Skip to main content

Animal Models of Orthopedic Implant-Related Infection

  • Chapter
  • First Online:
Book cover Biomaterials Associated Infection

Abstract

Musculoskeletal infection remains a great challenge in orthopedic and trauma surgery. Despite best medical and surgical practice and significant advances in research and development, bone and implant associated infections are still difficult to diagnose, impossible to prevent in all cases and require invasive and debilitating treatment. The development and safe clinical implementation of novel preventative, therapeutic or diagnostic strategies requires the use of animal models of infection, which provide crucial evidence regarding performance, cytocompatibility, biocompatibility, and safety prior to clinical implementation.

Many animal models of musculoskeletal infection have been described in the literature; however, there remains a dearth of fully standardized or universally accepted reference models hindering advancement in the field. The following chapter provides an overview of the animal models available for the study of musculoskeletal infection, the latest advances that are expected to improve them, and some of the most important scientific output achieved using these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards C, Counsell A, Boulton C, Moran CG. Early infection after hip fracture surgery: risk factors, costs and outcome. J Bone Joint Surg Br. 2008;90(6):770–7.

    Article  CAS  Google Scholar 

  2. Schlegel U, Perren SM. Surgical aspects of infection involving osteosynthesis implants: implant design and resistance to local infection. Injury. 2006;37 Suppl 2:S67–73.

    Article  Google Scholar 

  3. Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br J Exp Pathol. 1957;38(6):573–86.

    CAS  Google Scholar 

  4. Krogh A. The progress of physiology. Science. 1929;70(1809):200–4.

    Article  CAS  Google Scholar 

  5. Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int. 2005;16 Suppl 2:S129–38.

    Article  Google Scholar 

  6. Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998; 139(2):663–70.

    Article  CAS  Google Scholar 

  7. Auer JA, Goodship A, Arnoczky S, Pearce S, Price J, Claes L, et al. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use. BMC Musculoskelet Disord. 2007;8:72.

    Article  Google Scholar 

  8. Patel M, Rojavin Y, Jamali AA, Wasielewski SJ, Salgado CJ. Animal models for the study of osteomyelitis. Semin Plast Surg. 2009;23(2):148–54.

    Article  Google Scholar 

  9. Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng. 1998;8(1):1–9.

    CAS  Google Scholar 

  10. Salgado CJ, Jamali AA, Mardini S, Buchanan K, Veit B. A model for chronic osteomyelitis using Staphylococcus aureus in goats. Clin Orthop Relat Res. 2005;436:246–50.

    Article  Google Scholar 

  11. Arens S, Eijer H, Schlegel U, Printzen G, Perren SM, Hansis M. Influence of the design for fixation implants on local infection: experimental study of dynamic compression plates versus point contact fixators in rabbits. J Orthop Trauma. 1999;13(7):470–6.

    Article  CAS  Google Scholar 

  12. Claes L, Eckert-Hubner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res. 2002;20:1099–105.

    Article  Google Scholar 

  13. An YH, Friedman RJ. Animal models of orthopedic implant infection. J Invest Surg. 1998;11(2):139–46.

    Article  CAS  Google Scholar 

  14. An YH, Kang QK, Arciola CR. Animal models of osteomyelitis. Int J Artif Organs. 2006; 29(4):407–20.

    CAS  Google Scholar 

  15. Norden CW. Lessons learned from animal models of osteomyelitis. Rev Infect Dis. 1988; 10(1):103–10.

    Article  CAS  Google Scholar 

  16. Garcia P, Holstein J, Histing T, Burkhardt M, Culemann U, Pizanis A, et al. A new technique for internal fixation of femoral fractures in mice: impact of stability on fracture healing. J Biomech. 2008;41:1689–96.

    Article  CAS  Google Scholar 

  17. Matthys R, Perren S. Internal fixator for use in the mouse. Injury. 2009;40:S103–9.

    Article  Google Scholar 

  18. Histing T, Garcia P, Matthys R, Leidinger M, Holstein J, Kristen A, et al. An internal locking plate to study intramembranous bone healing in a mouse femur fracture model. J Orthop Res. 2010;28(3):397–402.

    Google Scholar 

  19. Legrand N, Ploss A, Balling R, Becker PD, Borsotti C, Brezillon N, et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe. 2009;6(1):5–9.

    Article  CAS  Google Scholar 

  20. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30.

