Skip to main content

Infection in Fracture Fixation: Device Design and Antibiotic Coatings Reduce Infection Rates

  • Chapter
  • First Online:

Abstract

Musculoskeletal infection is one of the most common complications associated with surgical fixation of bones fractured during trauma. Severe fractures with extensive tissue damage are particularly prone to infection due to the high risk of wound contamination and compromised vascularity in the affected tissues. An infection associated with a fracture fixation device can delay healing, greatly increase patient morbidity, require multiple surgeries for effective treatment outcomes, and may tremendously increase treatment costs. In the following chapter, two approaches to reduce the incidence of infection associated with fracture fixation devices will be described. The first is a passive approach involving aspects of implant design and application, whereby the implant used and the techniques used to place them can influence resistance to infection, at least in animal studies. The second approach involves antibiotic-coated intramedullary nails with a focus on two different gentamicin coatings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boxma H, Broekhuizen T, Patka P, Oosting H. Randomised controlled trial of single-dose antibiotic prophylaxis in surgical treatment of closed fractures: the Dutch Trauma Trial. Lancet. 1996;347(9009):1133–7.

    Article  CAS  Google Scholar 

  2. Gustilo RB, Gruninger RP, Davis T. Classification of type III (severe) open fractures relative to treatment and results. Orthopedics. 1987;10(12):1781–8.

    CAS  Google Scholar 

  3. Leutenegger AF. Acute infection following osteosynthesis. Ther Umsch. 1990;47(7):593–6.

    CAS  Google Scholar 

  4. Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37 Suppl 2:S59–66.

    Article  Google Scholar 

  5. Willenegger H, Roth B. Treatment tactics and late results in early infection following osteosynthesis. Unfallchirurgie. 1986;12(5):241–6.

    Article  CAS  Google Scholar 

  6. Edwards C, Counsell A, Boulton C, Moran CG. Early infection after hip fracture surgery: risk factors, costs and outcome. J Bone Joint Surg Br. 2008;90(6):770–7.

    Article  CAS  Google Scholar 

  7. Poultsides LA, Liaropoulos LL, Malizos KN. The socioeconomic impact of musculoskeletal infections. J Bone Joint Surg Am. 2010;92(11):e13.

    Article  Google Scholar 

  8. Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37 Suppl 2:S3–14.

    Article  Google Scholar 

  9. Perren SM. Fracture healing. The evolution of our understanding. Acta Chir Orthop Traumatol Cech. 2008;75(4):241–6.

    Google Scholar 

  10. Schlegel U, Perren SM. Surgical aspects of infection involving osteosynthesis implants: implant design and resistance to local infection. Injury. 2006;37 Suppl 2:S67–73.

    Article  Google Scholar 

  11. Stein H, Perren SM, Mosheiff R. New insights into the biology of fracture healing. Orthopedics. 2004;27(9):915–8.

    Google Scholar 

  12. Clifford RP. Open fractures. In: Rüedi TP MW editor. AO principals of fracture management. Stuttgart New York: AO Publishing Thieme-Verlag; 2000. p. 621–43.

    Google Scholar 

  13. Wiss DA, Stetson WB. Unstable fractures of the tibia treated with a reamed intramedullary interlocking nail. Clin Orthop Relat Res. 1995;315:56–63.

    Google Scholar 

  14. Henley MB, Chapman JR, Agel J, Harvey EJ, Whorton AM, Swiontkowski MF. Treatment of type II, IIIA, and IIIB open fractures of the tibial shaft: a prospective comparison of unreamed interlocking intramedullary nails and half-pin external fixators. J Orthop Trauma. 1998;12(1):1–7.

    Article  CAS  Google Scholar 

  15. Esterhai Jr JL, Queenan J. Management of soft tissue wounds associated with type III open fractures. Orthop Clin North Am. 1991;22(3):427–32.

    Google Scholar 

  16. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24(8):742–6.

    Article  CAS  Google Scholar 

  17. Noumi T, Yokoyama K, Ohtsuka H, Nakamura K, Itoman M. Intramedullary nailing for open fractures of the femoral shaft: evaluation of contributing factors on deep infection and nonunion using multivariate analysis. Injury. 2005;36(9):1085–93.

    Article  Google Scholar 

  18. Bell MJ, Beauchamp CG, Kellam JK, McMurtry RY. The results of plating humeral shaft fractures in patients with multiple injuries. The Sunnybrook experience. J Bone Joint Surg Br. 1985;67(2):293–6.

    CAS  Google Scholar 

  19. Dabezies EJ, Banta CJ, Murphy CP, D’Ambrosia RD. Plate fixation of the humeral shaft for acute fractures, with and without radial nerve injuries. J Orthop Trauma. 1992;6(1):10–3.

