the FPGA.

4.1 Computation of the Grant Signals

The merged arbiter multiplexer, besides transferring at the output the data word of
the granted input, should also return in a useful format the position of the winning
request (or equivalently the grant index). The proposed maximum-selection tree,
shown in Fig. 13a, that replaces the traditional round-robin arbiter can be enhanced
to facilitate the simultaneous generation of the corresponding grant signals via the
flag bits of the CMP nodes.

At first, we deal with the case that the grants are encoded in weighted binary
representation. In this case, we can observe that, by construction, the weighted
binary encoding of the winning request is formed by putting together the flag bits
of the CMP nodes that lie in the path from the winning input to the root of the tree
(see Fig. 14a). Consequently, the generation of the grant signals in weighted binary
representation is done by combining at each level of tree the winning flag bits of
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the previous levels with the flags of the current level. This is achieved by means
of some additional multiplexers, as shown in Fig. 14a, for the case of a tree-based
merged arbiter multiplexer.

For the one-hot encoding, we need a different implementation. Initially, i.e., at
the inputs of the one-hot grant generation circuit, we assume that every position
has a grant signal equal to 1. At the following levels, some of these grant signals
are transformed to 0s if their associated symbols are not the winning ones at the
corresponding CMP nodes. Thus, at the output, only a single 1 will remain and the
rest would be nullified. The circuit that generates the corresponding grant signals
in one-hot form, for 4 input symbols, is shown in Fig. 14b. Keeping and nullifying
the grant signals is performed by the AND gates that mask, at each level of the
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a
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Fig. 14 The grant generation
circuits that run in parallel to
the CMP nodes for a tree
organization of the merged
arbiter multiplexer

tree, the intermediate grant vector of the previous level with the associated direction
flags. The inversions are needed to keep alive the grant signals that correspond
to a winning symbol of the right subtrees. Observe that, if we replace the invert-
AND gates of Fig. 14b with OR gates, the outcome would be a thermometer-coded
grant vector instead of the one-hot code. The resulting circuit is shown in Fig. 14c.
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generation circuit for the
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In this way, with minimum cost, we are able to fully cover all possible useful grant
encodings, thus alleviating the need for additional translation circuits.

When the linear comparison structure is selected for the organization of the
merged arbiter multiplexer, we can design the grant generation circuits following
a similar procedure. A one-hot grant generation circuit for the case of a 4-input
merged arbiter multiplexer is shown in Fig. 15. The AND gates at each comparison
stage are driven by the direction flags of the CMP nodes and a constant 1 that allows
us to simplify the invert-AND gates to inverters. Again, if the invert-AND gates are
replaced by OR gates, a thermometer code word can be derived for the grant signals.

As for the weighted binary grant generation circuit, we can use the same linear
structure of Fig. 13b, replacing the data words that drive the multiplexers with the
various position indices in weighted binary format (i.e., in Fig. 13b, A0 is replaced
by 000, A1 by 001, etc.). This means that, in this case, two multiplexers are needed
at each stage of the linear structure, one for switching the data and another for
switching the weighted binary indices.

When there is no active request, the arbiter should deassert the AG signal. This
case is identified by observing the symbol at the output of the comparison structure.
When it is equal to either 0 or 1, it means that no active request exists in either
priority segment.

4.2 Switches with Merged Arbiter-Multiplexer Structures

The design of switches that use the proposed round-robin merged arbiter multiplex-
ers (MARX) is straightforward. Figure 16a depicts the design of a VC-less switch
using the proposed macros. This is the simplest case, where the arbiter-multiplexer
pairs that existed at each output are directly replaced by the proposed units. As in
any switch, the data placed on the input registers or the head of the input queues
should not be changed or dequeued until the corresponding input is granted access
to the requested output port.



142 G. Dimitrakopoulos et al.

In#1

a

b

N:1
MARX

N:1
MARX

V:1
MARX

V:1
MARX

N:1
MARX

N:1
MARX

Out#1

Out#N

Out#1

Per-OutputPer-Input

D
E

M
U

X
D

E
M

U
X

#V VCs

Out#N

In#1

In#N

Switch with VCs

VC-less Switch

In#N

Fig. 16 Switches built with MARX units: (a) VC-less wormhole switch and (b) VC-based switch

In the case of switches with VCs, the design is more complicated due to the per-
input and per-output stages of arbitration and multiplexing. The proposed macros fit
better in the case of input-first allocation. This organization is shown in Fig. 16b. The
per-input MARX units select locally an eligible VC among the V available and carry
along its corresponding flit. The VCs selected from each input compete for gaining
access to their requested outputs via the per-output MARX units that simultaneously
resolve any conflicts and give at the output the flit of the winning VC.