    Article  CAS  Google Scholar 

  21. Scheman L, Janota M, Lewin P. The production of experimental osteomyelitis. JAMA. 1941;117(18):1525–9.

    Article  Google Scholar 

  22. Norden CW. Experimental osteomyelitis. I. A description of the model. J Infect Dis. 1970;122(5):410–8.

    Article  CAS  Google Scholar 

  23. Rissing JP, Buxton TB, Weinstein RS, Shockley RK. Model of experimental chronic osteomyelitis in rats. Infect Immun. 1985;47(3):581–6.

    CAS  Google Scholar 

  24. Southwood LL, Frisbie DD, Kawcak CE, Ghivizzani SC, Evans CH, McIlwraith CW. Evaluation of Ad-BMP-2 for enhancing fracture healing in an infected defect fracture rabbit model. J Orthop Res. 2004;22(1):66–72.

    Article  CAS  Google Scholar 

  25. Volk A, Cremieux AC, Belmatoug N, Vallois JM, Pocidalo JJ, Carbon C. Evaluation of a rabbit model for osteomyelitis by high field, high resolution imaging using the chemical-shift-specific-slice-selection technique. Magn Reson Imaging. 1994;12(7):1039–46.

    Article  CAS  Google Scholar 

  26. Smeltzer MS, Thomas JR, Hickmon SG, Skinner RA, Nelson CL, Griffith D, et al. Characterization of a rabbit model of staphylococcal osteomyelitis. J Orthop Res. 1997; 15(3):414–21.

    Article  CAS  Google Scholar 

  27. Andriole VT, Nagel DA, Southwick WO. A paradigm for human chronic osteomyelitis. J Bone Joint Surg Am. 1973;55(7):1511–5.

    CAS  Google Scholar 

  28. Petty W, Spanier S, Shuster JJ, Silverthorne C. The influence of skeletal implants on incidence of infection. Experiments in a canine model. J Bone Joint Surg Am. 1985;67(8):1236–44.

    CAS  Google Scholar 

  29. Cordero J, Munuera L, Folgueira MD. Influence of metal implants on infection. An experimental study in rabbits. J Bone Joint Surg Br. 1994;76(5):717–20.

    CAS  Google Scholar 

  30. Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br. 1996;78(4):647–51.

    CAS  Google Scholar 

  31. Moriarty TF, Debefve L, Boure L, Campoccia D, Schlegel U, Richards RG. Influence of material and microtopography on the development of local infection in vivo: experimental investigation in rabbits. Int J Artif Organs. 2009;32(9):663–70.

    CAS  Google Scholar 

  32. Moriarty TF, Schlegel U, Perren S, Richards RG. Infection in fracture fixation: can we influence infection rates through implant design? J Mater Sci Mater Med. 2010;21(3):1031–5.

    Article  CAS  Google Scholar 

  33. Melcher GA, Claudi B, Schlegel U, Perren SM, Printzen G, Munzinger J. Influence of type of medullary nail on the development of local infection. An experimental study of solid and slotted nails in rabbits. J Bone Joint Surg Br. 1994;76(6):955–9.

    CAS  Google Scholar 

  34. Melcher GA, Metzdorf A, Schlegel U, Ziegler WJ, Perren SM, Printzen G. Influence of reaming versus nonreaming in intramedullary nailing on local infection rate: experimental investigation in rabbits. J Trauma. 1995;39(6):1123–8.

    Article  CAS  Google Scholar 

  35. Melcher GA, Hauke C, Metzdorf A, Perren SM, Printzen G, Schlegel U, et al. Infection after intramedullary nailing: an experimental investigation on rabbits. Injury. 1996;27 Suppl 3:SC23–6.

    Google Scholar 

  36. Horn J, Schlegel U, Krettek C, Ito K. Infection resistance of unreamed solid, hollow slotted and cannulated intramedullary nails: an in-vivo experimental comparison. J Orthop Res. 2005;23(4):810–5.

    Article  CAS  Google Scholar 

  37. Finkemeier CG, Schmidt AH, Kyle RF, Templeman DC, Varecka TF. A prospective, randomized study of intramedullary nails inserted with and without reaming for the treatment of open and closed fractures of the tibial shaft. J Orthop Trauma. 2000;14(3):187–93.

    Article  CAS  Google Scholar 

  38. Larsen LB, Madsen JE, Hoiness PR, Ovre S. Should insertion of intramedullary nails for tibial fractures be with or without reaming? A prospective, randomized study with 3.8 years’ follow-up. J Orthop Trauma. 2004;18(3):144–9.

    Article  Google Scholar 

  39. Hendricks KJ, Burd TA, Anglen JO, Simpson AW, Christensen GD, Gainor BJ. Synergy between Staphylococcus aureus and Pseudomonas aeruginosa in a rat model of complex orthopaedic wounds. J Bone Joint Surg Am. 2001;83-A(6):855–61.