    CAS  Google Scholar 

  20. Heim D, Herkert F, Hess P, Regazzoni P. Surgical treatment of humeral shaft fractures—the Basel experience. J Trauma. 1993;35(2):226–32.

    Article  CAS  Google Scholar 

  21. Antoci V, Ono CM, Antoci Jr V, Raney EM. Pin-tract infection during limb lengthening using external fixation. Am J Orthop (Belle Mead NJ). 2008;37(9):E150–4.

    Google Scholar 

  22. Egger EL. Complications of external fixation. A problem-oriented approach. Vet Clin North Am Small Anim Pract. 1991;21(4):705–33.

    CAS  Google Scholar 

  23. Green SA. Osteomyelitis. The Ilizarov perspective. Orthop Clin North Am. 1991;22(3):515–21.

    CAS  Google Scholar 

  24. Harari J. Complications of external skeletal fixation. Vet Clin North Am Small Anim Pract. 1992;22(1):99–107.

    CAS  Google Scholar 

  25. Della Rocca GJ, Crist BD. External fixation versus conversion to intramedullary nailing for definitive management of closed fractures of the femoral and tibial shaft. J Am Acad Orthop Surg. 2006;14:S131–5. 10 Spec No.

    Google Scholar 

  26. Tornetta III P, Bergman M, Watnik N, Berkowitz G, Steuer J. Treatment of grade-IIIb open tibial fractures. A prospective randomised comparison of external fixation and non-reamed locked nailing. J Bone Joint Surg Br. 1994;76(1):13–9.

    Google Scholar 

  27. Changulani M, Jain UK, Keswani T. Comparison of the use of the humerus intramedullary nail and dynamic compression plate for the management of diaphyseal fractures of the humerus. A randomised controlled study. Int Orthop. 2007;31(3):391–5.

    Article  CAS  Google Scholar 

  28. Chapman JR, Henley MB, Agel J, Benca PJ. Randomized prospective study of humeral shaft fracture fixation: intramedullary nails versus plates. J Orthop Trauma. 2000;14(3):162–6.

    Article  CAS  Google Scholar 

  29. Denies E, Nijs S, Sermon A, Broos P. Operative treatment of humeral shaft fractures. Comparison of plating and intramedullary nailing. Acta Orthop Belg. 2010;76(6):735–42.

    Google Scholar 

  30. Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br. 1996;78(4):647–51.

    CAS  Google Scholar 

  31. Arens S, Eijer H, Schlegel U, Printzen G, Perren SM, Hansis M. Influence of the design for fixation implants on local infection: experimental study of dynamic compression plates versus point contact fixators in rabbits. J Orthop Trauma. 1999;13(7):470–6.

    Article  CAS  Google Scholar 

  32. Hauke C, Schlegel U, Melcher GA, et al. Local infection in relation to different implant materials. An experimental study using stainless steel and titanium, unlocked, intramedullary nails in rabbits. Orthop Trans. 1997;21:835–6.

    Google Scholar 

  33. Horn J, Schlegel U, Krettek C, Ito K. Infection resistance of unreamed solid, hollow slotted and cannulated intramedullary nails: an in-vivo experimental comparison. J Orthop Res. 2005;23(4):810–5.

    Article  CAS  Google Scholar 

  34. Melcher GA, Metzdorf A, Schlegel U, Ziegler WJ, Perren SM, Printzen G. Influence of reaming versus nonreaming in intramedullary nailing on local infection rate: experimental investigation in rabbits. J Trauma. 1995;39(6):1123–8.

    Article  CAS  Google Scholar 

  35. Finkemeier CG, Schmidt AH, Kyle RF, Templeman DC, Varecka TF. A prospective, randomized study of intramedullary nails inserted with and without reaming for the treatment of open and closed fractures of the tibial shaft. J Orthop Trauma. 2000;14(3):187–93.

    Article  CAS  Google Scholar 

  36. Keating JF, O’Brien PJ, Blachut PA, Meek RN, Broekhuyse HM. Locking intramedullary nailing with and without reaming for open fractures of the tibial shaft. A prospective, randomized study. J Bone Joint Surg Am. 1997;79(3):334–41.

    CAS  Google Scholar 

  37. Mahomed NN, Barrett JA, Katz JN, et al. Rates and outcomes of primary and revision total hip replacement in the United States medicare population. J Bone Joint Surg Am. 2003;85-A(1): 27–32.