5 Experimental Results

In this section, we explore the implementation characteristics of the presented
designs. The analysis that follows aims to identify the fastest and/or the most area-
efficient alternative by varying the number of ports of the arbiter and multiplexer and
the data width of each port. For attaining our comparison data, we first generated
the equivalent VHDL descriptions of all designs under comparison. After extensive
simulations that verified the correctness of each description, each design was
synthesized and mapped to a Virtex-5 XC5VLX330 FPGA chip. For the synthesis,
mapping, and placement and routing of the designs, we used the ISE 12.2 toolset
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Fig. 17 The delay of arbiters
and multiplexers varying the
number of ports for 8 and 16
bits port width

of Xilinx. Please note that the reported results involve only the optimizations
performed by the CAD tools alone, without any manual intervention that would
further optimize the circuits under comparison. In this way, the presented results can
be reproduced by every designer by just following the same automated design flow.

At first, we compare the presented design alternatives in terms of delay. Delay
is critically affected by the number of ports that the circuit is designed to serve, as
well as the width of the corresponding data words that increases the loading of the
multiplexers’ control signals. The best delays achieved for each circuit after varying
the number of inputs and keeping constant the data width to 8 and 16 bits are shown
in Fig. 17. From the presented results that were measured after place and route, we
can draw several conclusions. The merged arbiter multiplexer (we refer to the tree-
structured implementation) is, in all cases, the fastest, and the delay savings are
more than 20 % on average. This trend is followed irrespective of the number of
bits used per multiplexer port. The observed delay convergence, when the number
of ports increases, is attributed to the aggravated effect of routing interconnect
delay that constitutes more than 80 % of the total path delay. This is a sign that
such wide multiplexers of single-stage switching systems should be avoided, and
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the communication among multiple modules should be organized as a network of
switches. Observe though that, even for such extreme multiplexer widths, the delay
advantage of MARX is considerable.

The area of the examined designs is reported in Fig. 18. Specifically, Fig. 18a
reports the area occupied by the compared designs assuming 8 bits per port and
varying the number of ports. On the other hand, Fig. 18b shows the area of all
the designs for an 8-input arbiter and multiplexer when varying the width of each
port. The most clear conclusion derived from both figures is that the LZC-based
arbiter and multiplexer is the most area-efficient solution requiring roughly 30 %
less area on average. On the contrary, the fastest design, i.e., the merged arbiter and
multiplexer, although it behaves similarly to the other designs for small port widths,
requires significantly more area when the bits per port are increased to 16 and 32
bits. This behavior though enables the designer to explore the area-delay trade-off;
the MARX allows for very fast implementations with the overhead of extra area for
increased data widths, whereas the LZC-based design offers low implementation
cost with fairly small delays.
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Fig. 19 The application of bit slicing to arbiter and multiplexer pairs

5.1 Bit Slicing

The multiplexer can be sliced to smaller multiplexers with the same number of
input ports but of smaller data width. This operation is equivalent to spreading parts
of input words to multiple smaller multiplexers, where each multiplexer is driven
by a dedicated arbiter. As shown in Fig. 19, the control logic of the independent
multiplexers remains unified, and each submultiplexer receives the same grant
decisions. This happens since all arbiters work in sync, receiving the same requests
and updating, in the same way, the priority of each position. Bit slicing partially
alleviates the high-fanout problem of the grant signals and may offer higher-speed
solutions. In reality, the fanout taken from the grant signals is given to the request
lines that now need to be broadcasted to more arbiters.

In the following, we investigate the delay benefits of bit slicing and try to identify
which slicing factor is the best for the designs under comparison. We applied bit
slicing on an 8-input and a 16-input arbiter and multiplexer carrying data of 32
bits. We used all power-of-two slicing factors SF between the two extremes: SF = 1
that corresponds to no slicing and SF = 32 that corresponds to full slicing, where
each bit has its own arbiter. In the general case, bit slicing by a factor SF means
that we implement SF multiplexer and arbiter pairs, with each multiplexer carrying
32/SF bits. The obtained results that clearly depict an optimum slicing factor for
each design are shown in Fig. 20.

6 Summary and Conclusions

In this chapter we presented and compared various alternatives for the design of an
arbiter and a multiplexer in an FPGA. The design space includes traditional separate
arbiter and multiplexer pairs, as well as recently introduced merged arbiter and
multiplexer macros that handle arbitration and multiplexing concurrently. Although
the mapping of multiplexers in LUT logic has received a lot of attention in the
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previous years, the combined implementation of an arbiter and a multiplexer was
partially unexplored. This work covers this gap and extends, at the same time, the
design space with new efficient solutions that simplify the design of high-radix soft
switches.
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