Skip to main content

Preventive Measures Against Transcutaneous Device Infections

  • Chapter
  • First Online:

Abstract

Transcutaneous medical devices are indispensible in medicine. Infection is the most frequently reported complication of indwelling devices and is associated with substantial costs, morbidity, and even mortality. Since antibiotics have limited efficacy in the treatment of such infections, removal of the device is required to eradicate the infection in a considerable number of cases. Therefore, measures to prevent contamination of devices during and after insertion are of crucial importance to minimize the incidence of device-related infection. Since the patient’s own skin microflora is considered a major source of infection of transcutaneous devices, reduction of skin colonization at the insertion site of devices has high priority as a means to reduce the incidence of infection. Strategies to reduce the risk for contamination of transcutaneous devices with skin bacteria include (1) hygiene measures during surgery, (2) promoting integration of implanted devices with host tissues, (3) surface modification of the device to prevent adherence of bacteria, and (4) topical antimicrobial prophylaxis. Use of antibiotics for topical antimicrobial prophylaxis is strongly discouraged in view of the risk for resistance development. Antiseptics can be effective to reduce the incidence of infection of transcutaneous devices, but application of these compounds is mainly restricted to superficial skin disinfection. In addition, there are increasing concerns regarding antiseptic ­resistance development related to the widespread use of these agents. Therefore, alternative antimicrobial strategies are urgently needed. The potential of antimicrobial peptides and of honey as novel antimicrobial agents to prevent infection of transcutaneous devices is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zimmerli W, Sendi P. Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol. 2011;33:295–306.

    Article  CAS  Google Scholar 

  2. Elek SD, Conan PE. The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br J Exp Pathol. 1957;38:573–86.

    CAS  Google Scholar 

  3. Trampuz A, Zimmerli W. Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs. 2006;66:1089–105.

    Article  CAS  Google Scholar 

  4. Esteban J, Cordero-Ampuero J. Treatment of prosthetic osteoarticular infections. Expert Opin Pharmacother. 2011;12:899–912.

    Article  CAS  Google Scholar 

  5. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  CAS  Google Scholar 

  6. Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc. 2006;81:1159–71.

    Article  Google Scholar 

  7. Edgeworth J. Intravascular catheter infections. J Hosp Infect. 2009;73:323–30.

    Article  CAS  Google Scholar 

  8. O’Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, Raad II, Randolph AG, Rupp ME, Saint S. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52:e162–93.

    Article  Google Scholar 

  9. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32(8):470–85.

    Google Scholar 

  10. Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, Sexton B, Hyzy R, Welsh R, Roth G, Bander J, Kepros J, Goeschel C. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355:2725–32.

    Article  CAS  Google Scholar 

  11. Mermel LA. Prevention of intravascular catheter-related infections. Ann Intern Med. 2000; 132:391–402.

    CAS  Google Scholar 

  12. Soufir L, Timsit JF, Mahe C, Carlet J, Regnier B, Chevret S. Attributable morbidity and mortality of catheter-related septicemia in critically ill patients: a matched, risk-adjusted, cohort study. Infect Control Hosp Epidemiol. 1999;20:396–401.

    Article  CAS  Google Scholar 

  13. Renaud B, Brun-Buisson C. Outcomes of primary and catheter-related bacteremia. A cohort and case-control study in critically ill patients. Am J Respir Crit Care Med. 2001;163:1584–90.

    CAS  Google Scholar 

  14. O’Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, Masur H, McCormick RD, Mermel LA, Pearson ML, Raad II, Randolph A, Weinstein RA. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2002;35:1281–307.

    Article  Google Scholar 

  15. Burke JP. Infection control - a problem for patient safety. N Engl J Med. 2003;348:651–6.

    Article  Google Scholar 

  16. Safdar N, Kluger DM, Maki DG. A review of risk factors for catheter-related bloodstream infection caused by percutaneously inserted, noncuffed central venous catheters: implications for preventive strategies. Medicine (Baltimore). 2002;81:466–79.