    CAS  Google Scholar 

  40. Deysine M, Rosario E, Isenberg HD. Acute hematogenous osteomyelitis: an experimental model. Surgery. 1976;79(1):97–9.

    CAS  Google Scholar 

  41. Emslie KR, Nade S. Pathogenesis and treatment of acute hematogenous osteomyelitis: evaluation of current views with reference to an animal model. Rev Infect Dis. 1986;8(6):841–9.

    Article  CAS  Google Scholar 

  42. Poultsides LA, Papatheodorou LK, Karachalios TS, Khaldi L, Maniatis A, Petinaki E, et al. Novel model for studying hematogenous infection in an experimental setting of implant-related infection by a community-acquired methicillin-resistant S. aureus strain. J Orthop Res. 2008;26(10):1355–62.

    Article  Google Scholar 

  43. Hienz SA, Sakamoto H, Flock JI, Morner AC, Reinholt FP, Heimdahl A, et al. Development and characterization of a new model of hematogenous osteomyelitis in the rat. J Infect Dis. 1995;171(5):1230–6.

    Article  CAS  Google Scholar 

  44. Whalen JL, Fitzgerald Jr RH, Morrissy RT. A histological study of acute hematogenous osteomyelitis following physeal injuries in rabbits. J Bone Joint Surg Am. 1988;70(9):1383–92.

    CAS  Google Scholar 

  45. Chadha HS, Fitzgerald Jr RH, Wiater P, Sud S, Nasser S, Wooley PH. Experimental acute hematogenous osteomyelitis in mice. I. Histopathological and immunological findings. J Orthop Res. 1999;17(3):376–81.

    Article  CAS  Google Scholar 

  46. Patzakis MJ, Wilkins J. Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res. 1989;243:36–40.

    Google Scholar 

  47. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351 (16):1645–54.

    Article  CAS  Google Scholar 

  48. Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37 Suppl 2:S59–66.

    Article  Google Scholar 

  49. Bowen TR, Widmaier JC. Host classification predicts infection after open fracture. Clin Orthop Relat Res. 2005;433:205–11.

    Article  Google Scholar 

  50. Dumont C, Kauer F, Bohr S, Schmidtmann U, Knopp W, Engelhardt T, et al. Long-term effects of saw osteotomy versus random fracturing on bone healing and remodeling in a sheep tibia model. J Orthop Res. 2009;27(5):680–6.

    Article  Google Scholar 

  51. Ashhurst DE, Hogg J, Perren SM. A method for making reproducible experimental fractures of the rabbit tibia. Injury. 1982;14(3):236–42.

    Article  CAS  Google Scholar 

  52. Jackson RW, Reed CA, Israel JA, Abou-Keer FK, Garside H. Production of a standard experimental fracture. Can J Surg. 1970;13(4):415–20.

    CAS  Google Scholar 

  53. Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone. J Orthop Res. 1984;2(1):97–101.

    Article  CAS  Google Scholar 

  54. Marturano JE, Cleveland BC, Byrne MA, O’Connell SL, Wixted JJ, Billiar KL. An improved murine femur fracture device for bone healing studies. J Biomech. 2008;41(6):1222–8.

    Article  Google Scholar 

  55. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976;58(4):453–8.

    CAS  Google Scholar 

  56. Landry P, Marino A, Sadasivan K, Albright J. Effect of soft-tissue trauma on the early periosteal response of bone to injury. J Trauma. 2000;48(3):479.

    Article  CAS  Google Scholar 

  57. Li BC, Zhang JJ, Xu C, Zhang LC, Kang JY, Zhao H. Treatment of rabbit femoral defect by firearm with BMP-4 gene combined with TGF-beta1. J Trauma. 2009;66(2):450–6.

    Article  CAS  Google Scholar 

  58. Utvag S, Grundnes O, Rindal D, Reikeras O. Influence of extensive muscle injury on fracture healing in rat tibia. J Orthop Trauma. 2003;17(6):430–5.

    Article  Google Scholar 

  59. Claes L, Maurer-Klein N, Henke T, Gerngross H, Melnyk M, Augat P. Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J Orthop Res. 2006;24(6):1178–85.

    Article  Google Scholar 

  60. Melnyk M, Henke T, Claes L, Augat P. Revascularisation during fracture healing with soft tissue injury. Arch Orthop Trauma Surg. 2008;128:1159–65.

    Article  Google Scholar 

  61. Kälicke T, Schlegel U, Printzen G, Schneider E, Muhr G, Arens S. Influence of a standardized closed soft tissue trauma on resistance to local infection. An experimental study in rats. J Orthop Res. 2003;21(2):373–8.

    Article  Google Scholar 

  62. Matsumoto T, Hardaway III RM, Dobek AS, Noyes HE. Antibiotic topical spray applied in a simulated combat wound. Arch Surg. 1967;95(2):288–94.

    Article  CAS  Google Scholar 

  63. Passl R, Muller C, Zielinski CC, Eibl MM. A model of experimental post-traumatic osteomyelitis in guinea pigs. J Trauma. 1984;24(4):323–6.

    Article  CAS  Google Scholar 

  64. Rittman WW, Perren S. Cortical bone healing after internal fixation and fracture. New York: Springer; 1974.

    Book  Google Scholar 

  65. Worlock P, Slack R, Harvey L, Mawhinney R. An experimental model of post-traumatic osteomyelitis in rabbits. Br J Exp Pathol. 1988;69(2):235–44.

    CAS  Google Scholar 

  66. Worlock P, Slack R, Harvey L, Mawhinney R. The prevention of infection in open fractures: an experimental study of the effect of fracture stability. Injury. 1994;25(1):31–8.

    Article  CAS  Google Scholar 

  67. Hamel A, Caillon J, Jacqueline C, Rogez JM, Potel G. Internal device decreases antibiotic’s efficacy on experimental osteomyelitis. J Child Orthop. 2008;2(3):239–43.

    Article  Google Scholar 

  68. Curtis MJ, Brown PR, Dick JD, Jinnah RH. Contaminated fractures of the tibia: a comparison of treatment modalities in an animal model. J Orthop Res. 1995;13(2):286–95.

    Article  CAS  Google Scholar 

  69. Hill PF, Clasper JC, Parker SJ, Watkins PE. Early intramedullary nailing in an animal model of a heavily contaminated fracture of the tibia. J Orthop Res. 2002;20(4):648–53.

    Article  CAS  Google Scholar 

  70. Lindsey BA, Clovis NB, Smith ES, Salihu S, Hubbard DF. An animal model for open femur fracture and osteomyelitis: part I. J Orthop Res. 2010;28(1):38–42.

    Google Scholar 

  71. Chen X, Tsukayama DT, Kidder LS, Bourgeault CA, Schmidt AH, Lew WD. Characterization of a chronic infection in an internally-stabilized segmental defect in the rat femur. J Orthop Res. 2005;23(4):816–23.

    Article  Google Scholar 

  72. Chen X, Schmidt AH, Mahjouri S, Polly Jr DW, Lew WD. Union of a chronically infected internally stabilized segmental defect in the rat femur after debridement and application of rhBMP-2 and systemic antibiotic. J Orthop Trauma. 2007;21(10):693–700.

    Article  Google Scholar 

  73. Chen X, Kidder LS, Lew WD. Osteogenic protein-1 induced bone formation in an infected segmental defect in the rat femur. J Orthop Res. 2002;20(1):142–50.

    Article  CAS  Google Scholar 

  74. Stewart RL, Cox JT, Volgas D, Stannard J, Duffy L, Waites KB, et al. The use of a biodegradable, load-bearing scaffold as a carrier for antibiotics in an infected open fracture model. J Orthop Trauma. 2010;24(9):587–91.

    Article  Google Scholar 

  75. Holstein J, Garcia P, Histing T, Kristen A, Scheuer C, Menger M, et al. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration. J Orthop Trauma. 2009;23:S31.

    Article  CAS  Google Scholar 

  76. Frommelt L. Principles of systemic antimicrobial therapy in foreign material associated infection in bone tissue, with special focus on periprosthetic infection. Injury. 2006;37 Suppl 2:S87–94.

    Article  Google Scholar 

  77. Norden CW. Experimental osteomyelitis. IV. Therapeutic trials with rifampin alone and in combination with gentamicin, sisomicin, and cephalothin. J Infect Dis. 1975;132(5):493–9.

    Article  CAS  Google Scholar 

  78. Espehaug B, Engesaeter LB, Vollset SE, Havelin LI, Langeland N. Antibiotic prophylaxis in total hip arthroplasty. Review of 10,905 primary cemented total hip replacements reported to the Norwegian arthroplasty register, 1987 to 1995. J Bone Joint Surg Br. 1997;79(4):590–5.

    Article  CAS  Google Scholar 

  79. Rodeheaver GT, Rukstalis D, Bono M, Bellamy W. A new model of bone infection used to evaluate the efficacy of antibiotic-impregnated polymethylmethacrylate cement. Clin Orthop Relat Res. 1983;178:303–11.

