Skip to main content

Relaxations of Combinatorial Problems Via Association Schemes

  • Chapter
  • First Online:
Book cover Handbook on Semidefinite, Conic and Polynomial Optimization

Abstract

In this chapter we describe a novel way of deriving semidefinite programming relaxations of a wide class of combinatorial optimization problems. Many combinatorial optimization problems may be viewed as finding an induced subgraph of a specific type of maximum weight in a given weighted graph. The relaxations we describe are motivated by concepts from algebraic combinatorics. In particular, we consider a matrix algebra that contains the adjacency matrix of the required subgraph, and formulate a convex relaxation of this algebra. Depending on the type of subgraph, this algebra may be the Bose–Mesner algebra of an association scheme, or, more generally, a coherent algebra. Thus we obtain new (and known) relaxations of the traveling salesman problem, maximum equipartition problems in graphs, the maximum stable set problem, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, G.: An approximation algorithm for Max p-Section. Lecture Notes in Computer Science 1563, 236–247 (1999)

    Google Scholar 

  2. Bannai, E., Ito, T.: Algebraic combinatorics. I: Association schemes. The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA (1984)

    Google Scholar 

  3. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-regular graphs. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 18. Springer-Verlag, Berlin (1989)

    Google Scholar 

  4. Cvetković, D., Cangalović, M., Kovačević-Vujčić, V.: Semidefinite programming methods for the symmetric travelling salesman problem. In: Proceedings of the 7th International Conference on Integer Programming and Combinatorial Optimization, pp. 126–136. Springer-Verlag, London (1999)

    Google Scholar 

  5. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts 45, Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Feige U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. Journal of Algorithms 41, 174–211 (2001)

    Article  Google Scholar 

  7. Feige, U., Lee, J.R., Hajiaghayi, M.T.: Improved approximation algorithms for minimum-weight vertex separators. SIAM Journal on Computing 38(2), 629–657 (2008)

    Article  Google Scholar 

  8. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18, 67–81 (1997)

    Article  Google Scholar 

  9. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.12. http://www.gap-system.org (2008)

  10. Godsil, C.D.: Algebraic Combinatorics. Chapman & Hall, New York (1993)

    Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24, 296–317 (1995)

    Article  Google Scholar 

  12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145 (1995)

    Article  Google Scholar 

  13. Greub, W.: Multilinear Algebra. Springer-Verlag, New York (1978)

    Book  Google Scholar 

  14. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite relaxation for graph partitioning. Mathematical Programming 92, 509–535 (2002)

    Article  Google Scholar 

  15. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?. SIAM Journal on Computing 37, 319–357 (2007)

    Article  Google Scholar 

  16. de Klerk, E., Pasechnik, D.V., Sotirov, R.: On semidefinite programming relaxations of the travelling salesman problem. SIAM Journal on Optimization 19, 1559–1573 (2008)

    Article  Google Scholar 

  17. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Mathematical Programming 122(2), 225–246 (2010)

    Article  Google Scholar 

  18. de Klerk, E., Sotirov, R.: Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Mathematical Programming, to appear.

    Google Scholar 

  19. Laurent, M., Rendl, F.: Semidefinite programming and integer programming. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Handbook on Discrete Optimization, pp. 393–514. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  20. Lovász, L.: On the Shannon capacity of a graph. IEEE Transactions on Information Theory 25, 1–7 (1979)

    Article  Google Scholar 

  21. Manthey, B.: Minimum-weight cycle covers and their approximability. Discrete Applied Mathematics 157, 1470–1480 (2009)

    Article  Google Scholar 

  22. Martin, W.J., Tanaka, H.: Commutative association schemes. European J. Combin.30(6), 1497–1525 (2009)

    Article  Google Scholar 

  23. McEliece, R.J., Rodemich, E.R., Rumsey, Jr., H.C.: The Lovász bound and some generalizations. Journal of Combinatorics, Information & System Sciences, 134–152 (1978)

    Google Scholar 

  24. Pasechnik, D.V., Kini, K.: A GAP package for computation with coherent configurations. In Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software - ICMS 2010, Third International Congress on Mathematical Software, Kobe, Japan, September 13–17, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6327, pp. 69–72. Springer (2010)

    Google Scholar 

  25. Povh J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optimization 6, 231–241 (2009)

    Article  Google Scholar 

  26. Schrijver, A.: A comparison of the Delsarte and Lovász bounds. IEEE Transactions on Information Theory 25, 425–429 (1979)

    Article  Google Scholar 

  27. Schrijver, A.: New code upper bounds from the Terwilliger algebra. IEEE Transactions on Information Theory 51, 2859–2866 (2005)

    Article  Google Scholar 

  28. Wedderburn, J.H.M.: On hypercomplex numbers. Proceedings of the London Mathematical Society 6, 77–118 (1907)

    Google Scholar 

  29. Ye, Y.: A.699 approximation algorithm for max-bisection. Mathematical Programming 90, 101–111 (2001)

    Article  Google Scholar 

  30. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. Journal of Combinatorial Optimization 2, 71-109 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

Etienne de Klerk would like to thank Chris Godsil for many valuable discussions on the contents of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne de Klerk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Klerk, E., de Oliveira Filho, F.M., Pasechnik, D.V. (2012). Relaxations of Combinatorial Problems Via Association Schemes. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_7

Download citation

Publish with us

Policies and ethics