    Article  Google Scholar 

  17. Raad I, Hanna H, Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis. 2007;7:645–57.

    Article  Google Scholar 

  18. Bouza E, Munoz P, Burillo A, Lopez-Rodriguez J, Fernandez-Perez C, Perez MJ, Rincon C. The challenge of anticipating catheter tip colonization in major heart surgery patients in the intensive care unit: are surface cultures useful? Crit Care Med. 2005;33:1953–60.

    Article  Google Scholar 

  19. Safdar N, Maki D. The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med. 2004;30:62–7.

    Article  Google Scholar 

  20. Bisno AL, Waldvogel FA. Infections associated with indwelling medical devices. Washington DC: ASM Press; 1994.

    Google Scholar 

  21. Moro ML, Vigano EF, Cozzi LA. Risk factors for central venous catheter-related infections in surgical and intensive care units. The Central Venous Catheter-Related Infections Study Group. Infect Control Hosp Epidemiol. 1994;15:253–64.

    Article  CAS  Google Scholar 

  22. Conly JM, Grieves K, Peters B. A prospective, randomized study comparing transparent and dry gauze dressings for central venous catheters. J Infect Dis. 1989;159:310–9.

    Article  CAS  Google Scholar 

  23. Casey AL, Worthington T, Caddick JM, Hilton AC, Lambert PA, Elliott TSJ. RAPD for the typing of coagulase-negative staphylococci implicated in catheter-related bloodstream infection. J Infect. 2006;52:282–9.

    Article  CAS  Google Scholar 

  24. Dobbins BM, Kite P, Kindon A, McMahon MJ, Wilcox MH. DNA fingerprinting analysis of coagulase negative staphylococci implicated in catheter related bloodstream infections. J Clin Pathol. 2002;55:824–8.

    Article  CAS  Google Scholar 

  25. Bach A, Eberhardt H, Frick A, Schmidt H, Bottiger BW, Martin E. Efficacy of silver-coating central venous catheters in reducing bacterial colonization. Crit Care Med. 1999;27:515–21.

    Article  CAS  Google Scholar 

  26. Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A. 2007;104:2927–32.

    Article  CAS  Google Scholar 

  27. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53.

    Article  CAS  Google Scholar 

  28. Gordon RJ, Quagliarello B, Lowy FD. Ventricular assist device-related infections. Lancet Infect Dis. 2006;6:426–37.

    Article  Google Scholar 

  29. Monkowski DH, Axelrod P, Fekete T, Hollander T, Furukawa S, Samuel R. Infections associated with ventricular assist devices: epidemiology and effect on prognosis after transplantation. Transpl Infect Dis. 2007;9:114–20.

    Article  CAS  Google Scholar 

  30. Birks EJ. The comparative use of ventricular assist devices: differences between Europe and the United States. Tex Heart Inst J. 2010;37:565–7.

    Google Scholar 

  31. von Recum AF. Applications and failure modes of percutaneous devices: a review. J Biomed Mater Res. 1984;18:323–36.

    Article  Google Scholar 

  32. Pendegrass CJ, Gordon D, Middleton CA, Sun SN, Blunn GW. Sealing the skin barrier around transcutaneous implants: in vitro study of keratinocyte proliferation and adhesion in response to surface modifications of titanium alloy. J Bone Joint Surg Br. 2008;90:114–21.

    Article  CAS  Google Scholar 

  33. Abu-Serriah MM, McGowan DA, Moos KF, Bagg J. Extra-oral endosseous craniofacial implants: current status and future developments. Int J Oral Maxillofac Surg. 2003;32:452–8.

    CAS  Google Scholar 

  34. Parameswaran AD, Roberts CS, Seligson D, Voor M. Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma. 2003;17:503–7.

    Article  Google Scholar 

  35. Lethaby A, Temple J, Santy J. Pin site care for preventing infections associated with external bone fixators and pins. Cochrane Database Syst Rev. 2008;4:CD004551.

    Google Scholar 

  36. Lee-Smith J, Santy J, Davis P, Jester R, Kneale J. Pin site management. Towards a consensus: part 1. J Orthop Nurs. 2001;5:37–42.

