Skip to main content

The Approach of Moments for Polynomial Equations

  • Chapter
  • First Online:
  • 5725 Accesses

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 166))

Abstract

In this chapter we present the moment based approach for computing all real solutions of a given system of polynomial equations. This approach builds upon a lifting method for constructing semidefinite relaxations of several nonconvex optimization problems, using sums of squares of polynomials and the dual theory of moments. A crucial ingredient is a semidefinite characterization of the real radical ideal, consisting of all polynomials with the same real zero set as the system of polynomials to be solved. Combining this characterization with ideas from commutative algebra, (numerical) linear algebra and semidefinite optimization yields a new class of real algebraic algorithms. This chapter sheds some light on the underlying theory and the link to polynomial optimization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A celebrated result of Hilbert (cf. e.g. [2]) shows that there are three sets of parameters (n, d) for which the following equivalence holds: For any polynomial p in n variables and degree 2d, p is nonnegative on \({\mathbb{R}}^{n}\) if and only if p can be written as a sum of squares of polynomials. These parameters are (n = 1, d) (univariate polynomials), (n, d = 1) (quadratic polynomials), and \((n = 3,d = 2)\) (ternary quartic polynomials). In all other cases there are polynomials that are nonnegative on \({\mathbb{R}}^{n}\) but cannot be written as a sum of squares of polynomials.

  2. 2.

    This follows under certain technical conditions on the semidefinite program, which are satisfied for (2.16); see [17] for details.

  3. 3.

    When Λ is positive, the maximality condition on the rank of Mt ∕ 2⌋(Λ) implies that the rank of Ms(Λ) is maximum for all s ≤ ⌊t ∕ 2⌋. This is not true for Λ non-positive.

References

  1. Akhiezer, N.I.: The Classical Moment Problem, Hafner (1965)

    Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, Springer (2003)

    Google Scholar 

  3. Bates, D., Sottile, F.: Khovanskii-Rolle continuation for real solutions, arXiv:0908.4579 (2009)

    Google Scholar 

  4. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, Springer (1998)

    Google Scholar 

  5. Cox, D.A., Little, J.B., O’Shea, D.B.: Using Algebraic Geometry, Springer (1998)

    Google Scholar 

  6. Cox, D.A., Little, J.B., O’Shea, D.B.: Ideals, Varieties, and Algorithms : An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer (2005)

    Google Scholar 

  7. Curto, R.E., Fialkow, L.: Solution of the truncated complex moment problem for flat data. Memoirs of the American Mathematical Society 119(568), 1–62 (1996)

    Article  Google Scholar 

  8. de Klerk, E.: Aspects of Semidefinite Programming – Interior Point Algorithms and Selected Applications, Kluwer (2002)

    Google Scholar 

  9. Dickenstein, A., Emiris, I.Z. (eds.): Solving Polynomial Equations: Foundations, Algorithms, and Applications. Algorithms and Computation in Mathematics, vol. 14, Springer (2005)

    Google Scholar 

  10. Elkadi, M., Mourrain, B.: Introduction à la Résolution des Systèmes d’Equations Polynomiaux. Mathématiques et Applications, vol. 59, Springer (2007)

    Google Scholar 

  11. Haviland, E.K.: On the momentum problem for distribution functions in more than one dimension. II. American Journal of Mathematics 58(1), 164–168 (1936)

    Article  Google Scholar 

  12. Henrion, D., Lasserre, J.B.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials in Control, Lecture Notes in Control and Information Sciences, pp. 293–310, Springer (2005)

    Google Scholar 

  13. http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod

  14. Kehrein, A., Kreuzer, M.: Characterizations of border bases. Journal of Pure and Applied Algebra 196, 251–270 (2005)

    Article  Google Scholar 

  15. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11, 796–817 (2001)

    Article  Google Scholar 

  16. Lasserre, J.B.: Moments, Positive Polynomials, and their Applications, Imperial College Press (2009)

    Google Scholar 

  17. Lasserre, J.B., Laurent, M., Rostalski, P.: Semidefinite characterization and computation of real radical ideals. Foundations of Computational Mathematics 8(5), 607–647 (2008)

    Article  Google Scholar 

  18. Lasserre, J.B., Laurent, M., Rostalski, P.: A unified approach for real and complex zeros of zero-dimensional ideals.. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, vol. 149, pp. 125–156. Springer (2009)