    Google Scholar 

  38. Hayes JS, Richards RG. The use of titanium and stainless steel in fracture fixation. Expert Rev Med Devices. 2010;7(6):843–53.

    Article  CAS  Google Scholar 

  39. Disegi JA. Titanium alloys for fracture fixation implants. Injury. 2000;31 Suppl 4:14–7.

    Article  Google Scholar 

  40. Pohler OE. Unalloyed titanium for implants in bone surgery. Injury. 2000;31 Suppl 4:7–13.

    Article  Google Scholar 

  41. Hayes JS, Vos DI, Hahn J, Pearce SG, Richards RG. An in vivo evaluation of surface polishing of TAN intermedullary nails for ease of removal. Eur Cell Mater. 2009;18:15–26.

    CAS  Google Scholar 

  42. Hayes JS, Seidenglanz U, Pearce AI, Pearce SG, Archer CW, Richards RG. Surface polishing positively influences ease of plate and screw removal. Eur Cell Mater. 2010;19:117–26.

    CAS  Google Scholar 

  43. Ganser A, Thompson R, Tami I, Neuhoff D, Steiner A, Ito K. An in vivo experimental comparison of stainless steel and titanium Schanz screws for external fixation. Eur J Trauma and Emerg Surg. 2007;33(1):59–68.

    Article  Google Scholar 

  44. Pieske O, Geleng P, Zaspel J, Piltz S. Titanium alloy pins versus stainless steel pins in external fixation at the wrist: a randomized prospective study. J Trauma. 2008;64(5):1275–80.

    Article  CAS  Google Scholar 

  45. Soultanis KC, Pyrovolou N, Zahos KA, et al. Late postoperative infection following spinal instrumentation: stainless steel versus titanium implants. J Surg Orthop Adv. 2008;17(3):193–9.

    Google Scholar 

  46. Moriarty TF, Debefve L, Boure L, Campoccia D, Schlegel U, Richards RG. Influence of material and microtopography on the development of local infection in vivo: experimental investigation in rabbits. Int J Artif Organs. 2009;32(9):663–70.

    CAS  Google Scholar 

  47. Gristina AG, Costerton JW. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am. 1985;67(2):264–73.

    CAS  Google Scholar 

  48. Gristina AG, Oga M, Webb LX, Hobgood CD. Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science. 1985;228(4702):990–3.

    Article  CAS  Google Scholar 

  49. Stemberger A, Grimm H, Bader F, Rahn HD, Ascherl R. Local treatment of bone and soft tissue infections with the collagen-gentamicin sponge. Eur J Surg. 1997;578(Suppl):17–26.

    Google Scholar 

  50. Hettfleisch J, Schottle H. Local preventive antibiotic treatment in intramedullary nailing with gentamycin impregnated biomaterials. Aktuelle Traumatol. 1993;23(2):68–71.

    CAS  Google Scholar 

  51. Jansen B, Peters G. Foreign body associated infection. J Antimicrob Chemother. 1993;32(Suppl A):69–75.

    Google Scholar 

  52. Blaha JD, Calhoun JH, Nelson CL, et al. Comparison of the clinical efficacy and tolerance of gentamicin PMMA beads on surgical wire versus combined and systemic therapy for osteomyelitis. Clin Orthop Relat Res. 1993;295:8–12.

    Google Scholar 

  53. Letsch R, Rosenthal E, Joka T. Local antibiotic administration in osteomyelitis treatment—a comparative study with two different carrier substances. Aktuelle Traumatol. 1993;23(7):324–9.

    CAS  Google Scholar 

  54. Nelson CL, Hickmon SG, Harrison BH. Elution characteristics of gentamicin-PMMA beads after implantation in humans. Orthopedics. 1994;17(5):415–6.

    CAS  Google Scholar 

  55. Kendall RW, Duncan CP, Smith JA, Ngui-Yen JH. Persistence of bacteria on antibiotic loaded acrylic depots. A reason for caution. Clin Orthop Relat Res. 1996;329:273–80.

    Article  Google Scholar 

  56. Neut D, van de Belt H, Stokroos I, van Horn JR, van der Mei HC, Busscher HJ. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother. 2001;47(6):885–91.

    Article  CAS  Google Scholar 

  57. Arciola CR, Campoccia D, Montanaro L. Effects on antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces. Biomaterials. 2002;23(6):1495–502.

    Article  CAS  Google Scholar 

  58. van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials. 2001;22(12):1607–11.

    Article  Google Scholar 

  59. Dunbar MJ. Antibiotic bone cements: their use in routine primary total joint arthroplasty is justified. Orthopedics 2009;32(9).

