Skip to main content

Positivity and Optimization: Beyond Polynomials

  • Chapter
  • First Online:
Book cover Handbook on Semidefinite, Conic and Polynomial Optimization

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 166))

  • 5726 Accesses

Abstract

The recent progress optimization theory, due to a novel synthesis of real algebraic geometry and moment problems techniques, can naturally be reduced to positivity certificates for polynomial functions defined on basic semi-algebraic sets. There are however classical problems of applied mathematics which require exact positivity criteria for non-polynomial functions, such as splines, wavelets, periodic or almost periodic functions. While we do not lack fine analysis results referring to the positivity of such functions, traditionally stated in terms of Fourier-Laplace transforms type, the algebraic machinery of modern optimization theory based on polynomial algebra fails when applied to this more general context. A notorious example being the stability problem of differential equations with delays in the argument. In all these cases, the exact algebraic certificates must be complemented by approximation theory results. Without aiming at completeness, the present chapter offers a glimpse at a series of specific non-polynomial optimization problems, by identifying in every instance the specific results needed to run a robust algebraic relaxation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With g : n →  and f :  → , x↦(f ∘ g)(x) : = f(g(x)).

  2. 2.

    The authors wish to thank D. Plaumann for pointing out this fact.

  3. 3.

    The semidefinite relaxation was solved with the GloptiPoly software [17] dedicated to solving the generalized problem of moments as defined in [32].

References

  1. Akhiezer, N.I.: The classical moment problem and some related questions in analysis. Translated from the Russian by N. Kemmer, Hafner Publishing Co., New York (1965)

    Google Scholar 

  2. Avellar, C.E., Hale, J.K.: On the zeros of exponential polynomials. J. Math. Analysis Appl. 73, 434–452 (1980)

    Article  Google Scholar 

  3. Bochnack, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergeb. Math. Grenzgebiete (3rd series), vol. 36. Springer, Berlin-New York (1998)

    Google Scholar 

  4. Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach, SIAM J. Optim. 15(3), 780–804 (2005)

    Article  Google Scholar 

  5. Billera, L.J.: The algebra of continuous piecewise polynomials. Adv. Math. 76, 170–183 (1989)

    Article  Google Scholar 

  6. Bojanov, B., Petrov, P.: Gaussian interval quadrature formulae for Tchebycheff systems. SIAM J. Numer. Anal. 43, 787–795 (2005)

    Article  Google Scholar 

  7. Burgdorf, S., Scheiderer, C., Schweighofer, M.: Pure states, nonnegative polynomials, and sums of squares. To appear in Comm. Math. Helvet.

    Google Scholar 

  8. Delzell, C.N.: A continuous, constructive solution to Hilbert’s 17-th problem. Invent. Math. 76, 365–384 (1984)

    Article  Google Scholar 

  9. Delzell, C.N.: Continuous, piecewise polynomial functions which solve Hilbert’s 17-th problem. J. reine Angew. Math. 440, 157–173 (1993)

    Google Scholar 

  10. Fliess, M., Mounier, H.: Quelques propriétés structurelles des systèmes linéaires à retards constants. C.R. Acad. Sci. Paris, I-319, 289–294 (1994)

    Google Scholar 

  11. Gu, K., Kharitonov, V.L., Chen, J.: Stability and robust stability of time-delay systems. Birkhauser: Boston (2003)

    Book  Google Scholar 

  12. Hale, J.K., Infante, E.F., Tsen, F.S.-P.: Stability in linear delay equations J. Math. Anal. Appl. 105, 533–555 (1985)

    Article  Google Scholar 

  13. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. AMS, vol. 99. Springer, New York (1993)

    Chapter  Google Scholar 

  14. Henry, D.: Linear autonomous neutral functional differential equations. J. Differential Equations 15, 106–128 (1974)

    Article  Google Scholar 

  15. Hertz, D., Jury, E.I., Zeheb, E.: Root exclusion from complex polydomains and some of its applications. Automatica 23, 399–404 (1987)

    Article  Google Scholar 

  16. Helton, J.W. Putinar, M.: Positive Polynomials in Scalar and Matrix Variables, the Spectral Theorem and Optimization. In: Operator Theory, Structured Matrices, and Dilations, pp. 229–306. Theta, Bucharest (2007)

    Google Scholar 

  17. Henrion, D., Lasserre, J.B., Lofberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods and Software 24, 761–779 (2009)

    Article  Google Scholar 

  18. Isii, K.: The extrema of probability determined by generalized moments. I. Bounded random variables. Ann. Inst. Statist. Math. 12, 119–134 (1960)

    Article  Google Scholar 

  19. Isii, K.: Inequalities of the types of Chebyshev and Cramer-Rao and mathematical programming. Ann. Inst. Statist. Math. 16, 277–293 (1964)

    Article  Google Scholar 

  20. Kakutani, S.: Ein Beweis des Satzes von M. Eidelheit über konvexe Mengen. Proc. Imp. Acad. Tokyo 13, 93–94 (1937)

    Google Scholar 

  21. Kamen, E.W.: Lectures on Algebraic System Theory: Linear Systems over Rings. NASA Contractor Report 3016 (1978)

    Google Scholar 

  22. Kamen, E.W.: On the relationship between zero criteria for two-variable polynomials and asymptotic stability of delay differential equations. IEEE Trans. Automat. Contr. AC-25, 983–984 (1980)