    Article  Google Scholar 

  37. Green SA, Ripley MJ. Chronic osteomyelitis in pin tracks. J Bone Joint Surg Am. 1984; 66A:1092–8.

    Google Scholar 

  38. Collinge CA, Goll G, Seligson D, Easley KJ. Pin tract infections: silver vs uncoated pins. Orthopedics. 1994;17:445–8.

    CAS  Google Scholar 

  39. Steckelberg JM, Osmon DR. Prosthetic joint infection. In: Bisno AL, Waldvogel FA, editors. Infections associated with indwelling medical devices. Washington, DC: American Society for Microbiology; 2000. p. 173–209.

    Google Scholar 

  40. Hugonnet S, Sax H, Eggimann P, Chevrolet JC, Pittet D. Nosocomial bloodstream infection and clinical sepsis. Emerg Infect Dis. 2004;10:76–81.

    Article  Google Scholar 

  41. Von EC, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002;2:677–85.

    Article  Google Scholar 

  42. Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect. 2001;49:87–93.

    Article  CAS  Google Scholar 

  43. Herrmann M, Weyand M, Greshake B, Von EC, Proctor RA, Scheld HH, Peters G. Left ventricular assist device infection is associated with increased mortality but is not a contraindication to transplantation. Circulation. 1997;95:814–7.

    Article  CAS  Google Scholar 

  44. Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37:59–66.

    Article  Google Scholar 

  45. Eggimann P, Harbarth S, Constantin MN, Touveneau S, Chevrolet JC, Pittet D. Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet. 2000;355:1864–8.

    Article  CAS  Google Scholar 

  46. Gastmeier P, Geffers C. Prevention of catheter-related bloodstream infections: analysis of studies published between 2002 and 2005. J Hosp Infect. 2006;64:326–35.

    Article  CAS  Google Scholar 

  47. Zingg W, Walder B, Pittet D. Prevention of catheter-related infection: toward zero risk? Curr Opin Infect Dis. 2011;24:377–84.

    Article  Google Scholar 

  48. Warren DK, Yokoe DS, Climo MW, Herwaldt LA, Noskin GA, Zuccotti G, Tokars JI, Perl TM, Fraser VJ. Preventing catheter-associated bloodstream infections: a survey of policies for insertion and care of central venous catheters from hospitals in the prevention epicenter program. Infect Control Hosp Epidemiol. 2006;27:8–13.

    Article  Google Scholar 

  49. Jarvis WR. Selected aspects of the socioeconomic impact of nosocomial infections: morbidity, mortality, cost, and prevention. Infect Control Hosp Epidemiol. 1996;17:552–7.

    Article  CAS  Google Scholar 

  50. Haas DW, Kaiser AB. Antimicrobial prophylaxis of infections associated with foreign bodies. In: Bisno AL, Waldvogel FA, editors. Infections associated with indwelling medical devices. Washington, DC: American Society for Microbiology; 2000. p. 395–406.

    Google Scholar 

  51. Dellinger EP, Gross PA, Barrett TL, Krause PJ, Martone WJ, McGowan Jr JE, Sweet RL, Wenzel RP. Quality standard for antimicrobial prophylaxis in surgical procedures. The Infectious Diseases Society of America. Infect Control Hosp Epidemiol. 1994;15:182–8.

    Article  CAS  Google Scholar 

  52. Jaeger M, Maier D, Kern WV, Sudkamp NP. Antibiotics in trauma and orthopedic surgery – a primer of evidence-based recommendations. Injury. 2006;37 Suppl 2:S74–80.

    Article  Google Scholar 

  53. Pukstad BS, Ryan L, Flo TH, Stenvik J, Moseley R, Harding K, Thomas DW, Espevik T. Non-healing is associated with persistent stimulation of the innate immune response in chronic venous leg ulcers. J Dermatol Sci. 2010;59:115–22.

    Article  CAS  Google Scholar 

  54. Shunmugaperumal T. Microbial colonization of medical devices and novel preventive strategies. Recent Pat Drug Deliv Formul. 2010;4:153–73.

