Skip to main content

Macrophage Phenotype in Tumours

  • Chapter
  • First Online:
  • 884 Accesses

Abstract

Macrophages are often present in tumours, display considerable heterogeneity in phenotype, and contribute trophic, tumour-promoting functions that favour clonal emergence, growth and spread of malignant cells, as well as contributing to host tolerance and stromal reactions. Membrane glycoproteins provide antigenic markers, serve as receptors for tumour-derived ligands, and regulate macrophage–tumour interactions. We review selected aspects of macrophage phenotypic heterogeneity, with special reference to novel markers such as the EGF-TM7 family of myeloid differentiation antigens. Improved characterisation of macrophage plasticity may make it possible to manipulate macrophage effector functions to the advantage of the host.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott RJ, Spendlove I, Roversi P, Fitzgibbon H, Knott V, Teriete P, McDonnell JM, Handford PA, Lea SM (2007) Structural and functional characterization of a novel T cell receptor co-regulatory protein complex, CD97–CD55. J Biol Chem 282(30):22023–22032

    Article  PubMed  CAS  Google Scholar 

  • Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692

    Article  PubMed  CAS  Google Scholar 

  • Aust G, Eichler W, Laue S, Lehmann I, Heldin NE, Lotz O, Scherbaum WA, Dralle H, Hoang-Vu C (1997) CD97: a dedifferentiation marker in human thyroid carcinomas. Cancer Res 57(9):1798–1806

    PubMed  CAS  Google Scholar 

  • Aust G, Steinert M, Schutz A, Boltze C, Wahlbuhl M, Hamann J, Wobus M (2002) CD97, but not its closely related EGF-TM7 family member EMR2, is expressed on gastric, pancreatic, and esophageal carcinomas. Am J Clin Pathol 118:699–707

    Article  PubMed  CAS  Google Scholar 

  • Aust G, Hamann J, Schilling N, Wobus M (2003) Detection of alternatively spliced EMR2 mRNAs in colorectal tumor cell lines but rare expression of the molecule in colorectal adenocarcinomas. Virchows Arch 443(1):32–37

    Article  PubMed  CAS  Google Scholar 

  • Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11(10):805–85

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Wandel E, Wobus M, Schneider R, Amasheh S, Sittig D, Kerner C, Naumann R, Hamann J, Aust G (2010) Overexpression of CD97 in intestinal epithelial cells of transgenic mice attenuates colitis by strengthening adherens junctions. PLoS One 5(1):e8507

    Article  PubMed  Google Scholar 

  • Bjarnadottir TK, Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, Schioth HB (2004) The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84(1):23–33

    Article  PubMed  CAS  Google Scholar 

  • Bjarnadottir TK, Fredriksson R, Schioth HB (2007) The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci 64(16):2104–2119

    Article  PubMed  CAS  Google Scholar 

  • Capasso M, Durrant LG, Stacey M, Gordon S, Ramage J, Spendlove I (2006) Costimulation via CD55 on human CD4+ T cells mediated by CD97. J Immunol 177(2):1070–1077

    PubMed  CAS  Google Scholar 

  • Chang GW, Davies JQ, Stacey M, Yona S, Bowdish DM, Hamann J, Chen TC, Lin CY, Gordon S, Lin HH (2007) CD312, the human adhesion-GPCR EMR2, is differentially expressed during differentiation, maturation, and activation of myeloid cells. Biochem Biophys Res Commun 353(1):133–138

    Article  PubMed  CAS  Google Scholar 

  • Coffelt SB, Hughes R, Lewis CE (2009) Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796(1):11–18

    PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed  CAS  Google Scholar 

  • Domachowske JB, Bonville CA, Gao JL, Murphy PM, Easton AJ, Rosenberg HF (2000) The chemokine macrophage-inflammatory protein-1 alpha and its receptor CCR1 control pulmonary inflammation and antiviral host defense in paramyxovirus infection. J Immunol 165(5):2677–2682

    PubMed  CAS  Google Scholar 

  • Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG, Steinman RM, Nussenzweig MC (2007) Differential antigen processing by dendritic cell subsets in vivo. Science (New York, NY) 315(5808):107–111

    Article  CAS  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  PubMed  CAS  Google Scholar 

  • Galle J, Sittig D, Hanisch I, Wobus M, Wandel E, Loeffler M, Aust G (2006) Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. Am J Pathol 169(5):1802–1811

    Article  PubMed  CAS  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science (New York, NY) 327(5966):656–661

    Article  CAS  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  PubMed  CAS  Google Scholar 

  • Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN, Yarme A, Stetler-Stevenson MA, Siebenlist U, Kelly K (1996) CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol 157(12):5438–5447

    PubMed  CAS  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  PubMed  CAS  Google Scholar 

  • Hamann J, Eichler W, Hamann D, Kerstens HM, Poddighe PJ, Hoovers JM, Hartmann E, Strauss M, van Lier RA (1995) Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretion receptor superfamily with an unusual extracellular domain. J Immunol 155(4):1942–1950

    PubMed  CAS  Google Scholar 

  • Hamann J, Vogel B, van Schijndel GM, van Lier R (1996) The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184(3):1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, van Lier RA (1998) Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur J Immunol 28(5):1701–1707

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1989) Transgenic mice as probes into complex systems. Science (New York, NY) 246(4935):1265–1275

    Article  CAS  Google Scholar 

  • Jaspars LH, Vos W, Aust G, Van Lier RA, Hamann J (2001) Tissue distribution of the human CD97 EGF-TM7 receptor. Tissue Antigens 57(4):325–331

    Article  PubMed  CAS  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  PubMed  CAS  Google Scholar 

  • Kop EN, Adriaansen J, Smeets TJ, Vervoordeldonk MJ, van Lier RA, Hamann J, Tak PP (2006) CD97 neutralisation increases resistance to collagen-induced arthritis in mice. Arthritis Res Ther 8(5):R155

    Article  PubMed  Google Scholar 

  • Krasnoperov V, Bittner MA, Holz RW, Chepurny O, Petrenko AG (1999) Structural requirements for alpha-latrotoxin binding and alpha-latrotoxin-stimulated secretion. A study with calcium-independent receptor of alpha-latrotoxin (CIRL) deletion mutants. J Biol Chem 274(6):3590–3596

    Article  PubMed  CAS  Google Scholar 

  • Kwakkenbos MJ, Chang GW, Lin HH, Pouwels W, de Jong EC, van Lier RA, Gordon S, Hamann J (2002) The human EGF-TM7 family member EMR2 is a heterodimeric receptor expressed on myeloid cells. J Leukoc Biol 71(5):854–862

    PubMed  CAS  Google Scholar 

  • Kwakkenbos MJ, Kop EN, Stacey M, Matmati M, Gordon S, Lin HH, Hamann J (2004) The EGF-TM7 family: a postgenomic view. Immunogenetics 55(10):655–666

    Article  PubMed  CAS  Google Scholar 

  • Kwakkenbos MJ, Pouwels W, Matmati M, Stacey M, Lin HH, Gordon S, van Lier RA, Hamann J (2005) Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J Leukoc Biol 77(1):112–119

    PubMed  CAS  Google Scholar 

  • Kwakkenbos MJ, Matmati M, Madsen O, Pouwels W, Wang Y, Bontrop RE, Heidt PJ, Hoek RM, Hamann J (2006) An unusual mode of concerted evolution of the EGF-TM7 receptor chimera EMR2. FASEB J 20(14):2582–2584

    Article  PubMed  CAS  Google Scholar 

  • Leemans JC, te Velde AA, Florquin S, Bennink RJ, de Bruin K, van Lier RA, van der Poll T, Hamann J (2004) The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J Immunol 172(2):1125–1131

    PubMed  CAS  Google Scholar 

  • Lin HH, Stubbs LJ, Mucenski ML (1997) Identification and characterization of a seven transmembrane hormone receptor using differential display. Genomics 41(3):301–308

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Stacey M, Hamann J, Gordon S, McKnight AJ (2000) Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, is closely related to CD97. Genomics 67(2):188–200

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Stacey M, Saxby C, Knott V, Chaudhry Y, Evans D, Gordon S, McKnight AJ, Handford P, Lea S (2001) Molecular analysis of the epidermal growth factor-like short consensus repeat domain-mediated protein-protein interactions: dissection of the CD97–CD55 complex. J Biol Chem 276(26):24160–24169

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Chang GW, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279(30):31823–31832

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, Kerley M, Mucenski ML, Gordon S, Stein-Streilein J (2005) The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201(10):1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  PubMed  CAS  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  • McKnight AJ, Gordon S (1996) EGF-TM7: a novel subfamily of seven- transmembrane-region leukocyte cell-surface molecules. Immunol Today 17(6):283–287

    Article  PubMed  CAS  Google Scholar 

  • McKnight AJ, Gordon S (1998) The EGF-TM7 family: unusual structures at the leukocyte surface. J Leukoc Biol 63(3):271–280

    PubMed  CAS  Google Scholar 

  • McKnight AJ, Macfarlane AJ, Dri P, Turley L, Willis AC, Gordon S (1996) Molecular cloning of F4/80, a murine macrophage-restricted cell surface glycoprotein with homology to the G-protein-linked transmembrane 7 hormone receptor family. J Biol Chem 271(1):486–489

    Article  PubMed  CAS  Google Scholar 

  • Merad M (2010) PU.1 takes control of the dendritic cell lineage. Immunity 32(5):583–585

    Article  PubMed  CAS  Google Scholar 

  • Merad M, Manz MG (2009) Dendritic cell homeostasis. Blood 113(15):3418–3427

    Article  PubMed  CAS  Google Scholar 

  • Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, Bronte V (2010) Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 22(2):238–244

    Article  PubMed  CAS  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  Google Scholar 

  • Rosas M, Gordon S, Taylor PR (2007) Characterisation of the expression and function of the GM-CSF receptor alpha-chain in mice. Eur J Immunol 37(9):2518–2528

    Article  PubMed  CAS  Google Scholar 

  • Rosas M, Thomas B, Stacey M, Gordon S, Taylor PR (2010) The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B. J Leukoc Biol 88(1):169–180

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174(2):636–645

    PubMed  CAS  Google Scholar 

  • Stacey M, Lin HH, Gordon S, McKnight AJ (2000) LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 25(6):284–289

    Article  PubMed  CAS  Google Scholar 

  • Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J, Gordon S, Lin HH (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102(8):2916–2924

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Wobus M, Boltze C, Schutz A, Wahlbuhl M, Hamann J, Aust G (2002) Expression and regulation of CD97 in colorectal carcinoma cell lines and tumor tissues. Am J Pathol 161(5):1657–1667

    Article  PubMed  CAS  Google Scholar 

  • Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  PubMed  CAS  Google Scholar 

  • Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R, Shibata T, Takami T (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/ macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83(5):1136–1144

    Article  PubMed  CAS  Google Scholar 

  • van den Berg TK, Kraal G (2005) A function for the macrophage F4/80 molecule in tolerance induction. Trends Immunol 26(10):506-509

    Article  PubMed  Google Scholar 

  • van Eijk M, Aust G, Brouwer MS, van Meurs M, Voerman JS, Dijke IE, Pouwels W, Sandig I, Wandel E, Aerts JM, Boot RG, Laman JD, Hamann J (2010) Differential expression of the EGF-TM7 family members CD97 and EMR2 in lipid-laden macrophages in atherosclerosis, multiple sclerosis and Gaucher disease. Immunol Lett 129(2):64–71

    Article  PubMed  Google Scholar 

  • van Pel M, Hagoort H, Hamann J, Fibbe WE (2008a) CD97 is differentially expressed on murine hematopoietic stem-and progenitor-cells. Haematologica 93(8):1137–1144

    Article  PubMed  Google Scholar 

  • van Pel M, Hagoort H, Kwakkenbos MJ, Hamann J, Fibbe WE (2008b) Differential role of CD97 in interleukin-8-induced and granulocyte-colony stimulating factor-induced hematopoietic stem and progenitor cell mobilization. Haematologica 93(4):601–604

    Article  PubMed  Google Scholar 

  • Varol C, Yona S, Jung S (2009) Origins and tissue-context-dependent fates of blood monocytes. Immunol Cell Biol 87(1):30–38

    Article  PubMed  Google Scholar 

  • Wang T, Ward Y, Tian L, Lake R, Guedez L, Stetler-Stevenson WG, Kelly K (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105(7):2836–2844

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Tian L, Haino M, Gao JL, Lake R, Ward Y, Wang H, Siebenlist U, Murphy PM, Kelly K (2007) Improved antibacterial host defense and altered peripheral granulocyte homeostasis in mice lacking the adhesion class G protein receptor CD97. Infect Immun 75(3):1144–1153

    Article  PubMed  CAS  Google Scholar 

  • Warschkau H, Kiderlen AF (1999) A monoclonal antibody directed against the murine macrophage surface molecule F4/80 modulates natural immune response to Listeria monocytogenes. J Immunol 163(6):3409–3416

    PubMed  CAS  Google Scholar 

  • Wobus M, Huber O, Hamann J, Aust G (2006) CD97 overexpression in tumor cells at the invasion front in colorectal cancer (CC) is independently regulated of the canonical Wnt pathway. Mol Carcinog 45(11):881–886

    Article  PubMed  CAS  Google Scholar 

  • Yona S, Lin HH, Siu WO, Gordon S, Stacey M (2008a) Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci 33(10):491–500

    Article  PubMed  CAS  Google Scholar 

  • Yona S, Lin HH, Dri P, Davies JQ, Hayhoe RP, Lewis SM, Heinsbroek SE, Brown KA, Perretti M, Hamann J, Treacher DF, Gordon S, Stacey M (2008b) Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J 22(3):741–751

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamon Gordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lin, HH., Gordon, S. (2011). Macrophage Phenotype in Tumours. In: Lawrence, T., Hagemann, T. (eds) Tumour-Associated Macrophages. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0662-4_1

Download citation

Publish with us

Policies and ethics