    CAS  Google Scholar 

  80. Evans RP, Nelson CL. Gentamicin-impregnated polymethylmethacrylate beads compared with systemic antibiotic therapy in the treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1993;295:37–42.

    Google Scholar 

  81. Riegels-Nielsen P, Espersen F, Holmich LR, Frimodt-Moller N. Collagen with gentamicin for prophylaxis of postoperative infection. Staphylococcus aureus osteomyelitis studied in rabbits. Acta Orthop Scand. 1995;66(1):69–72.

    Article  CAS  Google Scholar 

  82. Beardmore AA, Brooks DE, Wenke JC, Thomas DB. Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. J Bone Joint Surg Am. 2005;87(1):107–12.

    Article  Google Scholar 

  83. Aimin C, Chunlin H, Juliang B, Tinyin Z, Zhichao D. Antibiotic loaded chitosan bar. An in vitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res. 1999;366:239–47.

    Article  Google Scholar 

  84. Huneault LM, Lussier B, Dubreuil P, Chouinard L, Desevaux C. Prevention and treatment of experimental osteomyelitis in dogs with ciprofloxacin-loaded crosslinked high amylose starch implants. J Orthop Res. 2004;22(6):1351–7.

    Article  CAS  Google Scholar 

  85. Diefenbeck M, Mückley T, Hofmann GO. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury. 2006;37 Suppl 2:S95–104.

    Article  Google Scholar 

  86. Ueng SW, Yuan LJ, Lee N, Lin SS, Chan EC, Weng JH. In vivo study of biodegradable alginate antibiotic beads in rabbits. J Orthop Res. 2004;22(3):592–9.

    Article  CAS  Google Scholar 

  87. Ambrose CG, Clyburn TA, Louden K, Joseph J, Wright J, Gulati P, et al. Effective treatment of osteomyelitis with biodegradable microspheres in a rabbit model. Clin Orthop Relat Res. 2004;421:293–9.

    Article  Google Scholar 

  88. Li D, Gromov K, Soballe K, Puzas JE, O’Keefe RJ, Awad H, et al. Quantitative mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. J Orthop Res. 2008;26(1):96–105.

    Article  CAS  Google Scholar 

  89. Antoci Jr V, Adams CS, Hickok NJ, Shapiro IM, Parvizi J. Vancomycin bound to Ti rods reduces periprosthetic infection: preliminary study. Clin Orthop Relat Res. 2007;461:88–95.

    Google Scholar 

  90. Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Haas NP, et al. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone. 2003; 32(5):521–31.

    Article  CAS  Google Scholar 

  91. Strobel C, Schmidmaier G, Wildemann B. Changing the release kinetics of gentamicin from poly(d, l-lactide) implant coatings using only one polymer. Int J Artif Organs. 2011; 34(3):304–16.

    Article  CAS  Google Scholar 

  92. Schmidmaier G, Lucke M, Wildemann B, Haas N, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37(2):S105–12.

    Article  Google Scholar 

  93. Fuchs T, Stange R, Schmidmaier G, Raschke MJ. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419–25.

    Article  Google Scholar 

  94. Darouiche RO, Farmer J, Chaput C, Mansouri M, Saleh G, Landon GC. Anti-infective efficacy of antiseptic-coated intramedullary nails. J Bone Joint Surg Am. 1998;80(9):1336–40.

    CAS  Google Scholar 

  95. Greiner SH, Wildemann B, Back DA, Alidoust M, Schwabe P, Haas NP, et al. Local application of zoledronic acid incorporated in a poly(d, l-lactide)-coated implant accelerates fracture healing in rats. Acta Orthop. 2008;79(5):717–25.

    Article  Google Scholar 

  96. Pauly S, Luttosch F, Morawski M, Haas NP, Schmidmaier G, Wildemann B. Simvastatin locally applied from a biodegradable coating of osteosynthetic implants improves fracture healing comparable to BMP-2 application. Bone. 2009;45(3):505–11.

    Article  CAS  Google Scholar 

  97. Moskowitz JS, Blaisse MR, Samuel RE, Hsu HP, Harris MB, Martin SD, et al. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials. 2010;31(23):6019–30.

    Article  CAS  Google Scholar 

  98. Antoci Jr V, Adams CS, Parvizi J, Davidson HM, Composto RJ, Freeman TA, et al. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials. 2008;29(35):4684–90.

    Article  CAS  Google Scholar 

  99. Baveja JK, Willcox MD, Hume EB, Kumar N, Odell R, Poole-Warren LA. Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials. 2004;25(20):5003–12.

    Article  CAS  Google Scholar 

  100. Lonn-Stensrud J, Landin MA, Benneche T, Petersen FC, Scheie AA. Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J Antimicrob Chemother. 2009;63(2):309–16.

    Article  CAS  Google Scholar 

  101. Cornell CN, Tyndall D, Waller S, Lane JM, Brause BD. Treatment of experimental osteomyelitis with antibiotic-impregnated bone graft substitute. J Orthop Res. 1993;11(5):619–26.

    Article  CAS  Google Scholar 

  102. Giavaresi G, Borsari V, Fini M, Giardino R, Sambri V, Gaibani P, et al. Preliminary investigations on a new gentamicin and vancomycin-coated PMMA nail for the treatment of bone and intramedullary infections: an experimental study in the rabbit. J Orthop Res. 2008;26(6):785–92.

    Article  Google Scholar 

  103. Shirtliff ME, Calhoun JH, Mader JT. Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop Relat Res. 2002;401:239–47.

    Article  Google Scholar 

  104. Fitzgerald Jr RH. Experimental osteomyelitis: description of a canine model and the role of depot administration of antibiotics in the prevention and treatment of sepsis. J Bone Joint Surg Am. 1983;65(3):371–80.

    Google Scholar 

  105. Garvin KL, Miyano JA, Robinson D, Giger D, Novak J, Radio S. Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. A canine model. J Bone Joint Surg Am. 1994;76(10):1500–6.

    CAS  Google Scholar 

  106. Orhan Z, Cevher E, Mulazimoglu L, Gurcan D, Alper M, Araman A, et al. The preparation of ciprofloxacin hydrochloride-loaded chitosan and pectin microspheres: their evaluation in an animal osteomyelitis model. J Bone Joint Surg Br. 2006;88(2):270–5.

    Article  CAS  Google Scholar 

  107. Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN, Steckelberg JM, et al. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother. 2009;53(10):4064–8.

    Article  CAS  Google Scholar 

  108. Isiklar ZU, Darouiche RO, Landon GC, Beck T. Efficacy of antibiotics alone for orthopaedic device related infections. Clin Orthop Relat Res. 1996;332:184–9.

    Article  Google Scholar 

  109. Monzon M, Garcia-Alvarez F, Lacleriga A, Amorena B. Evaluation of four experimental osteomyelitis infection models by using precolonized implants and bacterial suspensions. Acta Orthop Scand. 2002;73(1):11–9.

    Article  Google Scholar 

  110. Goodhart GL. Mycobacterium fortuitum osteomyelitis following trauma. J Orthop Trauma. 1993;7(2):142–5.

    Article  CAS  Google Scholar 

  111. Caricato A, Montini L, Bello G, Michetti V, Maviglia R, Bocci MG, et al. Risk factors and outcome of Acinetobacter baumanii infection in severe trauma patients. Intensive Care Med. 2009;35(11):1964–9.

    Article  Google Scholar 

  112. Glueck DA, Charoglu CP, Lawton JN. Factors associated with infection following open distal radius fractures. Hand (N Y). 2009;4(3):330–4.

    Article  Google Scholar 

  113. Mader JT, Cripps MW, Calhoun JH. Adult posttraumatic osteomyelitis of the tibia. Clin Orthop Relat Res. 1999;360:14–21.

    Article  Google Scholar 

  114. Costerton JW, Post JC, Ehrlich GD, Hu FZ, Kreft R, Nistico L, et al. New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol. 2011;61(2):133–40.

    Article  CAS  Google Scholar 

  115. Cremieux AC, Dumitrescu O, Lina G, Vallee C, Cote JF, Muffat-Joly M, et al. Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS One. 2009;4(9):e7204.

    Article  CAS  Google Scholar 

  116. Daurel C, Prunier AL, Chau F, Garry L, Leclercq R, Fantin B. Role of hypermutability on bacterial fitness and emergence of resistance in experimental osteomyelitis due to Staphylococcus aureus. FEMS Immunol Med Microbiol. 2007;51(2):344–9.

    Article  CAS  Google Scholar 

  117. Elasri MO, Thomas JR, Skinner RA, Blevins JS, Beenken KE, Nelson CL, et al. Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis. Bone. 2002; 30(1):275–80.

    Article  CAS  Google Scholar 

  118. Luong TT, Lei MG, Lee CY. Staphylococcus aureus Rbf activates biofilm formation in vitro and promotes virulence in a murine foreign body infection model. Infect Immun. 2009; 77(1):335–40.