    Article  CAS  Google Scholar 

  55. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 2010;8: e1000506.

    Article  CAS  Google Scholar 

  56. Branemark PI, Albrektsson T. Titanium implants permanently penetrating human-skin. Scand J Plast Reconstr Surg. 1982;16:17–21.

    Article  CAS  Google Scholar 

  57. Johansson ML, Thomsen P, Hulten L, Halvorsen PS, Fosse E, Edwin B. Integration between a percutaneous implant and the porcine small bowel. J Biomed Mater Res B Appl Biomater. 2011;98:101–9.

    Google Scholar 

  58. Pendegrass CJ, Goodship AE, Blunn GW. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses. Biomaterials. 2006;27:4183–91.

    Article  CAS  Google Scholar 

  59. Isackson D, McGill LD, Bachus KN. Percutaneous implants with porous titanium dermal barriers: an in vivo evaluation of infection risk. Med Eng Phys. 2011;33:418–26.

    Article  Google Scholar 

  60. Guidet B, Nicola I, Barakett V, Gabillet JM, Snoey E, Petit JC, Offenstadt G. Skin versus hub cultures to predict colonization and infection of central venous catheter in intensive care patients. Infection. 1994;22:43–8.

    Article  CAS  Google Scholar 

  61. Sesso R, Barbosa D, Leme IL, Sader H, Canziani ME, Manfredi S, Draibe S, Pignatari AC. Staphylococcus aureus prophylaxis in hemodialysis patients using central venous catheter: effect of mupirocin ointment. J Am Soc Nephrol. 1998;9:1085–92.

    CAS  Google Scholar 

  62. Timsit JF, Schwebel C, Bouadma L, Geffroy A, Garrouste-Org M, Pease S, Herault MC, Haouache H, Calvino-Gunther S, Gestin B, Armand-Lefevre L, Leflon V, Chaplain C, Benali A, Francais A, Adrie C, Zahar JR, Thuong M, Arrault X, Croize J, Lucet JC. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009;301:1231–41.

    Article  CAS  Google Scholar 

  63. Ruschulte H, Franke M, Gastmeier P, Zenz S, Mahr KH, Buchholz S, Hertenstein B, Hecker H, Piepenbrock S. Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: a randomized controlled trial. Ann Hematol. 2009;88:267–72.

    Article  CAS  Google Scholar 

  64. Kuyyakanond T, Quesnel LB. The mechanism of action of chlorhexidine. FEMS Microbiol Lett. 1992;100:211–5.

    CAS  Google Scholar 

  65. Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol. 2002;92(Suppl):65S–71.

    Article  Google Scholar 

  66. Longtin J, Seah C, Siebert K, McGeer A, Simor A, Longtin Y, Low DE, Melano RG. Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. Antimicrob Agents Chemother. 2011;55:2999–3001.

    Article  CAS  Google Scholar 

  67. Fraud S, Campigotto AJ, Chen Z, Poole K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother. 2008;52:4478–82.

    Article  CAS  Google Scholar 

  68. Meyer B, Cookson B. Does microbial resistance or adaptation to biocides create a hazard in infection prevention and control? J Hosp Infect. 2010;76:200–5.

    Article  CAS  Google Scholar 

  69. Batra R, Cooper BS, Whiteley C, Patel AK, Wyncoll D, Edgeworth JD. Efficacy and limitation of a chlorhexidine-based decolonization strategy in preventing transmission of methicillin-resistant Staphylococcus aureus in an intensive care unit. Clin Infect Dis. 2010;50:210–7.

    Article  Google Scholar 

  70. Edgeworth JD. Has decolonization played a central role in the decline in UK methicillin-resistant Staphylococcus aureus transmission? A focus on evidence from intensive care. J Antimicrob Chemother. 2011;66:II41–7.

    Article  CAS  Google Scholar 

  71. Russell AD. Bacterial adaptation and resistance to antiseptics, disinfectants and preservatives is not a new phenomenon. J Hosp Infect. 2004;57:97–104.

    Article  CAS  Google Scholar 

  72. Holman WL, Pamboukian SV, McGiffin DC, Tallaj JA, Cadeiras M, Kirklin JK. Device related infections: are we making progress? J Card Surg. 2010;25:478–83.

    Article  Google Scholar 

  73. Lio PA, Kaye ET. Topical antibacterial agents. Infect Dis Clin North Am. 2009;23:945–63. ix.

    Article  Google Scholar 

  74. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.

    Article  CAS  Google Scholar 

  75. Devine DA, Hancock RE. Cationic peptides: distribution and mechanisms of resistance. Curr Pharm Des. 2002;8:703–14.

    Article  CAS  Google Scholar 

  76. Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999;1462:11–28.

    Article  CAS  Google Scholar 

  77. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999;1462:1–10.

    Article  CAS  Google Scholar 

  78. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–72.

    Article  CAS  Google Scholar 

  79. Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002; 66:236–48.

    Article  CAS  Google Scholar 

  80. Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry. 2000;39:8648–54.

    Article  CAS  Google Scholar 

  81. Chou TGR, Petti CA, Szakacs J, Bloebaum RD. Evaluating antimicrobials and implant materials for infection prevention around transcutaneous osseointegrated implants in a rabbit model. J Biomed Mater Res A. 2010;92A:942–52.

    CAS  Google Scholar 

  82. Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7.

    Article  CAS  Google Scholar 

  83. Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009;34:457–61.

    Article  CAS  Google Scholar 

  84. Orlando F, Ghiselli R, Cirioni O, Minardi D, Tomasinsig L, Mocchegiani F, Silvestri C, Skerlavaj B, Riva A, Muzzonigro G, Saba V, Scalise G, Zanetti M, Giacometti A. BMAP-28 improves the efficacy of vancomycin in rat models of gram-positive cocci ureteral stent infection. Peptides. 2008;29:1118–23.

    Article  CAS  Google Scholar 

  85. Giacometti A, Cirioni O, Barchiesi F, Del Prete MS, Fortuna M, Caselli F, Scalise G. In vitro susceptibility tests for cationic peptides: comparison of broth microdilution for bacteria that grow aerobically. Antimicrob Agents Chemother. 2000;44:1694–6.

    Article  CAS  Google Scholar 

  86. Balaban N, Gov Y, Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, Orlando F, D’Amato G, Saba V, Scalise G, Bernes S, Mor A. A chimeric peptide composed of a dermaseptin derivative and an RNA III-inhibiting peptide prevents graft-associated infections by antibiotic-resistant staphylococci. Antimicrob Agents Chemother. 2004;48:2544–50.

    Article  CAS  Google Scholar 

  87. Kwakman PHS, Te Velde AA, Vandenbroucke-Grauls CMJE, van Deventer SJH, Zaat SAJ. Treatment and prevention of Staphylococcus epidermidis experimental biomaterial-associated infection by bactericidal peptide 2. Antimicrob Agents Chemother. 2006;50:3977–83.

    Article  CAS  Google Scholar 

  88. Majno G. Man and wound in the ancient world. Cambridge, MA: Harvard University Press; 1975.

    Google Scholar 

  89. Kwakman PHS, Te Velde AA, de Boer L, Vandenbroucke-grauls CMJE, Zaat SAJ. Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS ONE. 2011;6:e17709.

    Article  CAS  Google Scholar 

  90. Postmes T, van den Bogaard AE, Hazen M. Honey for wounds, ulcers, and skin graft preservation. Lancet. 1993;341:756–7.

    Article  CAS  Google Scholar 

  91. Snowdon JA, Cliver DO. Microorganisms in honey. Int J Food Microbiol. 1996;31:1–26.

    Article  CAS  Google Scholar 

  92. Allen KL, Molan PC, Reid GM. A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol. 1991;43:817–22.

    Article  CAS  Google Scholar 

  93. Kwakman PHS, Van den Akker JPC, Guclu A, Aslami H, Binnekade JM, de Boer L, Boszhard L, Paulus F, Middelhoek P, Te Velde AA, Vandenbroucke-Grauls CMJE, Schultz MJ, Zaat SAJ. Medical-grade honey kills antibiotic-resistant bacteria in vitro and eradicates skin colonization. Clin Infect Dis. 2008;46:1677–82.

