Skip to main content

Graphene Transistors

  • Chapter
  • First Online:

Abstract

This chapter begins with an overview of digital and analog semiconductor technology. Following this, tradeoffs between various device designs are discussed for Si FETs. Analog (RF) applications require a low access resistance and small mobility degradation from dielectrics—the former is discussed in detail in this chapter, while the latter is the topic of Chap. 9. Digital FETs need certain criteria to be met—foremost amongst them being bandgap opening and complementary operation. Both these topics are discussed in detail in this chapter. Geometrical scaling of graphene FETs—including width and length scaling—is discussed along with implications for edge-scattering and methods to reduce it. Circuit implementations of graphene FETs are looked into including mixers, frequency multipliers, and inverters. A few non-FET structures are also looked at such as the Klein tunneling transistor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. S. Novoselov, et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature vol. 438, pp. 197–200 (2005).

    Article  Google Scholar 

  2. K. S. Novoselov, et al., “Electric field effect in atomically thin carbon films,” Science vol. 306, pp. 666–669 (2004).

    Article  Google Scholar 

  3. C. Berger, et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science vol. 312, pp. 1191–1196 (2006).

    Article  Google Scholar 

  4. F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature,” Nano Letters vol. 10, pp. 715–718 (2010).

    Article  Google Scholar 

  5. T. Fang, A. Konar, H. L. Xing, and D. Jena, “Carrier statistics and quantum capacitance of graphene sheets and ribbons,” Applied Physics Letters vol. 91, 092109 (2007).

    Article  Google Scholar 

  6. W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Physical Review B vol. 80, 235402 (2009).

    Article  Google Scholar 

  7. G. Baccarani, M. R. Wordeman, and R. H. Dennard, “Generalized Scaling Theory and Its Application to a 1/4 Micrometer Mosfet Design,” IEEE Transactions on Electron Devices vol. 31, pp. 452–462 (1984).

    Article  Google Scholar 

  8. S. I. Association, “International Technology Roadmap for Semiconductors,” (2007).

    Google Scholar 

  9. S. W. Keckler, et al., “A wire-delay scalable microprocessor architecture for high performance systems,” 2003 IEEE International Solid-State Circuits Conference vol. 46, pp. 168–169 (2003).

    Article  Google Scholar 

  10. D. Geer, “Chip makers turn to multicore processors,” Computer vol. 38, pp. 11–13 (2005).

    Article  Google Scholar 

  11. D. Hisamoto, et al., “FinFET - A self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices vol. 47, pp. 2320–2325 (2000).

    Article  Google Scholar 

  12. K. Boucart and A. M. Ionescu, “Double-gate tunnel FET with high-K gate dielectric,” IEEE Transactions on Electron Devices vol. 54, pp. 1725–1733 (2007).

    Article  Google Scholar 

  13. K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, “Impact ionization MOS (I-MOS) - Part I: Device and circuit simulations,” IEEE Transactions on Electron Devices vol. 52, pp. 69–76 (2005).

    Article  Google Scholar 

  14. S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Letters vol. 8, pp. 405–410 (2007).

    Article  Google Scholar 

  15. R. Murali, et al., “Breakdown current density of graphene nanoribbons,” Applied Physics Letters vol. 94, (2009).

    Google Scholar 

  16. R. Murali, et al., “Resistivity of Graphene Nanoribbon Interconnects,” IEEE Electron Device Letters vol. 30, pp. 611–613 (2009).

    Article  Google Scholar 

  17. M. Y. Han, B. Ozyilmaz, Y. B. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Physical Review Letters vol. 98, 206805 (2007).

    Article  Google Scholar 

  18. S. Y. Zhou, et al., “Substrate-induced bandgap opening in epitaxial graphene,” Nature Materials vol. 6, pp. 770–775 (2007).

    Article  Google Scholar 

  19. M. Sprinkle, et al., “Scalable templated growth of graphene nanoribbons on SiC,” Nature Nanotechnology vol. 5, pp. 727–731 (2010).

    Article  Google Scholar 

  20. J. W. Bai, et al., “Graphene nanomesh,” Nature Nanotechnology vol. 5, pp. 190–194 (2010).

    Article  Google Scholar 

  21. E. Rotenberg, et al., “Origin of the energy bandgap in epitaxial graphene,” Nature Materials vol. 7, pp. 258–259 (2008).

    Article  Google Scholar 

  22. F. Schwierz, “Graphene transistors,” Nature Nanotechnology vol. 5, pp. 487–496 (2010).

    Article  Google Scholar 

  23. J. S. Moon, et al., “Top-Gated Epitaxial Graphene FETs on Si-Face SiC Wafers With a Peak Transconductance of 600 mS/mm,” IEEE Electron Device Letters vol. 31, pp. 260–262 (2010).