    Article  CAS  Google Scholar 

  119. Patti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Ryden C, et al. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun. 1994;62(1):152–61.

    CAS  Google Scholar 

  120. Weiss EC, Spencer HJ, Daily SJ, Weiss BD, Smeltzer MS. Impact of sarA on antibiotic susceptibility of Staphylococcus aureus in a catheter-associated in vitro model of biofilm formation. Antimicrob Agents Chemother. 2009;53(6):2475–82.

    Article  CAS  Google Scholar 

  121. Ferguson KP, Lambe Jr DW, Keplinger JL, Kalbfleisch JH. Comparison of the pathogenicity of three species of coagulase-negative Staphylococcus in a mouse model with and without a foreign body. Can J Microbiol. 1991;37(9):722–4.

    Article  CAS  Google Scholar 

  122. Fluckiger U, Ulrich M, Steinhuber A, Doring G, Mack D, Landmann R, et al. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun. 2005;73(3):1811–9.

    Article  CAS  Google Scholar 

  123. Francois P, Tu Quoc PH, Bisognano C, Kelley WL, Lew DP, Schrenzel J, et al. Lack of biofilm contribution to bacterial colonisation in an experimental model of foreign body infection by Staphylococcus aureus and Staphylococcus epidermidis. FEMS Immunol Med Microbiol. 2003;35(2):135–40.

    Article  CAS  Google Scholar 

  124. Lambe Jr DW, Ferguson KP, Keplinger JL, Gemmell CG, Kalbfleisch JH. Pathogenicity of Staphylococcus lugdunensis, Staphylococcus schleiferi, and three other coagulase-negative staphylococci in a mouse model and possible virulence factors. Can J Microbiol. 1990;36(7):455–63.

    Article  CAS  Google Scholar 

  125. Lambe Jr DW, Ferguson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW. Foreign-body-associated experimental osteomyelitis induced with Bacteroides fragilis and Staphylococcus epidermidis in rabbits. Clin Orthop Relat Res. 1991;266:285–94.

    Google Scholar 

  126. Mayberry-Carson KJ, Tober-Meyer B, Gill LR, Lambe Jr DW, Hossler FE. Effect of ciprofloxacin on experimental osteomyelitis in the rabbit tibia, induced with a mixed infection of Staphylococcus epidermidis and Bacteroides thetaiotaomicron. Microbios. 1990;64(258):49–66.

    CAS  Google Scholar 

  127. Campoccia D, Montanaro L, Moriarty TF, Richards RG, Ravaioli S, Arciola CR. The selection of appropriate bacterial strains in preclinical evaluation of infection-resistant biomaterials. Int J Artif Organs. 2008;31(9):841–7.

    CAS  Google Scholar 

  128. Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, et al. Global gene expression in Staphylococcus aureus biofilms. J Bacteriol. 2004;186(14):4665–84.

    Article  CAS  Google Scholar 

  129. Cassat J, Dunman PM, Murphy E, Projan SJ, Beenken KE, Palm KJ, et al. Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390. Microbiology. 2006;152(Pt 10):3075–90.

    Article  CAS  Google Scholar 

  130. Herbert S, Ziebandt AK, Ohlsen K, Schafer T, Hecker M, Albrecht D, et al. Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Infect Immun. 2010;78(6):2877–89.

    Article  CAS  Google Scholar 

  131. Sivadon V, Rottman M, Chaverot S, Quincampoix JC, de Avettand V, Mazancourt P, et al. Use of genotypic identification by sodA sequencing in a prospective study to examine the distribution of coagulase-negative Staphylococcus species among strains recovered during septic orthopedic surgery and evaluate their significance. J Clin Microbiol. 2005;43(6):2952–4.

    Article  CAS  Google Scholar 

  132. Mayberry-Carson KJ, Tober-Meyer B, Lambe Jr DW, Costerton JW. Osteomyelitis experimentally induced with Bacteroides thetaiotaomicron and Staphylococcus epidermidis. Influence of a foreign-body implant. Clin Orthop Relat Res. 1992;280:289–99.

    Google Scholar 

  133. Marberry KM, Kazmier P, Simpson WA, Christensen GD, Phaup JG, Hendricks KJ, et al. Surfactant wound irrigation for the treatment of staphylococcal clinical isolates. Clin Orthop Relat Res. 2002;403:73–9.

    Article  Google Scholar 

  134. Hidaka S. An experimental study on pyogenic osteomyelitis with special reference to polymicrobial infections. Nippon Seikeigeka Gakkai Zasshi. 1985;59(4):429–41.

    CAS  Google Scholar 

  135. Johansson A, Svensson O, Blomgren G, Eliasson G, Nord CE. Anaerobic osteomyelitis. A new experimental rabbit model. Clin Orthop Relat Res. 1991;265:297–301.

    Google Scholar 

  136. Blomgren G, Lundquist H, Nord CE, Lindgren U. Late anaerobic haematogenous infection of experimental total joint replacement. A study in the rabbit using Propionibacterium acnes. J Bone Joint Surg Br. 1981;63B(4):614–8.

    CAS  Google Scholar 

  137. Blomgren G. Hematogenous infection of total joint replacement. An experimental study in the rabbit. Acta Orthop Scand Suppl. 1981;187:1–64.

    CAS  Google Scholar 

  138. Costerton JW. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res. 2005;437:7–11.

    Article  Google Scholar 

  139. Stoodley P, Nistico L, Johnson S, Lasko LA, Baratz M, Gahlot V, et al. Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. J Bone Joint Surg Am. 2008;90(8):1751–8.

    Article  Google Scholar 

  140. Gristina AG, Costerton JW. Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop Clin North Am. 1984;15(3):517–35.

    CAS  Google Scholar 

  141. Smith K, Perez A, Ramage G, Lappin D, Gemmell CG, Lang S. Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J Med Microbiol. 2008;57(Pt 8):1018–23.

    Article  Google Scholar 

  142. Fitzpatrick F, Humphreys H, O’Gara JP. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol. 2005;43(4):1973–6.

    Article  CAS  Google Scholar 

  143. O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol. 2008;190(11):3835–50.

    Article  CAS  Google Scholar 

  144. Campoccia D, Speziale P, Ravaioli S, Cangini I, Rindi S, Pirini V, et al. The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections. Biomaterials. 2009;30(34):6621–8.

    Article  CAS  Google Scholar 

  145. Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol. 1994;48:585–617.

    Article  CAS  Google Scholar 

  146. Patti JM, Hook M. Microbial adhesins recognizing extracellular matrix macromolecules. Curr Opin Cell Biol. 1994;6(5):752–8.

    Article  CAS  Google Scholar 

  147. Vazquez V, Liang X, Horndahl JK, Ganesh VK, Smeds E, Foster TJ, et al. Fibrinogen is a ligand for the S. aureus MSCRAMM Bbp (bone sialoprotein-binding protein). J Biol Chem. 2011;286(34):29797–805.

    Article  CAS  Google Scholar 

  148. Johansson A, Flock JI, Svensson O. Collagen and fibronectin binding in experimental staphylococcal osteomyelitis. Clin Orthop Relat Res. 2001;382:241–6.

    Article  Google Scholar 

  149. Darouiche RO, Landon GC, Patti JM, Nguyen LL, Fernau RC, McDevitt D, et al. Role of Staphylococcus aureus surface adhesins in orthopaedic device infections: are results model-dependent? J Med Microbiol. 1997;46(1):75–9.

    Article  CAS  Google Scholar 

  150. Dohin B, Gillet Y, Kohler R, Lina G, Vandenesch F, Vanhems P, et al. Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive Staphylococcus aureus. Pediatr Infect Dis J. 2007;26(11):1042–8.

    Article  Google Scholar 

  151. Tristan A, Bes M, Meugnier H, Lina G, Bozdogan B, Courvalin P, et al. Global distribution of Panton-Valentine leukocidin—positive methicillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis. 2007;13(4):594–600.

    Article  CAS  Google Scholar 

  152. Patel AH, Nowlan P, Weavers ED, Foster T. Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun. 1987;55(12):3103–10.

    CAS  Google Scholar 

  153. An YH, Bradley J, Powers DL, Friedman RJ. The prevention of prosthetic infection using a cross-linked albumin coating in a rabbit model. J Bone Joint Surg Br. 1997;79(5):816–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Calabro .

Editor information

Editors and Affiliations

Glossary

Implant-related Osteomyelitis

Osteomyelitis occurring associated with an ­implant, most commonly prosthetic joint replacements or fracture fixation devices.

Osteomyelitis

Osteomyelitis is an acute or chronic infection of the bone or bone marrow.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Calabro, L., Lutton, C., Din, A.F.S.E., Richards, R.G., Moriarty, T.F. (2013). Animal Models of Orthopedic Implant-Related Infection. In: Moriarty, T., Zaat, S., Busscher, H. (eds) Biomaterials Associated Infection. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1031-7_12

Download citation

Publish with us

Policies and ethics