    Article  CAS  Google Scholar 

  94. Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MN, Manley-Harris M, Snow MJ. Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res. 2008;343:651–9.

    Article  CAS  Google Scholar 

  95. Mavric E, Wittmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res. 2008;52:483–9.

    Article  CAS  Google Scholar 

  96. Kwakman PHS, Te Velde AA, de Boer L, Speijer D, Vandenbroucke-Grauls CMJE, Zaat SAJ. How honey kills bacteria. FASEB J. 2010;24:2576–82.

    Article  CAS  Google Scholar 

  97. Cooper RA, Jenkins L, Henriques AFM, Duggan RS, Burton NF. Absence of bacterial resistance to medical-grade manuka honey. Eur J Clin Microbiol Infect Dis. 2010;29: 1237–41.

    Article  CAS  Google Scholar 

  98. Johnson DW, van Eps C, Mudge DW, Wiggins KJ, Armstrong K, Hawley CM, Campbell SB, Isbel NM, Nimmo GR, Gibbs H. Randomized, controlled trial of topical exit-site application of honey (Medihoney) versus mupirocin for the prevention of catheter-associated infections in hemodialysis patients. J Am Soc Nephrol. 2005;16:1456–62.

    Article  CAS  Google Scholar 

  99. Kwakman PH, Zaat SA. Antibacterial components of honey. IUBMB Life. 2012;64:48–55.

    Article  CAS  Google Scholar 

  100. Johnson DW, MacGinley R, Kay TD, Hawley CM, Campbell SB, Isbel NM, Hollett P. A randomized controlled trial of topical exit site mupirocin application in patients with tunnelled, cuffed haemodialysis catheters. Nephrol Dial Transplant. 2002;17:1802–7.

    Article  CAS  Google Scholar 

  101. Mccann M, Moore ZE. Interventions for preventing infectious complications in haemodialysis patients with central venous catheters. Cochrane Database Syst Rev. 2010;1:CD006894.

    Google Scholar 

  102. Zakrzewska-Bode A, Muytjens HL, Liem KD, Hoogkamp-Korstanje JA. Mupirocin resistance in coagulase-negative staphylococci, after topical prophylaxis for the reduction of colonization of central venous catheters. J Hosp Infect. 1995;31:189–93.

    Article  CAS  Google Scholar 

  103. Miller MA, Dascal A, Portnoy J, Mendelson J. Development of mupirocin resistance among methicillin-resistant Staphylococcus aureus after widespread use of nasal mupirocin ointment. Infect Control Hosp Epidemiol. 1996;17:811–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. S. Kwakman .

Editor information

Editors and Affiliations

Glossary

Antimicrobial peptides (AMPs)

Evolutionarily conserved component of the innate immune system found among all classes of life. The combined presence of cationic and hydrophobic domains AMPs results in specificity for interaction with negatively charged microbial membranes.

External fixator

Surgical treatment to set bone fractures in cases where a cast would not allow proper alignment of the fracture. Holes are drilled into uninjured areas of bones around the fracture and pins or wires are screwed into the holes. Outside the body, a scaffold-like frame is fixed to the pins or wires to make a rigid support.

Molecular typing

DNA-based methods to discriminate microbial isolates at a subspecies level to determine diversity and epidemiology of infections.

Ventricular assist device (VAD)

Implanted mechanical device to partially or completely replace the function of the left and/or right heart ventricle. Mostly used as a bridge to heart transplantation.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kwakman, P.H.S., Zaat, S.A.J. (2013). Preventive Measures Against Transcutaneous Device Infections. In: Moriarty, T., Zaat, S., Busscher, H. (eds) Biomaterials Associated Infection. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1031-7_10

Download citation

Publish with us

Policies and ethics