    Google Scholar 

  19. Lasserre, J.B., Laurent, M., Rostalski, P.: A prolongation-projection algorithm for computing the finite real variety of an ideal. Theoretical Computer Science 410(27-29), 2685–2700 (2009)

    Article  Google Scholar 

  20. Laurent, M.: Revisiting two theorems of Curto and Fialkow. Proceedings of the American Mathematical Society 133(10), 2965–2976 (2005)

    Article  Google Scholar 

  21. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, pp. 157–270. Springer (2009)

    Google Scholar 

  22. Laurent, M., Mourrain, B.: A generalized flat extension theorem for moment matrices. Archiv der Mathematik 93(1), 87–98 (2009)

    Article  Google Scholar 

  23. Lazard, D.: Resolution des systemes d’equations algebriques. Theoretical Computer Science 15, 77–110 (1981)

    Article  Google Scholar 

  24. Lazard, D.: Thirty years of polynomial system solving, and now? Journal of Symbolic Computation 44, 222–231 (2009)

    Article  Google Scholar 

  25. Löfberg, J.: YALMIP: A Toolbox for Modeling and Optimization in MATLAB. Computer Aided Control Systems Design Conference (Taipei, Taiwan). Available from http://users.isy.liu.se/johanl/yalmip/ (2004)

  26. Möller, H.M.: An inverse problem for cubature formulae. Computational Technologies 9, 13–20 (2004)

    Google Scholar 

  27. Mora, T.: Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy. Encyclopedia of Mathematics and its Applications, vol. 88. Cambridge University Press (2003)

    Google Scholar 

  28. Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and Gröbner Technology. Encyclopedia of Mathematics and its Applications (v. 2), vol. 99. Cambridge University Press (2005)

    Google Scholar 

  29. Mourrain, B.: A new criterion for normal form algorithms. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds.) 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Honolulu, November 1999. Lecture Notes in Computer Science, vol. 1719, pp. 430–443. Springer (1999)

    Google Scholar 

  30. Mourrain, B.: Pythagore’s dilemma, symbolic - numeric computation and the border basis method. In: Symbolic-numeric computation, Trends in Mathematics, pp. 223–243. Birkhäuser (2007)

    Google Scholar 

  31. Mourrain, B, Pavone, J.P.: Subdivision methods for solving polynomial equations. Journal of Symbolic Computation 44(3), 292–306 (2009)

    Article  Google Scholar 

  32. Mourrain, B, Trebuchet, P.: Generalized normal forms and polynomials system solving. In: Kauers, M. (ed.) Proc. Intern. Symp. on Symbolic and Algebraic Computation, pp. 253–260. ACM Press (2005)

    Google Scholar 

  33. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology (2000)

    Google Scholar 

  34. Reid, G., Zhi, L.: Solving polynomial systems via symbolic-numeric reduction to geometric involutive form. Journal of Symbolic Computation 44(3), 280–291 (2009)

    Article  Google Scholar 

  35. Rostalski, P.: Algebraic Moments – Real Root Finding and Related Topics, Ph.D. thesis, ETH Zürich (2009)

    Google Scholar 

  36. Rostalski, P.: Bermeja: Convex Algebraic Geometry in MATLAB, Available from http://math.berkeley.edu/~philipp/cagwiki.

  37. Rouillier, F., Solving zero-dimensional systems through the rational univariate representation. Journal of Applicable Algebra in Engineering, Communication and Computing 9(5), 433–461 (1999)

    Article  Google Scholar 

  38. Shor, N.Z.: An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetica 5, 102–106 (1987)

    Google Scholar 

  39. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific Press (2005)

    Google Scholar 

  40. Sottile, F.: Real Solutions to Equations from Geometry. University Lecture Series, vol. 57, AMS, (2011)

    Google Scholar 

  41. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Mathematische Annalen 207, 87–97 (1974)

    Article  Google Scholar 

  42. Stetter, H.J.: Numerical Polynomial Algebra, SIAM (2004)

    Google Scholar 

  43. Sturmfels, B.: Solving Systems of Polynomial Equations, American Mathematical Society (2002)

    Google Scholar 

  44. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, Vol. 27. Kluwer Academic Publishers, Dordrecht, The Netherlands / Boston, MA (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Laurent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Laurent, M., Rostalski, P. (2012). The Approach of Moments for Polynomial Equations. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_2

Download citation

Publish with us

Policies and ethics