    Google Scholar 

  60. Hanssen AD. Prophylactic use of antibiotic bone cement: an emerging standard—in opposition. J Arthroplasty. 2004;19(4 Suppl 1):73–7.

    Article  Google Scholar 

  61. Bhadra AK, Roberts CS. Indications for antibiotic cement nails. J Orthop Trauma. 2009;23 Suppl 5:S26–30.

    Article  Google Scholar 

  62. Mendicino RW, Bowers CA, Catanzariti AR. Antibiotic-coated intramedullary rod. J Foot Ankle Surg. 2009;48(2):104–10.

    Article  Google Scholar 

  63. Qiang Z, Jun PZ, Jie XJ, Hang L, Bing LJ, Cai LF. Use of antibiotic cement rod to treat intramedullary infection after nailing: preliminary study in 19 patients. Arch Orthop Trauma Surg. 2007;127(10):945–51.

    Article  Google Scholar 

  64. Montali A. Antibacterial coating systems. Injury. 2006;37 Suppl 2:S81–6.

    Article  Google Scholar 

  65. Bauer TW, Schils J. The pathology of total joint arthroplasty. II. Mechanisms of implant failure. Skeletal Radiol. 1999;28(9):483–97.

    Article  CAS  Google Scholar 

  66. Kuhlback B, Falck H, Tornroth T, Wallenius M, Lindstrom BL, Pasternack A. Renal transplantation in amyloidosis. Acta Med Scand. 1979;205(3):169–72.

    CAS  Google Scholar 

  67. Southorn PA, Plevak DJ, Wright AJ, Wilson WR. Adverse effects of vancomycin administered in the perioperative period. Mayo Clin Proc. 1986;61(9):721–4.

    CAS  Google Scholar 

  68. Taylor GJ, Bannister GC, Calder S. Perioperative wound infection in elective orthopaedic surgery. J Hosp Infect. 1990;16(3):241–7.

    Article  CAS  Google Scholar 

  69. Eron LJ. Prevention of infection following orthopedic surgery. Antibiot Chemother. 1985;33: 140–64.

    CAS  Google Scholar 

  70. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37 Suppl 2:S105–12.

    Article  Google Scholar 

  71. Hutmacher D, Hurzeler MB, Schliephake H. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants. 1996;11(5):667–78.

    CAS  Google Scholar 

  72. Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg. 1966;93(5):839–43.

    Article  CAS  Google Scholar 

  73. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res. 1971;5(3):169–81.

    Article  CAS  Google Scholar 

  74. Schmidmaier G, Wildemann B, Stemberger A, Haas NP, Raschke M. Biodegradable poly(d, l-lactide) coating of implants for continuous release of growth factors. J Biomed Mater Res. 2001;58(4):449–55.

    Article  CAS  Google Scholar 

  75. Schmidmaier G, Wildemann B, Bail H, et al. Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(d, l-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone. 2001;28(4):341–50.

    Article  CAS  Google Scholar 

  76. Förster C, Schmidmaier G, Gollwitzer H, Stemberger A, Raschke M, Haas NP. Eine biodegradierbare (Poly(d;l-Laktid)-Beschichtung für Endoprothesen zur lokalen Applikation von Wirksubstanzen. Hefte z d Unfallchirug. 1999;275:219.

    Google Scholar 

  77. Vester H, Wildemann B, Schmidmaier G, Stockle U, Lucke M. Gentamycin delivered from a PDLLA coating of metallic implants: in vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis. Injury. 2010;41(10):1053–9.

    Article  Google Scholar 

  78. Lucke M, Wildemann B, Sadoni S, et al. Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone. 2005;36(5):770–8.

    Article  CAS  Google Scholar 

  79. Fuchs T, Stange R, Schmidmaier G, Raschke MJ. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419–25. PMID: 21617934.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Schmidmaier .

Editor information

Editors and Affiliations

Glossary

Biological internal fixation

A technique of careful surgical exposure, fracture reduction, and fixation, which favors the preservation of the blood supply of the fracture site and, thereby, optimizes the healing potential of the bone and soft tissues.

Dynamic compression plate (DCP)

A plate through which screws can be inserted to provide compression across a fracture site.

External fixation

Skeletal stabilization using pins, wires, or screws that protrude through the skin and are linked externally by bars or other devices.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidmaier, G., Gahukamble, A.D., Moriarty, T.F., Richards, R.G. (2013). Infection in Fracture Fixation: Device Design and Antibiotic Coatings Reduce Infection Rates. In: Moriarty, T., Zaat, S., Busscher, H. (eds) Biomaterials Associated Infection. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1031-7_17

Download citation

Publish with us

Policies and ethics