    Article  Google Scholar 

  24. Y.-M. Lin, et al., “100-GHz Transistors from Wafer-Scale Epitaxial Graphene,” Science vol. 327, 662 (2010).

    Article  Google Scholar 

  25. K. A. Jenkins, et al., “Graphene RF Transistor Performance,” ECS Transactions vol. 28, pp. 3–13 (2010).

    Article  Google Scholar 

  26. G. C. Liang, N. Neophytou, D. E. Nikonov, and M. S. Lundstrom, “Performance projections for ballistic graphene nanoribbon field-effect transistors,” IEEE Transactions on Electron Devices vol. 54, pp. 677–682 (2007).

    Article  Google Scholar 

  27. A. C. Ford, et al., “Diameter-Dependent Electron Mobility of InAs Nanowires,” Nano Letters vol. 9, pp. 360–365 (2009).

    Article  Google Scholar 

  28. D. A. Areshkin, D. Gunlycke, and C. T. White, “Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects,” Nano Letters vol. 7, pp. 204–210 (2007).

    Article  Google Scholar 

  29. D. Gunlycke, D. A. Areshkin, and C. T. White, “Semiconducting graphene nanostrips with edge disorder,” Applied Physics Letters vol. 90, 142104 (2007).

    Article  Google Scholar 

  30. T. Fang, A. Konar, H. Xing, and D. Jena, “Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering,” Physical Review B vol. 78, 205403 (2008).

    Article  Google Scholar 

  31. Y. X. Yang and R. Murali, “Impact of Size Effect on Graphene Nanoribbon Transport,” IEEE Electron Device Letters vol. 31, pp. 237–239 (2010).

    Article  Google Scholar 

  32. K. I. Bolotin, et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications vol. 146, pp. 351–355 (2008).

    Article  Google Scholar 

  33. J. H. Chen, et al., “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology vol. 3, pp. 206–209 (2008).

    Article  Google Scholar 

  34. Y. W. Tan, et al., “Measurement of scattering rate and minimum conductivity in graphene,” Physical Review Letters vol. 99, 246803 (2007).

    Article  Google Scholar 

  35. A. A. Balandin, et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters vol. 8, pp. 902–907 (2008).

    Article  Google Scholar 

  36. X. R. Wang, et al., “Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Physical Review Letters vol. 100, 206803 (2008).

    Article  Google Scholar 

  37. D. V. Kosynkin, et al., “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature vol. 458, pp. 872–876 (2009).

    Article  Google Scholar 

  38. L. Jiao, et al., “Narrow graphene nanoribbons from carbon nanotubes,” Nature vol. 458, pp. 877–880 (2009).

    Article  Google Scholar 

  39. J. Cai, et al., “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature vol. 466, pp. 470–473 (2010).

    Article  Google Scholar 

  40. H. Xiang, et al., “”Narrow” Graphene Nanoribbons Made Easier by Partial Hydrogenation,” Nano Letters vol. 9, pp. 4025–4030 (2009).

    Article  Google Scholar 

  41. D. C. Elias, et al., “Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane,” Science vol. 323, pp. 610–613 (2009).

    Article  Google Scholar 

  42. R. Balog, et al., “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nature Materials vol. 9, pp. 315–319 (2010).

    Article  Google Scholar 

  43. J. R. Williams, T. Low, M. S. Lundstrom, and C. M. Marcus, “Gate-controlled guiding of electrons in graphene,” Nature Nanotechnology vol. 6, pp. 222–225 (2011).

    Article  Google Scholar 

  44. X. Wang and H. Dai, “Etching and narrowing of graphene from the edges,” Nature Chemistry vol. 2, pp. 661–665 (2010).

    Article  Google Scholar 

  45. L. C. Campos, et al., “Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene,” Nano Letters vol. 9, pp. 2600–2604 (2009).

    Article  Google Scholar 

  46. S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson, “Crystallographic Etching of Few-Layer Graphene,” Nano Letters vol. 8, pp. 1912–1915 (2008).

    Article  Google Scholar 

  47. Z. Chen and J. Appenzeller, “Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-effect Transistor Devices,” IEEE International Electron Devices Meeting pp. 509–512 (2008).

    Google Scholar 

  48. I. Meric, et al., “Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current–voltage Measurements,” Nano Letters vol. 11, pp. 1093–1097 (2011).

    Article  Google Scholar 

  49. Y. Ouyang, H. Dai, and J. Guo, “Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material,” Nano Research vol. 3, pp. 8–15 (2010).

    Article  Google Scholar 

  50. Y. Sui and J. Appenzeller, “Screening and Interlayer Coupling in Multilayer Graphene Field-Effect Transistors,” Nano Letters vol. 9, pp. 2973–2977 (2009).