    Article  Google Scholar 

  23. Karlin, S., Studden, W.J.: Optimal experimental designs. Ann. Math. Statist. 37, 783–815 (1966)

    Article  Google Scholar 

  24. Karlin, S., Studden, W.J.: Tchebycheff systems: With applications in analysis and statistics. Pure and Applied Mathematics, vol. XV. Interscience Publishers John Wiley & Sons, New York-London-Sydney (1966)

    Google Scholar 

  25. Köthe, G.: Topological Vector Spaces. I. Springer, Berlin (1969)

    Google Scholar 

  26. Krein, M.G.: The ideas of P.L. Tchebysheff and A.A. Markov in the theory of limiting values of integrals and their further development. (Russian) Uspehi Matem. Nauk (N.S.) 6, 3–120 (1951)

    Google Scholar 

  27. Krein, M.G., Nudelman, A.: The Markov moment problem and extremal problems. Ideas and problems of P.L. Tchebysheff and A.A. Markov and their further development. Translated from the Russian by D. Louvish, Translations of Mathematical Monographs, vol. 50. American Mathematical Society, Providence, R.I. (1977)

    Google Scholar 

  28. Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space (in Russian). Uspehi Mat. Nauk 23, 3–95 (1948)

    Google Scholar 

  29. Lasserre, J.B.: Optimisation globale et théorie des moments. C. R. Acad. Sci. Paris 331 Série 1, 929–934 (2000)

    Article  Google Scholar 

  30. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  Google Scholar 

  31. Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17, 822–843 (2006)

    Article  Google Scholar 

  32. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Google Scholar 

  33. Lasserre, J.B., Putinar, M.: Positivity and optimization for semi-algebraic functions. SIAM J. Optimization 10, 3364–3383 (2010)

    Article  Google Scholar 

  34. Marshall, M., Netzer, T.: Positivstellensätze for real function algebras. Math. Zeit. (2010)

    Google Scholar 

  35. Michiels, W., Niculescu, S.-I.: Stability and stabilization of time-delay systems. An eigenvalue based approach. SIAM: Philadelphia (2007)

    Book  Google Scholar 

  36. Monnier, J.-P.: Anneaux d’holomorphie et Positivstellensatz archimédien. Manuscripta Math. 97, 269–302 (1998)

    Article  Google Scholar 

  37. Niculescu, S.-I.: Stability and hyperbolicity of linear systems with delayed state: A matrix pencil approach. IMA J. Math. Contr. Information 15, 331–347 (1998)

    Article  Google Scholar 

  38. Henrion, D., Garulli, A. (eds.): Positive Polynomials in Control. Lecture Notes in Control and Information Sciences, Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  39. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96, 293–320 (2003)

    Article  Google Scholar 

  40. Prestel, A., Delzell, C.: Positive polynomials. Springer, Berlin (2001)

    Book  Google Scholar 

  41. Plaumann, D.: Positivity of piecewise polynomials. Preprint (2010)

    Google Scholar 

  42. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969–984 (1993)

    Article  Google Scholar 

  43. Putinar, M., Sullivant, S. (eds.): Emerging Applications of Algebraic Geometry. IMA Series in Applied Mathematics, Springer, Berlin (2009)

    Google Scholar 

  44. Riesz, F., Sz.-Nagy, B.: Functional analysis. In: Transl. from the 2nd French ed. by Leo F. Boron. Reprint of the 1955 orig. publ. by Ungar Publ. Co., Dover Books on Advanced Mathematics, Dover Publications, Inc., New York (1990)

    Google Scholar 

  45. Riesz, M.: Sur le problème des moments. Troisième Note. Ark. Mat. Fys. 16, 1–52 (1923)

    Google Scholar 

  46. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289 203–206 (1991)

    Article  Google Scholar 

  47. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semi-algebraic geometry. Math. Ann. 207, 87–97 (1974)

    Article  Google Scholar 

  48. Thowsen, A.: An analytical stability test for a class of time-delay systems. IEEE Trans. Automat. Contr. AC-25 735–736 (1981)

    Article  Google Scholar 

  49. Toker, O., Özbay, H.: Complexity issues in robust stability of linear delay-differential systems. Math., Contr., Signals, Syst. 9, 386–400 (1996)

    Article  Google Scholar 

  50. Waki, H., Kim, S., Kojima, M., Maramatsu, M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17, 218–242 (2006)

    Article  Google Scholar 

  51. Zielke, R.: Discontinuous Tchebysheff systems. Lecture Notes in Mathematics 707, Springer, Berlin (1979)

    Google Scholar 

Download references

Acknowledgements

The authors thank Daniel Plaumann for a careful reading and constructive comments on an earlier version of the manuscript. Partially supported by the National Science Foundation DMS 10-01071, U.S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean B. Lasserre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lasserre, J.B., Putinar, M. (2012). Positivity and Optimization: Beyond Polynomials. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_14

Download citation

Publish with us

Policies and ethics