    Article  Google Scholar 

  51. J. Hass, et al., “Why multilayer graphene on 4 H-SiC(000(1)over-bar) behaves like a single sheet of graphene,” Physical Review Letters vol. 100, 125504 (2008).

    Article  Google Scholar 

  52. J. Martin, et al., “Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nature Physics vol. 4, pp. 144–148 (2008).

    Article  Google Scholar 

  53. S. M. Sze, Physics of Semiconductor Devices: Wiley-Interscience, 1981.

    Google Scholar 

  54. F. Schedin, et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials vol. 6, pp. 652–655 (2007).

    Article  Google Scholar 

  55. P. L. Levesque, et al., “Probing Charge Transfer at Surfaces Using Graphene Transistors,” Nano Letters vol. 11, pp. 132–137 (2010).

    Article  Google Scholar 

  56. Y. Dan, et al., “Intrinsic Response of Graphene Vapor Sensors,” Nano Letters vol. 9, pp. 1472–1475 (2009).

    Article  Google Scholar 

  57. M. Ishigami, et al., “Atomic structure of graphene on SiO2,” Nano Letters vol. 7, pp. 1643–1648 (2007).

    Article  Google Scholar 

  58. M. Lafkioti, et al., “Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions,” Nano Letters vol. 10, pp. 1149–1153 (2010).

    Article  Google Scholar 

  59. Z. Liu, A. A. Bol, and W. Haensch, “Large-Scale Graphene Transistors with Enhanced Performance and Reliability Based on Interface Engineering by Phenylsilane Self-Assembled Monolayers,” Nano Letters vol. 11, pp. 523–528 (2010).

    Article  Google Scholar 

  60. C. R. Dean, et al., “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology vol. 5, pp. 722–726 (2010).

    Article  Google Scholar 

  61. X. Hong, et al., “High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides,” Physical Review Letters vol. 102, 136808 (2009).

    Article  Google Scholar 

  62. F. Chen, J. L. Xia, and N. J. Tao, “Ionic Screening of Charged-Impurity Scattering in Graphene,” Nano Letters vol. 9, pp. 1621–1625 (2009).

    Article  Google Scholar 

  63. F. Chen, J. Xia, and N. Tao, “Ionic Screening of Charged-Impurity Scattering in Graphene,” Nano Letters vol. 9, pp. 1621–1625 (2009).

    Article  Google Scholar 

  64. B. Guo, et al., “Controllable N-Doping of Graphene,” Nano Letters vol. 10, pp. 4975–4980 (2010).

    Article  Google Scholar 

  65. D. B. Farmer, et al., “Chemical Doping and Electron–hole Conduction Asymmetry in Graphene Devices,” Nano Letters vol. 9, pp. 388–392 (2009).

    Article  Google Scholar 

  66. A. Kasry, et al., “Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes,” ACS Nano vol. 4, pp. 3839–3844 (2010).

    Article  Google Scholar 

  67. Y. Shi, et al., “Work Function Engineering of Graphene Electrode via Chemical Doping,” ACS Nano vol. 4, pp. 2689–2694 (2010).

    Article  Google Scholar 

  68. F. Gunes, et al., “Layer-by-Layer Doping of Few-Layer Graphene Film,” ACS Nano vol. 4, pp. 4595–4600 (2010).

    Article  Google Scholar 

  69. C. Coletti, et al., “Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping,” Physical Review B vol. 81, 235401 (2010).

    Article  Google Scholar 

  70. W. Chen, et al., “Surface Transfer p-Type Doping of Epitaxial Graphene,” Journal of the American Chemical Society vol. 129, pp. 10418–10422 (2007).

    Article  Google Scholar 

  71. I. Gierz, et al., “Atomic Hole Doping of Graphene,” Nano Letters vol. 8, pp. 4603–4607 (2008).

    Article  Google Scholar 

  72. X. R. Wang, et al., “N-Doping of Graphene Through Electrothermal Reactions with Ammonia,” Science vol. 324, pp. 768–771 (2009).

    Article  Google Scholar 

  73. S. Ryu, et al., “Reversible Basal Plane Hydrogenation of Graphene,” Nano Letters vol. 8, pp. 4597–4602 (2008).

    Article  Google Scholar 

  74. M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx : H thin films deposited from hydrogen silsesquioxane resins,” Journal of the Electrochemical Society vol. 145, pp. 2861–2866 (1998).

    Article  Google Scholar 

  75. K. Brenner and R. Murali, “Single step, complementary doping of graphene,” Applied Physics Letters vol. 96, 063104 (2010).

    Article  Google Scholar 

  76. H. J. Lee, et al., “Structural comparison of hydrogen silsesquioxane based porous low-k thin films prepared with varying process conditions,” Chemistry of Materials vol. 14, pp. 1845–1852 (2002).

    Article  Google Scholar 

  77. M. Cheli, P. Michetti, and G. Iannaccone, “Model and Performance Evaluation of Field-Effect Transistors Based on Epitaxial Graphene on SiC,” IEEE Transactions on Electron Devices vol. 57, pp. 1936–1941 (2010).

    Article  Google Scholar 

  78. H. Wang, et al., “Compact Virtual-Source Current–voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors,” IEEE Transactions on Electron Devices vol. 58, pp. 1523–1533 (2011).

    Article  Google Scholar 

  79. Y. Ouyang, Y. Yoon, and J. Guo, “Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study,” IEEE Transactions on Electron Devices vol. 54, pp. 2223–2231 (2007).

    Article  Google Scholar 

  80. K. Nagashio and A. Toriumi, “DOS-limited contact resistance in graphene FETs,” arxiv 1104.1818 (2011).

    Google Scholar 

  81. B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, “Evidence of the role of contacts on the observed electron–hole asymmetry in graphene,” Physical Review B vol. 78, 121402 (2008).

    Article  Google Scholar 

  82. S. Russo, et al., “Contact resistance in graphene-based devices,” Physica E: Low-dimensional Systems and Nanostructures vol. 42, pp. 677–679 (2010).

    Article  Google Scholar 

  83. A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Applied Physics Letters vol. 96, pp. 013512–3 (2010).

    Article  Google Scholar 

  84. K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, “Contact resistivity and current flow path at metal/graphene contact,” Applied Physics Letters vol. 97, pp. - (2010).

    Google Scholar 

  85. P. Blake, et al., “Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point,” Solid State Communications vol. 149, pp. 1068–1071 (2009).

    Article  Google Scholar 

  86. K. L. Grosse, et al., “Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts,” Nature Nanotechnology vol. 6, pp. 287–290 (2011).

    Article  Google Scholar 

  87. J. A. Robinson, et al., “Contacting graphene,” Applied Physics Letters vol. 98, pp. 053103–3 (2011).

    Article  Google Scholar 

  88. F. Xia, et al., “The origins and limits of metal-graphene junction resistance,” Nature Nanotechnology vol. 6, pp. 179–184 (2011).

    Article  Google Scholar 

  89. E. J. H. Lee, et al., “Contact and edge effects in graphene devices,” Nature Nanotechnology vol. 3, pp. 486–490 (2008).

    Article  Google Scholar 

  90. F. N. Xia, et al., “Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor,” Nano Letters vol. 9, pp. 1039–1044 (2009).

    Article  Google Scholar 

  91. H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene Frequency Multipliers,” IEEE Electron Device Letters vol. 30, pp. 547–549 (2009).

    Article  Google Scholar 

  92. F. Traversi, V. Russo, and R. Sordan, “Integrated complementary graphene inverter,” Applied Physics Letters vol. 94, 223312 (2009).

    Article  Google Scholar 

  93. S. L. Li, et al., “Low Operating Bias and Matched Input–output Characteristics in Graphene Logic Inverters,” Nano Letters vol. 10, pp. 2357–2362 (2010).

    Article  Google Scholar 

  94. S. L. Li, et al., “Enhanced Logic Performance with Semiconducting Bilayer Graphene Channels,” ACS Nano vol. 5, pp. 500–506 (2011).

    Article  Google Scholar 

  95. H. Wang, et al., “Graphene-Based Ambipolar RF Mixers,” IEEE Electron Device Letters vol. 31, pp. 906–908 (2010).

    Article  MATH  Google Scholar 

  96. Y. M. Lin, et al., “Wafer-Scale Graphene Integrated Circuit,” Science vol. 332, pp. 1294–1297 (2011).

    Article  Google Scholar 

  97. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nature Physics vol. 2, pp. 620–625 (2006).

    Article  Google Scholar 

  98. V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, “The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions,” Science vol. 315, pp. 1252–1255 (2007).

    Article  Google Scholar 

  99. S. Tanachutiwat, J. U. Lee, W. Wang, and C. Y. Sung, “Reconfigurable multi-function logic based on graphene P-N junctions,” presented at the Proceedings of the 47th Design Automation Conference, Anaheim, California, 2010.

    Google Scholar 

  100. A. C. Seabaugh and Q. Zhang, “Low-Voltage Tunnel Transistors for Beyond CMOS Logic,” Proceedings of the IEEE vol. 98, pp. 2095–2110 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu Murali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murali, R. (2012). Graphene Transistors. In: Murali, R. (eds) Graphene Nanoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0548-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0548-1_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0547-4

  • Online ISBN: 978-1-4614-0548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics