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Preface

The next several pages describe the goals and the main topics of this book.

Questions in discrete geometry typically involve finite sets of points, lines,
circles, planes, or other simple geometric objects. For example, one can ask,
what is the largest number of regions into which n lines can partition the
plane, or what is the minimum possible number of distinct distances occur-
ring among n points in the plane? (The former question is easy, the latter
one is hard.) More complicated objects are investigated, too, such as convex
polytopes or finite families of convex sets. The emphasis is on “combinato-
rial” properties: Which of the given objects intersect, or how many points
are needed to intersect all of them, and so on.

Many questions in discrete geometry are very natural and worth studying
for their own sake. Some of them, such as the structure of 3-dimensional
convex polytopes, go back to the antiquity, and many of them are motivated
by other areas of mathematics. To a working mathematician or computer
scientist, contemporary discrete geometry offers results and techniques of
great diversity, a useful enhancement of the “bag of tricks” for attacking
problems in her or his field. My experience in this respect comes mainly
from combinatorics and the design of efficient algorithms, where, as time
progresses, more and more of the first-rate results are proved by methods
drawn from seemingly distant areas of mathematics and where geometric
methods are among the most prominent.

The development of computational geometry and of geometric methods in
combinatorial optimization in the last 20-30 years has stimulated research in
discrete geometry a great deal and contributed new problems and motivation.
Parts of discrete geometry are indispensable as a foundation for any serious
study of these fields. I personally became involved in discrete geometry while
working on geometric algorithms, and the present book gradually grew out of
lecture notes initially focused on computational geometry. (In the meantime,
several books on computational geometry have appeared, and so I decided to
concentrate on the nonalgorithmic part.)

In order to explain the path chosen in this book for exploring its subject,
let me compare discrete geometry to an Alpine mountain range. Mountains
can be explored by bus tours, by walking, by serious climbing, by playing
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in the local casino, and in many other ways. The book should provide safe
trails to a few peaks and lookout points (key results from various subfields
of discrete geometry). To some of them, convenient paths have been marked
in the literature, but for others, where only climbers’ routes exist in research
papers, I tried to add some handrails, steps, and ropes at the critical places,
in the form of intuitive explanations, pictures, and concrete and elementary
proofs.! However, I do not know how to build cable cars in this landscape:
Reaching the higher peaks, the results traditionally considered difficult, still
needs substantial effort. I wish everyone a clear view of the beautiful ideas in
the area, and I hope that the trails of this book will help some readers climb
yet unconquered summits by their own research. (Here the shortcomings of
the Alpine analogy become clear: The range of discrete geometry is infinite
and no doubt, many discoveries lie ahead, while the Alps are a small spot on
the all too finite Earth.)

This book is primarily an introductory textbook. It does not require any
special background besides the usual undergraduate mathematics (linear al-
gebra, calculus, and a little of combinatorics, graph theory, and probability).
It should be accessible to early graduate students, although mastering the
more advanced proofs probably needs some mathematical maturity. The first
and main part of each section is intended for teaching in class. I have actually
taught most of the material, mainly in an advanced course in Prague whose
contents varied over the years, and a large part has also been presented by
students, based on my writing, in lectures at special seminars (Spring Schools
of Combinatorics). A short summary at the end of the book can be useful for
reviewing the covered material.

The book can also serve as a collection of surveys in several narrower
subfields of discrete geometry, where, as far as I know, no adequate recent
treatment is available. The sections are accompanied by remarks and biblio-
graphic notes. For well-established material, such as convex polytopes, these
parts usually refer to the original sources, point to modern treatments and
surveys, and present a sample of key results in the area. For the less well cov-
ered topics, I have aimed at surveying most of the important recent results.
For some of them, proof outlines are provided, which should convey the main
ideas and make it easy to fill in the details from the original source.

Topics. The material in the book can be divided into several groups:

e Foundations (Sections 1.1-1.3, 2.1, 5.1-5.4, 5.7, 6.1). Here truly basic
things are covered, suitable for any introductory course: linear and affine
subspaces, fundamentals of convex sets, Minkowski’s theorem on lattice
points in convex bodies, duality, and the first steps in convex polytopes,
Voronoi diagrams, and hyperplane arrangements. The remaining sections
of Chapters 1, 2, and 5 go a little further in these topics.

1 I also wanted to invent fitting names for the important theorems, in order to
make them easier to remember. Only few of these names are in standard usage.
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o Combinatorial complexity of geometric configurations (Chapters 4, 6, 7,
and 11). The problems studied here include line-point incidences, com-
plexity of arrangements and lower envelopes, Davenport—Schinzel se-
quences, and the k-set problem. Powerful methods, mainly probabilistic,
developed in this area are explained step by step on concrete nontriv-
ial examples. Many of the questions were motivated by the analysis of
algorithms in computational geometry.

e Intersection patterns and transversals of convez sets. Chapters 8-10 con-
tain, among others, a proof of the celebrated (p, ¢)-theorem of Alon and
Kleitman, including all the tools used in it. This theorem gives a suffi-
cient condition guaranteeing that all sets in a given family of convex sets
can be intersected by a bounded (small) number of points. Such results
can be seen as far-reaching generalizations of the well-known Helly’s the-
orem. Some of the finest pieces of the weaponry of contemporary discrete
and computational geometry, such as the theory of the VC-dimension or
the regularity lemma, appear in these chapters.

e Geometric Ramsey theory (Chapters 3 and 9). Ramsey-type theorems
guarantee the existence of a certain “regular” subconfiguration in every
sufficiently large configuration; in our case we deal with geometric ob-
jects. One of the historically first results here is the theorem of Erdds
and Szekeres on convex independent subsets in every sufficiently large
point set.

e Polyhedral combinatorics and high-dimensional convezity (Chapters 12—
14). Two famous results are proved as a sample of polyhedral combina-
torics, one in graph theory (the weak perfect graph conjecture) and one in
theoretical computer science (on sorting with partial information). Then
the behavior of convex bodies in high dimensions is explored; the high-
lights include a theorem on the volume of an N-vertex convex polytope
in the unit ball (related to algorithmic hardness of volume approxima-
tion), measure concentration on the sphere, and Dvoretzky’s theorem on
almost-spherical sections of convex bodies.

o Representing finite metric spaces by coordinates (Chapter 15). Given an
n-point metric space, we would like to visualize it or at least make it com-
putationally more tractable by placing the points in a Euclidean space,
in such a way that the Euclidean distances approximate the given dis-
tances in the finite metric space. We investigate the necessary error of
such approximation. Such results are of great interest in several areas;
for example, recently they have been used in approximation algorithms
in combinatorial optimization (multicommodity flows, VLSI layout, and
others).

These topics surely do not cover all of discrete geometry, which is a rather
vague term anyway. The selection is (necessarily) subjective, and naturally
I preferred areas that I knew better and/or had been working in. (Unfortu-
nately, I have had no access to supernatural opinions on proofs as a more
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reliable guide.) Many interesting topics are neglected completely, such as the
wide area of packing and covering, where very accessible treatments exist,
or the celebrated negative solution by Kahn and Kalai of the Borsuk conjec-
ture, which I consider sufficiently popularized by now. Many more chapters
analogous to the fifteen of this book could be added, and each of the fifteen
chapters could be expanded into a thick volume. But the extent of the book,
as well as the time for its writing, are limited.

Exercises. The sections are complemented by exercises. The little framed
numbers indicate their difficulty: is routine, (5] may need quite a bright
idea. Some of the exercises used to be a part of homework assignments in my
courses and the classification is based on some experience, but for others it
is just an unreliable subjective guess. Some of the exercises, especially those
conveying important results, are accompanied by hints given at the end of
the book.

Additional results that did not fit into the main text are often included as
exercises, which saves much space. However, this greatly enlarges the danger
of making false claims, so the reader who wants to use such information may
want to check it carefully.

Sources and further reading. A great inspiration for this book project
and the source of much material was the book Combinatorial Geometry of
Pach and Agarwal [PA95]. Too late did I become aware of the lecture notes by
Ball [Bal97] on modern convex geometry; had I known these earlier I would
probably have hesitated to write Chapters 13 and 14 on high-dimensional
convexity, as I would not dare to compete with this masterpiece of mathe-
matical exposition. Ziegler’s book [Zie94] can be recommended for studying
convex polytopes. Many other sources are mentioned in the notes in each
chapter. For looking up information in discrete geometry, a good starting
point can be one of the several handbooks pertaining to the area: Handbook
of Convexr Geometry [GW93|, Handbook of Discrete and Computational Ge-
ometry [GO97], Handbook of Computational Geometry [SU00], and (to some
extent) Handbook of Combinatorics [GGLI5], with numerous valuable sur-
veys. Many of the important new results in the field keep appearing in the
journal Discrete and Computational Geometry.

Acknowledgments. For invaluable advice and/or very helpful comments on
preliminary versions of this book I would like to thank Micha Sharir, Giinter
M. Ziegler, Yuri Rabinovich, Pankaj K. Agarwal, Pavel Valtr, Martin Klazar,
Nati Linial, Gilinter Rote, Jdnos Pach, Keith Ball, Uli Wagner, Imre Barény,
Eli Goodman, Gyorgy Elekes, Johannes Blomer, Eva Matouskova, Gil Kalai,
Joram Lindenstrauss, Emo Welzl, Komei Fukuda, Rephael Wenger, Piotr In-
dyk, Sariel Har-Peled, Vojtéch Rodl, Géza Téth, Karoly Boréczky Jr., Rados
Radoi¢ié, Helena Nyklov4, Vojtéch Frangk, Jakub Simek, Avner Magen, Gre-
gor Baudis, and Andreas Marwinski (I apologize if I forgot someone; my notes
are not perfect, not to speak of my memory). Their remarks and suggestions
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allowed me to improve the manuscript considerably and to eliminate many of
the embarrassing mistakes. I thank David Kramer for a careful copy-editing
and finding many more mistakes (as well as offering me a glimpse into the
exotic realm of English punctuation). I also wish to thank everyone who par-
ticipated in creating the friendly and supportive environments in which I
have been working on the book.

Errors. If you find errors in the book, especially serious ones, I would
appreciate it if you would let me know (email: matousek@kam.mff . cuni.cz).
I plan to post a list of errors at http://www.ms.mff.cuni.cz/ "matousek.

Prague, July 2001 Jir{ Matousek
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Notation and Terminology

This section summarizes rather standard things, and it is mainly for reference.
More special notions are introduced gradually throughout the book. In order
to facilitate independent reading of various parts, some of the definitions are
even repeated several times.

If X is a set, | X| denotes the number of elements (cardinality) of X. If X
is a multiset, in which some elements may be repeated, then |X| counts each
element with its multiplicity.

The very slowly growing function log” z is defined by log* z =0 for x < 1
and log* z = 1 + log™*(log, z) for z > 1.

For a real number z, |z| denotes the largest integer less than or equal
to z, and [z] means the smallest integer greater than or equal to x. The
boldface letters R and Z stand for the real numbers and for the integers,
respectively, while R¢ denotes the d-dimensional Euclidean space. For a point
T = (T1,%2,.-.,24) € RY, ||z|| = v/23 + 22 + - - - + 22 is the Euclidean norm
of x, and for z,y € R4, (x,y) = z1y1 +T2y2 +- - - +T4yq is the scalar product.
Points of R? are usually considered as column vectors.

The symbol B(z,r) denotes the closed ball of radius r centered at = in
some metric space (usually in R with the Euclidean distance), i.e., the set
of all points with distance at most r from z. We write B™ for the unit ball
B(0,1) in R™. The symbol A denotes the boundary of a set A C R¢?, that
is, the set of points at zero distance from both A and its complement.

For a measurable set A C R%, vol(A) is the d-dimensional Lebesgue mea-
sure of A (in most cases the usual volume).

Let f and g be real functions (of one or several variables). The notation
f = O(g) means that there exists a number C such that |f] < C|g| for all
values of the variables. Normally, C should be an absolute constant, but if
f and g depend on some parameter(s) that we explicitly declare to be fixed
(such as the space dimension d), then C may depend on these parameters
as well. The notation f = Q(g) is equivalent to g = O(f), f(n) = o(g(n))
to limp0o(f(n)/g(n)) = 0, and f = O(g) means that both f = O(g) and
f=9(g).

For a random variable X, the symbol E[X] denotes the expectation of X,
and Prob[A] stands for the probability of an event A.
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Graphs are considered simple and undirected in this book unless stated
otherwise, so a graph G is a pair (V, E), where V is a set (the vertez set) and
E C (‘2/) is the edge set. Here (‘,g) denotes the set of all k-element subsets
of V. For a multigraph, the edges form a multiset, so two vertices can be
connected by several edges. For a given (multi)graph G, we write V(G) for
the vertex set and F(G) for the edge set. A complete graph has all possible

edges; that is, it is of the form (V, (‘2/)) A complete graph on n vertices is

denoted by K. A graph G is bipartite if the vertex set can be partitioned
into two subsets V; and Va, the (color) classes, in such a way that each edge
connects a vertex of V; to a vertex of V,. A graph G = (V', E') is a subgraph
of a graph G = (V,E) if V' C V and E' C E. We also say that G contains
a copy of H if there is a subgraph G’ of G isomorphic to H, where G’ and
H are isomorphic if there is a bijective map ¢:V(G') — V(H) such that
{u,v} € E(G') if and only if {p(u),p(v)} € E(H) for all u,v € V(G’). The
degree of a vertex v in a graph G is the number of edges of G containing v.
«An r-regular graph has all degrees equal to r. Paths and cycles are graphs as
in the following picture,

NS A OO0

paths cycles

and a path or cycle in G is a subgraph isomorphic to a path or cycle, respec-
tively. A graph G is connected if every two vertices can be connected by a
path in G.

We recall that a set X C R% is compact if and only if it is closed and
bounded, and that a continuous function f: X — R defined on a compact X
attains its minimum (there exists o € X with f(zg) < f(z) for all z € X).

The Cauchy-Schwarz inequality is perhaps best remembered in the form
(@,y) <l - llyll for all z,y € R™.

A real function f defined on an interval A C R (or, more generally, on a
convex set A C RY) is conver if f(tz + (1-t)y) < tf(z) + (1-t)f(y) for all
z,y € A and t € [0, 1]. Geometrically, the graph of f on [z,y] lies below the
segment connecting the points (z, f(x)) and (y, f(y)). If the second derivative
satisfies f(z) > O for all z in an (open) interval A C R, then f is convex
on A. Jensen’s inequality is a straightforward generalization of the definition
of convexity: f(t1x1 +taza+ - - +tn2n) < t1f(z1) +taf(z2) + -+ tnf(zn)
for all choices of nonnegative t; summing to 1 and all z;,...,z, € A. Or in
integral form, if u is a probability measure on A and f is convex on A, we have
f ( / azxdu(z ) < Juf 4 f(z) du(z). In the language of probability theory, if X
is a real random variable and f R — R is convex, then f(E[X]) < E[f(X)];
for example, (E[X])? < E[X?].
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Convexity

We begin with a review of basic geometric notions such as hyperplanes and
affine subspaces in R%, and we spend some time by discussing the notion
of general position. Then we consider fundamental properties of convex sets
in R?, such as a theorem about the separation of disjoint convex sets by a
hyperplane and Helly’s theorem.

1.1 Linear and Affine Subspaces, General Position

Linear subspaces. Let R¢ denote the d-dimensional Euclidean space. The
points are d-tuples of real numbers, z = (z1, Z2, ..., Z4)-

The space R is a vector space, and so we may speak of linear subspaces,
linear dependence of points, linear span of a set, and so on. A linear subspace
of R? is a subset closed under addition of vectors and under multiplication
by real numbers. What is the geometric meaning? For instance, the linear
subspaces of R? are the origin itself, all lines passing through the origin,
and the whole of R2. In R3, we have the origin, all lines and planes passing
through the origin, and R3.

Affine notions. An arbitrary line in R2, say, is not a linear subspace unless
it passes through 0. General lines are what are called affine subspaces. An
affine subspace of R® has the form z + L, where z € R? is some vector and L
is a linear subspace of R%. Having defined affine subspaces, the other “affine”
notions can be constructed by imitating the “linear” notions.

What is the affine hull of a set X C R?? It is the intersection of all affine
subspaces of R? containing X. As is well known, the linear span of a set X
can be described as the set of all linear combinations of points of X. What
is an affine combination of points ay,as,...,a, € R? that would play an
analogous role? To see this, we translate the whole set by —a,, so that a,
becomes the origin, we make a linear combination, and we translate back by
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+ay,. This yields an expression of the form 8; (a1 — a,) + B2(az — ay) + -+ +
Br(an—an)+an = fra1+foaz+- -+ PBn_10n_1+(1—=F1—Fo—- - —Pn_1)an,
where (1, ..., B, are arbitrary real numbers. Thus, an affine combination of
points ay, . ..,a, € R is an expression of the form

ayay + -+ anan, where a,...,a0n € Rand oy +---+a, =1.

Then indeed, it is not hard to check that the affine hull of X is the set of all
affine combinations of points of X.

The affine dependence of points ai,...,a, means that one of them can
be written as an affine combination of the others. This is the same as the

existence of real numbers a1, as,...a,, at least one of them nonzero, such
that both

aya; + agas + -+ +apa, =0and ay +ag + -+ a, =0.

(Note the difference: In an affine combination, the a; sum to 1, while in an
affine dependence, they sum to 0.)

Affine dependence of a4, ...,a, is equivalent to linear dependence of the
n—1 vectors a; —ay, a2 —Gn, . - ., Ap—1 — Gn- Therefore, the maximum possible
number of affinely independent points in R is d+1.

Another way of expressing affine dependence uses “lifting” one dimension
higher. Let b; = (a;,1) be the vector in R4*! obtained by appending a new
coordinate equal to 1 to a;; then ay, ..., a, are affinely dependent if and only
if b1,...,b, are linearly dependent. This correspondence of affine notions in
R? with linear notions in R%*! is quite general. For example, if we identify
R? with the plane z3 = 1 in R? as in the picture,

z3 =1

="

then we obtain a bijective correspondence of the k-dimensional linear sub-
spaces of R® that do not lie in the plane z3 = 0 with (k—1)-dimensional affine
subspaces of R2. The drawing shows a 2-dimensional linear subspace of R3
and the corresponding line in the plane z3 = 1. (The same works for affine
subspaces of R? and linear subspaces of R%*t! not contained in the subspace
Td+1 = O)

This correspondence also leads directly to extending the affine plane R?
into the projective plane: To the points of R? corresponding to nonhorizontal
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lines through 0 in R® we add points “at infinity,” that correspond to hori-
zontal lines through 0 in R3. But in this book we remain in the affine space
most of the time, and we do not use the projective notions.

Let ay,ay,...,aqs1 be points in R%, and let A be the d x d matrix with
a; — G441 as the ith column, ¢ = 1,2,...,d. Then ay,...,aq4+1 are affinely
independent if and only if A has d linearly independent columns, and this is
equivalent to det(A) # 0. We have a useful criterion of affine independence
using a determinant.

Affine subspaces of R¢ of certain dimensions have special names. A (d—1)-
dimensional affine subspace of R is called a hyperplane (while the word plane
usually means a 2-dimensional subspace of R? for any d). One-dimensional
subspaces are lines, and a k-dimensional affine subspace is often called a k-
flat.

A hyperplane is usually specified by a single linear equation of the form
a1z1+asx2+- - - +aqzyg = b. We usually write the left-hand side as the scalar
product {a,z). So a hyperplane can be expressed as the set {z € R%: {a,z) =
b} where a € R?\ {0} and b € R. A (closed) half-space in R? is a set
of the form {z € R% (a,z) > b} for some a € R?\ {0}; the hyperplane
{z € R%: {a,z) = b} is its boundary.

General k-flats can be given either as intersections of hyperplanes or as
affine images of R* (parametric expression). In the first case, an intersection
of k hyperplanes can also be viewed as a solution to a system Ax = b of linear
equations, where x € R? is regarded as a column vector, A is a k x d matrix,
and b € R*. (As a rule, in formulas involving matrices, we interpret points
of R? as column vectors.)

An affine mapping f: R* — R? has the form f:y — By+c for some d x k
matrix B and some ¢ € R‘fl, so it is a composition of a linear map with a
translation. The image of f is a k’-flat for some k' < min(k, d). This k¥’ equals
the rank of the matrix B.

General position. “We assume that the points (lines, hyperplanes,...) are
in general position.” This magical phrase appears in many proofs. Intuitively,
general position means that no “unlikely coincidences” happen in the consid-
ered configuration. For example, if 3 points are chosen in the plane without
any special intention, “randomly,” they are unlikely to lie on a common line.
For a planar point set in general position, we always require that no three
of its points be collinear. For points in R? in general position, we assume
similarly that no unnecessary affine dependencies exist: No k < d+1 points
lie in a common (k—2)-flat. For lines in the plane in general position, we
postulate that no 3 lines have a common point and no 2 are parallel.

The precise meaning of general position is not fully standard: It may
depend on the particular context, and to the usual conditions mentioned
above we sometimes add others where convenient. For example, for a planar
point set in general position we can also suppose that no two points have the
same z-coordinate.
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What conditions are suitable for including into a “general position” as-
sumption? In other words, what can be considered as an unlikely coincidence?
For example, let X be an n-point set in the plane, and let the coordinates of
the ith point be (z;,y;). Then the vector v(X) = (z1,%2,-- -, Tn, Y1,Y2, - - - »Yn)
can be regarded as a point of R2". For a configuration X in which z; = zo,
i.e., the first and second points have the same z-coordinate, the point v(X)
lies on the hyperplane {z, = x5} in R?". The configurations X where some
two points share the z-coordinate thus correspond to the union of (}) hy-
perplanes in R?". Since a hyperplane in R?" has (2n-dimensional) measure
zero, almost all points of R?" correspond to planar configurations X with all
the points having distinct z-coordinates. In particular, if X is any n-point
planar configuration and € > 0 is any given real number, then there is a con-
figuration X’, obtained from X by moving each point by distance at most ¢,
such that all points of X’ have distinct z-coordinates. Not only that: Almost
all small movements (perturbations) of X result in X’ with this property.

This is the key property of general position: Configurations in general
position lie arbitrarily close to any given configuration (and they abound
in any small neighborhood of any given configuration). Here is a fairly gen-
eral type of condition with this property. Suppose that a configuration X
is specified by a vector ¢t = (¢1,t2,...,tn) of m real numbers (coordinates).
The objects of X can be points in R¢, in which case m = dn and the t;
are the coordinates of the points, but they can also be circles in the plane,
with m = 3n and the t; expressing the center and the radius of each circle,
and so on. The general position condition we can put on the configuration
X is p(t) = p(t1,t2,...,tm) # 0, where p is some nonzero polynomial in m
variables. Here we use the following well-known fact (a consequence of Sard’s
theorem; see, e.g., Bredon [Bre93], Appendix C): For any nonzero m-variate
polynomial p(t1,...,tm), the zero set {t € R™: p(t) = 0} has measure 0 in
R™.

Therefore, almost all configurations X satisfy p(t) # 0. So any condition
that can be expressed as p(t) # 0 for a certain polynomial p in m real
variables, or, more generally, as p1(¢) # 0 or p2(¢) # 0 or ..., for finitely or
countably many polynomials p;,po, ..., can be included in a general position
assumption.

For example, let X be an n-point set in R%, and let us consider the con-
dition “no d+1 points of X lie in a common hyperplane.” In other words, no
d+1 points should be affinely dependent. As we know, the affine dependence
of d+1 points means that a suitable d X d determinant equals 0. This deter-
‘minant is a polynomial (of degree d) in the coordinates of these d+1 points.
Introducing one polynomial for every (d+1)-tuple of the points, we obtain
(441) polynomials such that at least one of them is 0 for any configuration X
with d+1 points in a common hyperplane. Other usual conditions for general
position can be expressed similarly.
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In many proofs, assuming general position simplifies matters consider-
ably. But what do we do with configurations Xy that are not in general
position? We have to argue, somehow, that if the statement being proved is
valid for configurations X arbitrarily close to our Xy, then it must be valid
for X itself, too. Such proofs, usually called perturbation arguments, are of-
ten rather simple, and almost always somewhat boring. But sometimes they
can be tricky, and one should not underestimate them, no matter how tempt-
ing this may be. A nontrivial example will be demonstrated in Section 5.5
(Lemma 5.5.4).

Exercises

1. Verify that the affine hull of a set X C R? equals the set of all affine
combinations of points of X. [2]

2. Let A be a 2 x 3 matrix and let b € R2. Interpret the solution of the
system Az = b geometrically (in most cases, as an intersection of two
planes) and discuss the possible cases in algebraic and geometric terms.
(2]

3. (a) What are the possible intersections of two (2-dimensional) planes
in R4? What is the “typical” case (general position)? What about two
hyperplanes in R4?

(b) Objects in R* can sometimes be “visualized” as objects in R® moving
in time (so time is interpreted as the fourth coordinate). Try to visualize
the intersection of two planes in R* discussed (a) in this way.

1.2 Convex Sets, Convex Combinations, Separation

Intuitively, a set is convex if its surface has no “dips”:
’-' not ;I]:.'ll\".'l'[] ir| a convex set

= "
{/ I 3 y )ll

b

4

1.2.1 Definition (Convex set). A set C C R? is convex if for every two
points z,y € C the whole segment xy is also contained in C. In other words,
for every t € [0, 1], the point tx + (1 — t)y belongs to C.

The intersection of an arbitrary family of convex sets is obviously convex.
So we can define the convez hull of a set X C R, denoted by conv(X), as the
intersection of all convex sets in R? containing X. Here is a planar example
with a finite X:

X oo conv(X)
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An alternative description of the convex hull can be given using convex
combinations.

1.2.2 Claim. A point = belongs to conv(X) if and only if there exist points
Z1,Z2,...T, € X and nonnegative real numbers ty,ts,...,t, with Z?zl t; =
1 such that z = Y- t;z;.

The expression Z?zl t;z; as in the claim is called a conver combination
of the points z1, z3,...,Z,. (Compare this with the definitions of linear and
affine combinations.)

Sketch of proof. Each convex combination of points of X must lie in
conv(X): For n = 2 this is by definition, and for larger n by induction.
Conversely, the set of all convex combinations obviously contains X, and it
is convex. ]

In R, it is sufficient to consider convex combinations involving at most
d+1 points:

1.2.3 Theorem (Carathéodory’s theorem). Let X C R?. Then each
point of conv(X) is a convex combination of at most d+1 points of X.

For example, in the plane, conv(X) is the union of all triangles with
vertices at points of X. The proof of the theorem is left as an exercise to the
subsequent section.

A basic result about convex sets is the separability of disjoint convex sets
by a hyperplane.

1.2.4 Theorem (Separation theorem). Let C,D C R? be convex sets
with C N D = @. Then there exists a hyperplane h such that C lies in one
of the closed half-spaces determined by h, and D lies in the opposite closed
half-space. In other words, there exist a unit vector a € R® and a number
b € R such that for all x € C we have {a,z) > b, and for all z € D we have
{a,z) <b.

If C and D are closed and at least one of them is bounded, they can be
separated strictly; in such a way that CNh=DnNh = 0.

In particular, a closed convex set can be strictly separated from a point.
This implies that the convex hull of a closed set X equals the intersection of
all closed half-spaces containing X.

Sketch of proof. First assume that C and D are compact (i.e., closed and
bounded). Then the Cartesian product C x D is a compact space, too, and
the distance function (z,y) ~ ||z — y|| attains its minimum on C' x D. That
is, there exist points p € C and g € D such that the distance of C and D
equals the distance of p and q.

The desired separating hyperplane h can be taken as the one perpendic-
ular to the segment pq and passing through its midpoint:
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|! II".I / h

It is easy to check that h indeed avoids both C' and D.

If D is compact and C closed, we can intersect C with a large ball and
get a compact set C’. If the ball is sufficiently large, then C and C’ have the
same distance to D. So the distance of C' and D is attained at some p € C’
and g € D, and we can use the previous argument.

For arbitrary disjoint convex sets C' and D, we choose a sequence C; C
Cy C (3 C --- of compact convex subsets of C with Uf:’zl C, = C. For
example, assuming that 0 € C, we can let C, be the intersection of the
closure of (1- %)C with the ball of radius n centered at 0. A similar sequence
D, C Dy C --- is chosen for D, and we let b, = {z € R% {(a,,z) = b,} be a
hyperplane separating C,, from D,,, where a,, is a unit vector and b,, € R.. The
sequence (b,)32; is bounded, and by compactness, the sequence of (d+1)-
component vectors (an, b,) € R%*t! has a cluster point (a,b). One can verify,
by contradiction, that the hyperplane h = {x € R%: (a,z) = b} separates C
and D (nonstrictly). O

The importance of the separation theorem is documented by its presence
in several branches of mathematics in various disguises. Its home territory is
probably functional analysis, where it is formulated and proved for infinite-
dimensional spaces; essentially it is the so-called Hahn—Banach theorem. The
usual functional-analytic proof is different from the one we gave, and in a
way it is more elegant and conceptual. The proof sketched above uses more
special properties of R?, but it is quite short and intuitive in the case of
compact C and D.

Connection to linear programming. A basic result in the theory of
linear programming is the Farkas lemma. It is a special case of the duality of
linear programming (discussed in Section 10.1) as well as the key step in its
proof.

1.2.5 Lemma (Farkas lemma, one of many versions). For every d x n
real matrix A, exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative
solution z € R™ (all components of z are nonnegative and at least one
of them is strictly positive).
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(ii) There exists a y € R? such that yT A is a vector with all entries strictly
negative. Thus, if we multiply the jth equation in the system Ax = 0 by
y; and add these equations together, we obtain an equation that obviously
has no nontrivial nonnegative solution, since all the coefficients on the
left-hand sides are strictly negative, while the right-hand side is 0.

Proof. Let us see why this is yet another version of the separation theorem.
Let V C R? be the set of n points given by the column vectors of the
matrix A. We distinguish two cases: Either 0 € conv(V') or 0 & conv(V).

In the former case, we know that 0 is a convex combination of the points
of V, and the coefficients of this convex combination determine a nontrivial
nonnegative solution to Az = 0.

In the latter case, there exists a hyperplane strictly separating V from 0,
i.e., a unit vector y € R? such that (y,v) < (y,0) = 0 for each v € V. This is
just the y from the second alternative in the Farkas lemma. a

Bibliography and remarks. Most of the material in this chapter is
quite old and can be found in many surveys and textbooks. Providing
historical accounts of such well-covered areas is not among the goals
of this book, and so we mention only a few references for the specific
results discussed in the text and add some remarks concerning related
results.

The concept of convexity and the rudiments of convex geometry
have been around since antiquity. The initial chapter of the Handbook
of Convex Geometry [GW93] succinctly describes the history, and the
handbook can be recommended as the basic source on questions re-
lated to convexity, although knowledge has progressed significantly
since its publication.

For an introduction to functional analysis, including the Hahn—
Banach theorem, see Rudin [Rud91], for example. The Farkas lemma
originated in [Far94] (nineteenth century!). More on the history of the
duality of linear programming can be found, e.g., in Schrijver’s book
[Sch86].

As for the origins, generalizations, and applications of Carathéo-
dory’s theorem, as well as of Radon’s lemma and Helly’s theorem dis-
cussed in the subsequent sections, a recommendable survey is Eckhoff
[Eck93], and an older well-known source is Danzer, Griinbaum, and
Klee [DGK63].

Carathéodory’s theorem comes from the paper [Car07], concerning
power series and harmonic analysis. A somewhat similar theorem, due
to Steinitz [Stel6], asserts that if z lies in the interior of conv(X)
for an X C RY, then it also lies in the interior of conv(Y") for some
Y C X with |Y| < 2d. Bonnice and Klee [BK63] proved a common
generalization of both these theorems: Any k-interior point of X is
a k-interior point of Y for some Y C X with at most max(2k,d+1)
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points, where z is called a k-interior point of X if it lies in the relative
interior of the convex hull of some k+1 affinely independent points
of X.

Exercises

i

Give a detailed proof of Claim 1.2.2. [2]

Write down a detailed proof of the separation theorem.

Find an example of two disjoint closed convex sets in the plane that are
not strictly separable.

Let f:R? — RF be an affine map.

(a) Prove that if C C R? is convex, then f(C) is convex as well. Is the
preimage of a convex set always convex? [2]

(b) For X C R arbitrary, prove that conv(f(X)) = conv(f(X)).

Let X C R%. Prove that diam(conv(X)) = diam(X), where the diameter
diam(Y) of a set Y is sup{||z — y||: z,y € Y}.

A set C C R is a convex cone if it is convex and for each x € C, the ray
07 is fully contained in C.

(a) Analogously to the convex and affine hulls, define the appropriate
“conic hull” and the corresponding notion of “combination” (analogous
to the convex and affine combinations).

(b) Let C be a convex cone in R% and b ¢ C a point. Prove that there
exists a vector a with (a,z) > 0 for all z € C and (a,b) < 0.
(Variations on the Farkas lemma) Let A be a d x n matrix and let b € R
(a) Prove that the system Az = b has a nonnegative solution z € R" if
and only if every y € R satisfying yT A > 0 also satisfies y7b > 0.
(b) Prove that the system of inequalities Az < b has a nonnegative
solution z if and only if every nonnegative y € R? with yTA > 0 also
satisfies y7b > 0.

. (a) Let C C R? be a compact convex set with a nonempty interior, and

let p € C be an interior point. Show that there exists a line £ passing
through p such that the segment ¢N C is at least as long as any segment
parallel to £ and contained in C. [4]

(b) Show that (a) may fail for C' compact but not convex. [1

1.3 Radon’s Lemma and Helly’s Theorem

Carathéodory’s theorem from the previous section, together with Radon’s
lemma and Helly’s theorem presented here, are three basic properties of con-
vexity in R? involving the dimension. We begin with Radon’s lemma.

1.3.1 Theorem (Radon’s lemma). Let A be a set of d+2 points in R?.
Then there exist two disjoint subsets A1, A2 C A such that

conv(A;) Nconv(Az) # 0.
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A point z € conv(A;)Nconv(Asz), where A; and A, are as in the theorem,
is called a Radon point of A, and the pair (A4;, Ag) is called a Radon partition
of A (it is easily seen that we can require A; U A = A).

Here are two possible cases in the plane:

L] L ]
Proof. Let A = {a1,as,...,aq4+2}. These d+2 points are necessarily affinely
dependent. That is, there exist real numbers ay, ..., @412, not all of them 0,

such that Zf:f a; =0 and Zf:lz aja; = 0.

Set P = {i: a; > 0} and N = {i: @; < 0}. Both P and N are nonempty.
We claim that P and N determine the desired subsets. Let us put A4, =
{a;: i € P} and A2 = {a;: i € N}. We are going to exhibit a point = that is
contained in the convex hulls of both these sets.

Put § =}, pa;; we also have S = — .y ;. Then we define

x:Z%ai. (1.1)

ieP

. d+2
Since ZZ:I aia; =0=73,cposa; + Y,y x;a;, we also have

x:Z_Taiai. (1.2)

iEN

The coefficients of the a; in (1.1) are nonnegative and sum to 1, so x is a
convex combination of points of A;. Similarly, (1.2) expresses x as a convex
combination of points of As. ]

Helly’s theorem is one of the most famous results of a combinatorial nature
about convex sets.

1.3.2 Theorem (Helly’s theorem). Let C1,Cs,...,C, be convex sets in
R? n > d+1. Suppose that the intersection of every d+1 of these sets is
nonempty. Then the intersection of all the C; is nonempty.

The first nontrivial case states that if every 3 among 4 convex sets in
the plane intersect, then there is a point common to all 4 sets. This can be
proved by an elementary geometric argument, perhaps distinguishing a few
cases, and the reader may want to try to find a proof before reading further.

In a contrapositive form, Helly’s theorem guarantees that whenever
C1,Cs,...,C, are convex sets with ﬂ?zl C; = 0, then this is witnessed by
some at most d+1 sets with empty intersection among the Cj;. In this way,
many proofs are greatly simplified, since in planar problems, say, one can deal
with 3 convex sets instead of an arbitrary number, as is amply illustrated in
the exercises below.
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It is very tempting and quite usual to formulate Helly’s theorem as fol-
lows: “If every d+1 among n convex sets in R® intersect, then all the sets
intersect.” But, strictly speaking, this is false, for a trivial reason: For d > 2,
the assumption as stated here is met by n = 2 disjoint convex sets.

Proof of Helly’s theorem. (Using Radon’s lemma.)} For a fixed d, we
proceed by induction on n. The case n = d+1 is clear, so we suppose that
n > d+2 and that the statement of Helly’s theorem holds for smaller n.
Actually, n = d+2 is the crucial case; the result for larger n follows at once
by a simple induction.

Consider sets C1,Cs,...,C, satisfying the assumptions. If we leave out
any one of these sets, the remaining sets have a nonempty intersection by
the inductive assumption. Let us fix a point a; € [;; C; and consider the
points ai,as,...,a4+2. By Radon’s lemma, there exist disjoint index sets
I,I, c{1,2,...,d+2} such that

conv({a;: i € I; }) Nconv({a;: i € Io}) #0.

We pick a point x in this intersection. The following picture illustrates the
cased=2and n =4:

a
02 01
o a3
aq x
G
ds
Cs Cy

We claim that z lies in the intersection of all the C;. Consider some i €
{1,2,...,n}; theni & I or ¢ € I,. In the former case, each a; with j € I; lies
in C;, and so = € conv({a;: j € I;}) C C;. For ¢ g I, we similarly conclude
that z € conv({a;: j € Ib}) C C;. Therefore, z € (i, C;. o

An infinite version of Helly’s theorem. If we have an infinite collection
of convex sets in R? such that any d+1 of them have a common point, the
entire collection still need not have a common point. Two examples in R! are
the families of intervals {(0,1/n): n = 1,2,...} and {[n,00): n = 1,2,...}.
The sets in the first example are not closed, and the second example uses
unbounded sets. For compact (i.e., closed and bounded) sets, the theorem
holds:

1.3.3 Theorem (Infinite version of Helly’s theorem). Let C be an ar-
bitrary infinite family of compact convex sets in R® such that any d+1 of the
sets have a nonempty intersection. Then all the sets of C have a nonempty
intersection.
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Proof. By Helly’s theorem, any finite subfamily of C has a nonempty inter-
section. By a basic property of compactness, if we have an arbitrary family
of compact sets such that each of its finite subfamilies has a nonempty inter-
section, then the entire family has a nonempty intersection. O

Several nice applications of Helly’s theorem are indicated in the exercises
below, and we will meet a few more later in this book.

Bibliography and remarks. Helly proved Theorem 1.3.2 in 1913
and communicated it to Radon, who published a proof in [Rad21]. This
proof uses Radon’s lemma, although the statement wasn’t explicitly
formulated in Radon’s paper. References to many other proofs and
generalizations can be found in the already mentioned surveys [Eck93]
and [DGK63].

Helly’s theorem inspired a whole industry of Helly-type theorems.
A family B of sets is said to have Helly number h if the following holds:
Whenever a finite subfamily F C B is such that every h or fewer sets
of F have a common point, then (| F # 0. So Helly’s theorem says
that the family of all convex sets in R? has Helly number d+1. More
generally, let P be some property of families of sets that is hereditary,
meaning that if F has property P and F’ C F, then ' has P as well.
A family B is said to have Helly number h with respect to P if for
every finite F C B, all subfamilies of F of size at most h having P
implies F having P. That is, the absence of P is always witnessed by
some at most h sets, so it is a “local” property.

Exercises

1. Prove Carathéodory’s theorem (you may use Radon’s lemma). [4]

2. Let K C R? be a convex set and let Cy,...,Cn, C R% n > d+1, be
convex sets such that the intersection of every d+1 of them contains a
translated copy of K. Prove that then the intersection of all the sets C;
also contains a translated copy of K. [2]

This result was noted by Vincensini [Vin39] and by Klee [Kle53].

3. Find an example of 4 convex sets in the plane such that the intersection
of each 3 of them contains a segment of length 1, but the intersection of
all 4 contains no segment of length 1.

4. A strip of width w is a part of the plane bounded by two parallel lines at
distance w. The width of a set X C R? is the smallest width of a strip
containing X.

(a) Prove that a compact convex set of width 1 contains a segment of
length 1 of every direction.

(b) Let {C1,C%,...,Cr} be closed convex sets in the plane, n > 3, such
that the intersection of every 3 of them has width at least 1. Prove that
N, C; has width at least 1.
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10.

The result as in (b), for arbitrary dimension d, was proved by Sallee
[Sal75], and a simple argument using Helly’s theorem was noted by Buch-
man and Valentine [BV82).

. Statement: Each set X C R? of diameter at most 1 (i.e., any 2 points

have distance at most 1) is contained in some disc of radius 1/+/3.

(a) Prove the statement for 3-element sets X. [2]

(b) Prove the statement for all finite sets X. [2]

(c) Generalize the statement to R%: determine the smallest r = r(d) such
that every set of diameter 1 in R is contained in a ball of radius r (prove
your claim).

The result as in (c) is due to Jung; see [DGK63].

. Let C c R? be a compact convex set. Prove that the mirror image of C

can be covered by a suitable translate of C blown up by the factor of dj
that is, there is an z € R with —C C z + dC.

. (a) Prove that if the intersection of each 4 or fewer among convex sets

Ci,...,Cn C R? contains a ray then {0}, C; also contains a ray. [4

(b) Show that the number 4 in (a) cannot be replaced by 3. [2]

This result, and an analogous one in R? with the Helly number 2d, are
due to Katchalski [Kat78].

For a set X C R? and a point = € X, let us denote by V(z) the set of all
points y € X that can “see” x, i.e., points such that the segment zy is
contained in X. The kernel of X is defined as the set of all points x € X
such that V(z) = X. A set with a nonempty kernel is called star-shaped.
(a) Prove that the kernel of any set is convex.

(b) Prove that if V(z) NV (y) NV (z) # B for every z,y,2z € X and X is
compact, then X is star-shaped. That is, if every 3 paintings in a (planar)
art gallery can be seen at the same time from some location (possibly
different for different triples of paintings), then all paintings can be seen
simultaneously from somewhere. If it helps, assume that X is a polygon.
[5]

(c) Construct a nonempty set X C R? such that each of its finite subsets
can be seen from some point of X but X is not star-shaped.

The result in (b), as well as the d-dimensional generalization (with ev-
ery d+1 regions V(z) intersecting), is called Krasnosel'skii’s theorem; see
[Eck93] for references and related results.

. In the situation of Radon’s lemma (A is a (d+2)-point set in R%), call

a point £ € R?% a Radon point of A if it is contained in convex hulls of
two disjoint subsets of A. Prove that if A is in general position (no d+1
points affinely dependent), then its Radon point is unique.

(a) Let X,Y C R? be finite point sets, and suppose that for every subset
S € X UY of at most 4 points, S N X can be separated (strictly) by a
line from SNY. Prove that X and Y are line-separable.

(b) Extend (a) to sets X,Y C RY, with |S| < d+2. [E]

The result (b) is called Kirchberger’s theorem [Kir03).
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1.4 Centerpoint and Ham Sandwich

We prove an interesting result as an application of Helly’s theorem.

1.4.1 Definition (Centerpoint). Let X be an n-point set in R%. A point
z € RY is called a centerpoint of X if each closed half-space containing x

contains at least 737 points of X.

Let us stress that one set may generally have many centerpoints, and a
centerpoint need not belong to X.

The notion of centerpoint can be viewed as a generalization of the me-
dian of one-dimensional data. Suppose that z1,...,z, € R are results of
measurements of an unknown real parameter x. How do we estimate x from
the ;7 We can use the arithmetic mean, but if one of the measurements is
completely wrong (say, 100 times larger than the others), we may get quite
a bad estimate. A more “robust” estimate is a median, i.e., a point x such
that at least § of the x; lie in the interval (—oo, ] and at least & of them lie
in [z, 00). The centerpoint can be regarded as a generalization of the median
for higher-dimensional data.

In the definition of centerpoint we could replace the fraction # by some
other parameter a € (0,1). For a > ﬁ, such an “a-centerpoint” need not
always exist: Take d+1 points in general position for X. With a =
the definition above, a centerpoint always exists, as we prove next.

Centerpoints are important, for example, in some algorithms of divide-
and-conquer type, where they help divide the considered problem into smaller
subproblems. Since no really efficient algorithms are known for finding
“exact” centerpoints, the algorithms often use a-centerpoints with a suit-
able a < 713, which are easier to find.

1 .
a+1 as 1m

1.4.2 Theorem (Centerpoint theorem). Each finite point set in R? has
at least one centerpoint.

Proof. First we note an equivalent definition of a centerpoint: x is a cen-
terpoint of X if and only if it lies in each open half-space v such that
X N~y| > ﬁ n.

We would like to apply Helly’s theorem to conclude that all these open
half-spaces intersect. But we cannot proceed directly, since we have infinitely
many half-spaces and they are open and unbounded. Instead of such an open
half-space «, we thus consider the compact convex set conv{X N+vy) C ~.

conviy \ |



1.4 Centerpoint and Ham Sandwich 15

Letting v run through all open half-spaces v with [X Ny| > #‘ll n, we obtain
a family C of compact convex sets. Each of them contains more than ﬁin
points of X, and so the intersection of any d+1 of them contains at least
one point of X. The family C consists of finitely many distinct sets (since X
bas finitely many distinct subsets), and so [C # 0 by Helly’s theorem. Each
point in this intersection is a centerpoint. O

In the definition of a centerpoint we can regard the finite set X as defining
a distribution of mass in R%. The centerpoint theorem asserts that for some
point z, any half-space containing x encloses at least a% of the total mass.
It is not difficult to show that this remains valid for continuous mass distri-

butions, or even for arbitrary Borel probability measures on R¢ (Exercise 1).

Ham-sandwich theorem and its relatives. Here is another important
result, not much related to convexity but with a flavor resembling the cen-
terpoint theorem.

1.4.3 Theorem (Ham-sandwich theorem). Every d finite sets in R? can
be simultaneously bisected by a hyperplane. A hyperplane h bisects a finite
set A if each of the open half-spaces defined by h contains at most ||A|/2]
points of A.

This theorem is usually proved via continuous mass distributions using
a tool from algebraic topology: the Borsuk—Ulam theorem. Here we omit a
proof.

Note that if A; has an odd number of points, then every h bisecting A;
passes through a point of A;. Thus if A,,..., A4 all have odd sizes and their
union is in general position, then every hyperplane simultaneously bisecting
them is determined by d points, one of each A;. In particular, there are only
finitely many such hyperplanes.

Again, an analogous ham-sandwich theorem holds for arbitrary d Borel
probability measures in R9.

Center transversal theorem. There can be beautiful new things to dis-
cover even in well-studied areas of mathematics. A good example is the fol-
lowing recent result, which “interpolates” between the centerpoint theorem
and the ham-sandwich theorem.

1.4.4 Theorem (Center transversal theorem). Let 1 < k < d and let
Ay, A, ..., Ax be finite point sets in R%. Then there exists a (k—1)-flat f
such that for every hyperplane h containing f, both the closed half-spaces

defined by h contain at least z7——5|A;| points of A;, i =1,2,...,k.

The ham-sandwich theorem is obtained for ¥ = d and the centerpoint
theorem for £k = 1. The proof, which we again have to omit, is based on a
result of algebraic topology, too, but it uses a considerably more advanced
machinery than the ham-sandwich theorem. However, the weaker result with

1 . 1 . . .
747 instead of ;- is easy to prove; see Exercise 2.
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Bibliography and remarks. The centerpoint theorem was es-
tablished by Rado [Rad47]. According to Steinlein’s survey [Ste85],
the ham-sandwich theorem was conjectured by Steinhaus (who also
invented the popular 3-dimensional interpretation, namely, that the
ham, the cheese, and the bread in any ham sandwich can be simulta-
neously bisected by a single straight motion of the knife) and proved
by Banach. The center transversal theorem was found by Dolnikov
[Dol92] and, independently, by Zivaljevié and Vreéica [ZV90].

Significant effort has been devoted to efficient algorithms for find-
ing (approximate) centerpoints and ham-sandwich cuts (i.e., hyper-
planes as in the ham-sandwich theorem). In the plane, a ham-sandwich
cut for two n-point sets can be computed in linear time (Lo, Matousek,
and Steiger [LMS94)). In a higher but fixed dimension, the complexity
of the best exact algorithms is currently slightly better than O(n?~1).
A centerpoint in the plane, too, can be found in linear time (Jadhav
and Mukhopadhyay [JM94]). Both approximate ham-sandwich cuts
(in the ratio 1 : 14¢ for a fixed ¢ > 0) and approximate centerpoints
((ﬁ—a)—centerpoints) can be computed in time O(n) for every fixed
dimension d and every fixed € > 0, but the constant depends expo-
nentially on d, and the algorithms are impractical if the dimension is
not quite small. A practically efficient randomized algorithm for com-
puting approximate centerpoints in high dimensions (a-centerpoints
with o ~ 1/d?) was given by Clarkson, Eppstein, Miller, Sturtivant,
and Teng [CEM™96].

Exercises

1. (Centerpoints for general mass distributions)
(a) Let u be a Borel probability measure on R?; that is, u(R%) = 1 and
each open set is measurable. Show that for each open half-space v with
u(y) > t there exists a compact set C C v with u(C) > t. [2
(b) Prove that each Borel probability measure in R? has a centerpoint
(use (a) and the infinite Helly’s theorem). [2]

2. Prove that for any k finite sets Ay,..., Ay C R%, where 1 < k < d, there
exists a (k—1)-flat such that every hyperplane containing it has at least
? | A;| points of A; in both of its closed half-spaces foralli =1,2,..., k.
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Lattices and Minkowski’s
Theorem

This chapter is a quick excursion into the geometry of numbers, a field where
number-theoretic results are proved by geometric arguments, often using
properties of convex bodies in R?. We formulate the simple but beautiful
theorem of Minkowski on the existence of a nonzero lattice point in every
symmetric convex body of sufficiently large volume. We derive several con-
sequences, concluding with a geometric proof of the famous theorem of La-
grange claiming that every natural number can be written as the sum of at
most 4 squares.

2.1 Minkowski’s Theorem

In this section we consider the integer lattice Z¢, and so a lattice point is a
point in R? with integer coordinates. The following theorem can be used in
many interesting situations to establish the existence of lattice points with
certain properties.

2.1.1 Theorem (Minkowski’s theorem). Let C C R? be symmetric
(around the origin, ie., C = —C), convex, bounded, and suppose that
vol(C) > 2¢. Then C contains at least one lattice point different from 0.

Proof. We put ¢’ = 3C = {}z: z € C}.

Claim: There exists a nonzero integer vector v € Z2 \ {0} such that C' N
(C' +v) # B; i.e., C’' and a translate of C’ by an integer vector intersect.

Proof. By contradiction; suppose the claim is false. Let R be a large
integer number. Consider the family C of translates of C’ by the
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integer vectors in the cube [~ R, R]%: C = {C’'+v: v € [-R, R]*NZ4},
as is indicated in the drawing (C is painted in gray).

Each such translate is disjoint from C’, and thus every two of these
translates are disjoint as well. They are all contained in the enlarged
cube K = [-R — D, R + D]¢, where D denotes the diameter of C'.
Hence

vol(K) = (2R + 2D)? > |C| vol(C") = (2R + 1)¢vol(C"),

and 4
2D -1
(CY< [1+—=—) .
vol(€) < ( + 2R+1)

The expression on the right-hand side is arbitrarily close to 1 for
sufficiently large R. On the other hand, vol(C’) = 274 vol(C) > 1 is
a fixed number exceeding 1 by a certain amount independent of R,
a contradiction. The claim thus holds. |

Now let us fix a v € Z% as in the claim and let us choose a point = €
C’'N(C’" +v). Then we have z—v € C’, and since C' is symmetric, we obtain
v—2a € C'. Since ' is convex, the midpoint of the segment z(v — z) lies in
C’ too, and so we have 3z + (v — z) = 2v € C’. This means that v € C,
which proves Minkowski’s theorem. |

2.1.2 Example (About a regular forest). Let K be a circle of diameter
26 (meters, say) centered at the origin. Trees of diameter 0.16 grow at each
lattice point within K except for the origin, which is where you are standing.
Prove that you cannot see outside this miniforest.
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Proof. Suppose than one could see outside along some line £ passing through
the origin. This means that the strip S of width 0.16 with ¢ as the middle
line contains no lattice point in K except for the origin. In other words, the
symmetric convex set C' = KNS contains no lattice points but the origin. But
as is easy to calculate, vol(C') > 4, which contradicts Minkowski’s theorem.
a

2.1.3 Proposition (Approximating an irrational number by a frac-
tion). Let o € (0,1) be a real number and N a natural number. Then there
exists a pair of natural numbers m,n such that n < N and

m 1
o= 2l <o
This proposition implies that there are infinitely many pairs m,n such
that | — 22| < 1/n? (Exercise 4). This is a basic and well-known result
in elementary number theory. It can also be proved using the pigeonhole
principle.
The proposition has an analogue concerning the approximation of several

numbers o, . .., oy by fractions with a common denominator (see Exercise 5),
and there a proof via Minkowski’s theorem seems to be the simplest.

Proof of Proposition 2.1.3. Consider the set
C:{(x,y)ERQ: ~N-1<z<N+1llaz—y|< %}
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This is a symmetric convex set of area (2N +1)% > 4, and therefore it con-
tains some nonzero integer lattice point (n, m). By symmetry, we may assume
n > 0. The definition of C gives n < N and |an — m| < +. In other words,

m

1
Ia—;|<m. O

Bibliography and remarks. The name “geometry of numbers”
was coined by Minkowski, who initiated a systematic study of this
field (although related ideas appeared in earlier works). He proved
Theorem 2.1.1, in a more general form mentioned later on, in 1891
(see [Min96]). His first application was a theorem on simultaneously
making linear forms small (Exercise 2.2.4). While geometry of numbers
originated as a tool in number theory, for questions in Diophantine
approximation and quadratic forms, today it also plays a significant
role in several other diverse areas, such as coding theory, cryptography,
the theory of uniform distribution, and numerical integration.

Theorem 2.1.1 is often called Minkowski’s first theorem. What is,
then, Minkowski’s second theorem? We answer this natural question
in the notes to Section 2.2, where we also review a few more of the
basic results in the geometry of numbers and point to some interesting
connections and directions of research.

Most of our exposition in this chapter follows a similar chapter in
Pach and Agarwal [PA95]. Older books on the geometry of numbers
are Cassels [Casb9] and Gruber and Lekkerkerker [GL87]. A pleasant
but somewhat aged introduction is Siegel [Sie89]. The Gruber [Gru93]
provides a concise recent overview.

Exercises

1.

2.

Prove: If C C R? is convex, symmetric around the origin, bounded, and
such that vol(C) > k2%, then C contains at least 2k lattice points. [2]
By the method of the proof of Minkowski’s theorem, show the following
result (Blichtfeld; Van der Corput): If S C R¢ is measurable and vol(S) >
k, then there are points sy, s2,...,5; € S with all 5, —s; € Z41<4,j<
k.

. Show that the boundedness of C' in Minkowski’s theorem is not really

necessary. [1]

(a) Verify the claim made after Example 2.1.3, namely, that for any
irrational o there are infinitely many pairs m,n such that |@ — m/n| <
1/n2.

(b) Prove that for a = v/2 there are only finitely many pairs m,n with
la —m/n| < 1/4n?. 2

(c) Show that for any algebraic irrational number «a (i.e., a root of a
univariate polynomial with integer coefficients) there exists a constant D
such that |@ — m/n| < 1/nP holds for finitely many pairs (m,n) only.
Conclude that, for example, the number 52, 2% is not algebraic. [&]
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5. (a) Let a1,z € (0,1) be real numbers. Prove that for a given N € N
there exist m1,mg,n € N, n < N, such that |o; — | < ﬁ, i=1,2.
(4]
(b) Formulate and prove an analogous result for the simultaneous ap-
proximation of d real numbers by rationals with a common denominator.
(2] (This is a result of Dirichlet [Dir42].)

6. Let K C R? be a compact convex set of area o and let x be a point
chosen uniformly at random in [0,1)2.
(a) Prove that the expected number of points of Z2? in the set K + z
equals o.
(b) Show that with probability at least 1 — @, K + = contains no point
of Z2.

2.2 General Lattices

Let 21, 22, .. ., zq be a d-tuple of linearly independent vectors in R%. We define
the lattice with basis {z1, 22,...,24} as the set of all linear combinations of
the z; with integer coefficients; that is,

A= A(Z]_,ZQ, e ,Zd) = {ilzl + 920 + -+ - + ig24: (il,ig, .. .,id) S Zd}.

Let us remark that this lattice has in general many different bases. For in-
stance, the sets {(0,1),(1,0)} and {(1,0), (3,1)} are both bases of the “stan-
dard” lattice Z2.

Let us form a d x d matrix Z with the vectors z1,..., 24 as columns. We
define the determinant of the lattice A = A(21,22,...,24) as det A = | det Z|.
Geometrically, det A is the volume of the parallelepiped {121 +agze +-- -+
agzg: o, .. .,aq € [0,1]}:

(the proof is left to Exercise 1). The number det A is indeed a property of the
lattice A (as a point set), and it does not depend on the choice of the basis
of A (Exercise 2). It is not difficult to show that if Z is the matrix of some
basis of A, then the matrix of every basis of A has the form BU, where U is
an integer matrix with determinant +1.
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2.2.1 Theorem (Minkowski’s theorem for general lattices). Let A be
a lattice in R, and let C C R¢ be a symmetric convex set with vol(C) >
2¢det A. Then C contains a point of A different from 0.

Proof. Let {z1,...,24} be a basis of A. We define a linear mapping f: R? —
Re by f(z1,%2,...,24) = T121 + Zazz +- - - + Tazq. Then f is a bijection and
A = f(Z%). For any convex set X, we have vol(f(X)) = det(A)vol(X).
(Sketch of proof: This holds if X is a cube, and a convex set can be ap-
proximated by a disjoint union of sufficiently small cubes with arbitrary
precision.) Let us put C' = f~(C). This is a symmetric convex set with
vol(C’") = vol(C)/det A > 2¢. Minkowski’s theorem provides a nonzero vec-
tor v € C'NZ4, and f(v) is the desired point as in the theorem. o

A seemingly more general definition of a lattice. What if we consider
integer linear combinations of more than d vectors in R?? Some caution is
necessary: If we take d = 1 and the vectors v; = (1), v = (v/2), then
the integer linear combinations i;v; + i3v2 are dense in the real line (by
Example 2.1.3), and such a set is not what we would like to call a lattice.

In order to exclude such pathology, we define a discrete subgroup of R?
as a set A C R? such that whenever z,y € A, then also z — y € A, and such
that the distance of any two distinct points of A is at least d, for some fixed
positive real number § > 0.

It can be shown, for instance, that if vy, v, ..., v, € R® are vectors with
rational coordinates, then the set A of all their integer linear combinations
is a discrete subgroup of R? (Exercise 3). As the following theorem shows,
any discrete subgroup of R? whose linear span is all of R® is a lattice in the
sense of the definition given at the beginning of this section.

2.2.2 Theorem (Lattice basis theorem). Let A C R? be a discrete
subgroup of R% whose linear span is R%. Then A has a basis; that is,

there exist d linearly independent vectors zi,z,...,zqg € R® such that
A= A(ZI,ZQ, ‘e ,Zd).

Proof. We proceed by induction. For some ¢, 1 < i < d+1, suppose that
linearly independent vectors zi,z9,...,2;—3 € A with the following prop-
erty have already been constructed. If F;_; denotes the (i—1)-dimensional
subspace spanned by 21,...,2%;—1, then all points of A lying in F;_; can be
written as integer linear combinations of 21, ..., z;_1. For i = d+1, this gives
the statement of the theorem.

So consider an ¢ < d. Since A generates Rd, there exists a vector w € A
not lying in the subspace F;_;. Let P be the i-dimensional parallelepiped
determined by 21, 22, ...,2;—1 and by w: P = {ay21 +agzo+ -+ ;1251 +
a;w: 0q,...,a; € [0,1]}. Among all the (finitely many) points of A lying in
P but not in F;_1, choose one nearest to F;_; and call it 2;, as in the picture:
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Note that if the points of AN P are written in the form a2z + agze + -+ +
Qi_1zi_1 + a;w, then z; is one with the smallest «;. It remains to show that

21,22, ..., 2; have the required property.
So let v € A be a point lying in F; (the linear span of zj,...,z). We
can write v = (121 + B222 + - - - + B;z; for some real numbers Fq,..., ;. Let

7v; be the fractional part of §;, j = 1,2,...,%; that is, 7; = 8; — | 5;]. Put
v/ =121 + Y222 + - -+ + 732 This point also lies in A (since v and v’ differ
by an integer linear combination of vectors of A). We have 0 < 7; < 1, and
hence v’ lies in the parallelepiped P. Therefore, we must have «; = 0, for
otherwise, v’ would be nearer to F;_; than z;. Hence v' € AN F;_;, and by
the inductive hypothesis, we also get that all the other «; are 0. So all the g;
are in fact integer coefficients, and the inductive step is finished. ]

Therefore, a lattice can also be defined as a full-dimensional discrete sub-
group of RY.

Bibliography and remarks. First we mention several fundamental
theorems in the “classical” geometry of numbers.

Lattice packing and the Minkowski~Hlawka theorem. For a compact
C C R4, the lattice constant A(C) is defined as min{det(A): ANC =
{0}}, where the minimum is over all lattices A in R (it can be shown
by a suitable compactness argument, known as the compactness theo-
rem of Mahler, that the minimum is attained). The ratio vol(C)/A(C)
is the smallest number D = D(C) for which the Minkowski-like re-
sult holds: Whenever det(A) > D, we have C N A # {0}. It is also
easy to check that 27¢D(C) equals the maximum density of a lattice
packing of C; i.e., the fraction of R? that can be filled by the set
C + A for some lattice A such that all the translates C + v, v € A,
have pairwise disjoint interiors. A basic result (obtained by an aver-
aging argument) is the Minkowski~Hlawka theorem, which shows that
D > 1 for all star-shaped compact sets C. If C is star-shaped and
symmetric, then we have the improved lower bound (better packing)
D > 2¢(d) = 2Y.72 , n~% This brings us to the fascinating field of
lattice packings, which we do not pursue in this book; a nice geometric
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introduction is in the first half of the book Pach and Agarwal [PA95],
and an authoritative reference is Conway and Sloane [CS99]. Let us
remark that the lattice constant (and hence the maximum lattice pack-
ing density) is not known in general even for Euclidean spheres, and
many ingenious constructions and arguments have been developed for
packing them efficiently. These problems also have close connections
to error-correcting codes.

Successive minima and Minkowski’s second theorem. Let C C RY
be a convex body containing 0 in the interior and let A C R¢Y
be a lattice. The ith successive minimum of C with respect to A,
denoted by A; = A;(C,A), is the infimum of the scaling factors
A > 0 such that AC contains at least i linearly independent vec-
tors of A. In particular, \; is the smallest number for which \;C
contains a nonzero lattice vector, and Minkowski’s theorem guaran-
tees that A¢ < 2¢det(A)/vol(C). Minkowski’s second theorem asserts
(2%/d!) det(A) < ApAg- - Ag - vol(C) < 2¢det(A).

The flatness theorem. If a convex body K is not required to be sym-
metric about 0, then it can have arbitrarily large volume without con-
taining a lattice point. But any lattice-point free body has to be flat:
For every dimension d there exists c(d) such that any convex body
K C R? with K N Z% = 0 has lattice width at most c(d). The lat-
tice width of K is defined as min{maxzcx (z,y) — mingex(z,y): y €
Z¢ \ {0}}; geometrically, we essentially count the number of hyper-
planes orthogonal to y, spanned by points of Z¢, and intersecting K.
Such a result was first proved by Khintchine in 1948, and the current
best bound ¢(d) = O(d®?) is due to Banaszczyk, Litvak, Pajor, and
Szarek [BLPS99]; we also refer to this paper for more references.

Computing lattice points in convex bodies. Minkowski’s theorem pro-
vides the existence of nonzero lattice points in certain convex bodies.
Given one of these bodies, how efficiently can one actually compute
a nonzero lattice point in it? More generally, given a convex body in
R4, how difficult is it to decide whether it contains a lattice point, or
to count all lattice points? For simplicity, we consider only the integer
lattice Z9 here.

First, if the dimension d is considered as a constant, such prob-
lems can be solved efficiently, at least in theory. An algorithm due to
Lenstra [Len83] finds in polynomial time an integer point, if one exists,
in a given convex polytope in R?, d fixed. It is based on the flatness
theorem mentioned above (the ideas are also explained in many other
sources, e.g., [GLS88], [Lov86], [Sch86], [Bar97]). More recently, Barvi-
nok [Bar93] (or see [Bar97]) provided a polynomial-time algorithm for
counting the integer points in a given fixed-dimensional convex poly-
tope. Both algorithms are nice and certainly nontrivial, and especially
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the latter can be recommended as a neat application of classical math-
ematical results in a new context.

On the other hand, if the dimension d is considered as a part of the
input then (exact) calculations with lattices tend to be algorithmically
difficult. Most of the difficult problems of combinatorial optimization
can be formulated as instances of integer programming, where a given
linear function should be minimized over the set of integer points in a
given convex polytope. This problem is well known to be NP-hard, and
so is the problem of deciding whether a given convex polytope contains
an integer point (both problems are actually polynomially equivalent).
For an introduction to integer programming see, e.g., Schrijver [Sch86].

Some much more special problems concerning lattices have also
been shown to be algorithmically difficult. For example, finding a
shortest (nonzero) vector in a given lattice A specified by a basis is
NP-hard (with respect to randomized polynomial-time reductions). (In
the notation introduced above, we are asking for A;(B¢, A), the first
successive minimum of the ball. This took quite some time to prove
(Micciancio [Mic98] has obtained the strongest result to date, inap-
proximability up to the factor of v/2, building on earlier work mainly
of Ajtai), although the analogous hardness result for the shortest vec-
tor in the maximum norm (i.e., A;([—1,1]¢,A)) has been known for a
long time.

Basis reduction and applications. Although finding the shortest vec-
tor of a lattice A is algorithmically difficult, the shortest vector can
be approximated in the following sense. For every € > 0 there is a
polynomial-time algorithm that, given a basis of a lattice A in R,
computes a nonzero vector of A whose length is at most (1+¢)¢ times
the length of the shortest vector of A; this was proved by Schnorr
[Sch87]. The first result of this type, with a worse bound on the approx-
imation factor, was obtained in the seminal work of Lenstra, Lenstra,
and Lovész [LLL82]. The LLL algorithm, as it is called, computes not
only a single short vector but a whole “short” basis of A.

The key notion in the algorithm is that of a reduced basis of A;
intuitively, this means a basis that cannot be much improved (made
significantly shorter) by a simple local transformation. There are many
technically different notions of reduced bases. Some of them are clas-
sical and have been considered by mathematicians such as Gauss and
Lagrange. The definition of the Lovdsz-reduced basis used in the LLL
algorithm is sufficiently relaxed so that a reduced basis can be com-
puted from any initial basis by polynomially many local improvements,
and, at the same time, is strong enough to guarantee that a reduced
basis is relatively short. These results are covered in many sources; the
thin book by Lovész [Lov86] can still be recommended as a delightful
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introduction. Numerous refinements of the LLL algorithm, as well as
efficient implementations, are available.

We sketch an ingenious application of the LLL algorithm for poly-
nomial factorization (from Kannan, Lenstra, and Lovdsz [KLL88]; the
original LLL technique is somewhat different). Assume for simplicity
that we want to factor a monic polynomial p(z) € Z[z] (integer coefhi-
cients, leading coefficient 1) into a product of factors irreducible over
Z[z]. By numerical methods we can compute a root « of p(z) with
very high precision. If we can find the minimal polynomial of «, i.e.,
the lowest-degree monic polynomial ¢(z) € Z[z] with g(a) = 0, then
we are done, since ¢(z) is irreducible and divides p(z). Let us write
q(z) = 2% + ag_12%"! +--- + ag. Let K be a large number and let us
consider the d-dimensional lattice A in R**! with basis (K, 1,0,...,0),
(Ka,0,1,0,...,0), (Ka?,0,0,1,0,...,0),..., (Ka%0,...,0,1). Com-
bining the basis vectors with the coefficients ag, a1, ..., a4-1, 1, respec-
tively, we obtain the vector vg = (0,a9,a1,...,a4-1,1) € A. It turns
out that if K is sufficiently large compared to the a;, then vy is the
shortest nonzero vector, and moreover, every vector not much longer
than vg is a multiple of vy. The LLL algorithm applied to A thus finds
vo, and this yields g(z). Of course, we do not know the degree of ¢(z),
but we can test all possible degrees one by one, and the required mag-
nitude of K can be estimated from the coefficients of p(x).

The LLL algorithm has been used for the knapsack problem and for
the subset sum problem. Typically, the applications are problems where
one needs to express a given number (or vector) as a linear combina-
tion of given numbers (or vectors) with small integer coeflicients. For
example, the subset sum problem asks, for given integers a1, as, ..., an,
and b, for a subset I C {1,2,...,n} with >, _; a; = b; i.e., b should be
expressed as a linear combination of the a; with 0/1 coefficients. These
and many other significant applications can be found in Grétschel,
Lovész, and Schrijver [GLS88]. In cryptography, several cryptographic
systems proposed in the literature were broken with the help of the
LLL algorithm (references are listed, e.g., in [GLS88], [Dwo097]). On
the other hand, lattices play a prominent role in recent constructions,
mainly due to Ajtai, of new cryptographic systems. While currently
the security of every known efficient cryptographic system depends
on an (unproven) assumption of hardness of a certain computational
problem, Ajtai’s methods suffice with a considerably weaker and more
plausible assumption than those required by the previous systems (see
[Ajt98] or [Dwo97] for an introduction).

Exercises

1. Let vy,...,vq be linearly independent vectors in R%. Form a matrix A
with vy,...,v4 as rows. Prove that |det A is equal to the volume of the
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parallelepiped {a1v1 + agvz + -+ - + agug: ai,...,0q € [0,1]}. (You may
want to start with d = 2.)

2. Prove that if z1,...,24 and 2{,...,2} are vectors in R¢ such that
A(z1,...,24) = A(2],...,2);), then |det Z| = |det Z'|, where Z is the
d x d matrix with the z; as columns, and similarly for Z’.

3. Prove that for n rational vectors vy,..., v, the set A = {4101 + dav2 +
s+ GpUp: 4y,02,...,1n € Z} is a discrete subgroup of R9.

4. (Minkowski’s theorem on linear forms) Prove the following from Min-
kowski’s theorem: Let ¢;(z) = E?=1 a;;x; be linear forms in d variables,
i = 1,2,...,d, such that the d X d matrix (a;;);; has determinant 1.
Let by,...,bq be positive real numbers with byby---bg = 1. Then there
exists a nonzero integer vector z € Z¢\ {0} with |¢;(2)| < b; for all
i=1,2,...,d

2.3 An Application in Number Theory

We prove one nontrivial result of elementary number theory. The proof via
Minkowski’s theorem is one of several possible proofs. Another proof uses the
pigeonhole principle in a clever way.

2.3.1 Theorem (Two-square theorem). Each prime p = 1(mod4) can
be written as a sum of two squares: p = a? + b?, a,b € Z.

Let F' = GF(p) stand for the field of residue classes modulo p, and let
F* = F\ {0}. An element a € F* is called a quadratic residue modulo p
if there exists an z € F* with 22 = a(mod p). Otherwise, a is a quadratic
nonresidue.

2.3.2 Lemma. If p is a prime with p = 1(mod4) then —1 is a quadratic
residue modulo p.

Proof. The equation > = 1 has two solutions in the field F', namely i = 1
and i = —1. Hence for any ¢ # %1 there exists exactly one j # ¢ with
ij = 1 (namely, j = i~!, the inverse element in F'), and all the elements of
F*\ {-1,1} can be divided into pairs such that the product of elements in
each pair is 1. Therefore, (p—1)!=1-2.--(p—1) = —1 (mod p).

For a contradiction, suppose that the equation i> = —1 has no solution
in F. Then all the elements of F* can be divided into pairs such that the
product of the elements in each pair is —1. There are (p—1)/2 pairs, which
is an even number. Hence (p—1)! = (—1)(P=1/2 = 1, a contradiction. d

Proof of Theorem 2.3.1. By the lemma, we can choose a number ¢ such
that ¢> = —1 (mod p). Consider the lattice A = A(z1, 22), where z; = (1,9)
and 22 = (0,p). We have det A = p. We use Minkowski’s theorem for general
lattices (Theorem 2.2.1) for the disk C = {(z,y) € R% z? + y? < 2p}. The
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area of C is 2wp > 4p = 4det A, and so C contains a point (a,b) € A\{0}. We
have 0 < a? + b% < 2p. At the same time, (a,b) = i2; + jz for some 4, j € Z,
which means that a = i,b = ig + jp. We calculate a® + b* = i% + (ig+ jp)? =
i2 +i2¢® + 2igjp + j%p? = i2(1 + ¢®) = 0 (mod p). Therefore a? +b* =p. O

Bibliography and remarks. The fact that every prime congruent
to 1 mod 4 can be written as the sum of two squares was already known
to Fermat (a more rigorous proof was given by Euler). The possibility
of expressing every natural number as a sum of at most 4 squares was
proved by Lagrange in 1770, as a part of his work on quadratic forms.
The proof indicated in Exercise 1 below is due to Davenport.

Exercises

1. (Lagrange’s four-square theorem) Let p be a prime.
(a) Show that there exist integers a,b with a? + > = —1 (mod p).
(b) Show that the set A = {(z,y,2,t) € Z*: z = ax + by (modp), t =
bz — ay (modp)} is a lattice, and compute det(A).
(c) Show the existence of a nonzero point of A in a ball of a suitable
radius, and infer that p can be written as a sum of 4 squares of integers.
(d) Show that any natural number can be written as a sum of 4 squares
of integers.
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Convex Independent Subsets

Here we consider geometric Ramsey-type results about finite point sets in
the plane. Ramsey-type theorems are generally statements of the following
type: Every sufficiently large structure of a given type contains a “regular”
substructure of a prescribed size. In the forthcoming Erd6s—Szekeres theorem
(Theorem 3.1.3), the “structure of a given type” is simply a finite set of points
in general position in R2, and the “regular substructure” is a set of points
forming the vertex set of a convex polygon, as is indicated in the picture:

A prototype of Ramsey-type results is Ramsey’s theorem itself: For every
choice of natural numbers p,r,n, there exists a natural number N such that
whenever X is an N-element set and c: (%) — {1,2,...,r} is an arbitrary
coloring of the system of all p-element sugsets of X by r colors, then there
is an n-element subset Y C X such that all the p-tuples in (1;) have the

same color. The most famous special case is with p = r = 2, where (%) is
interpreted as the edge set of the complete graph Ky on N vertices. Ramsey’s
theorem asserts that if each of the edges of K is colored red or blue, we can
always find a complete subgraph on n vertices with all edges red or all edges
blue.

Many of the geometric Ramsey-type theorems, including the Erdds—
Szekeres theorem, can be derived from Ramsey’s theorem. But the quantita-
tive bound for the N in Ramsey’s theorem is very large, and consequently,
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the size of the “regular” configurations guaranteed by proofs via Ramsey’s
theorem is very small. Other proofs tailored to the particular problems and
using more of their geometric structure often yield much better quantitative
results.

3.1 The Erdos—Szekeres Theorem

3.1.1 Definition (Convex independent set). We say that a set X C R¢
is convex independent if for every z € X, we have z & conv(X \ {z}).

The phrase “in convex position” is sometimes used synonymously with
“convex independent.” In the plane, a finite convex independent set is the
set of vertices of a convex polygon. We will discuss results concerning the
occurrence of convex independent subsets in sufficiently large point sets. Here
is a simple example of such a statement.

3.1.2 Proposition. Among any 5 points in the plane in general position (no
3 collinear), we can find 4 points forming a convex independent set.

Proof. If the convex hull has 4 or 5 vertices, we are done. Otherwise, we
have a triangle with two points inside, and the two interior points together
with one of the sides of the triangle define a convex quadrilateral. o

Next, we prove a general result.

3.1.3 Theorem (Erdds—Szekeres theorem). For every natural number k
there exists a number n(k) such that any n(k)-point set X C R? in general
position contains a k-point convex independent subset.

First proof (using Ramsey’s theorem and Proposition 3.1.2). Color
a 4-tuple T C X red if its four points are convex independent and blue
otherwise. If n is sufficiently large, Ramsey’s theorem provides a k-point
subset Y C X such that all 4-tuples from Y have the same color. But for
k > 5 this color cannot be blue, because any 5 points determine at least
one red 4-tuple. Consequently, Y is convex independent, since every 4 of its
points are (Carathéodory’s theorem). ]

Next, we give an inductive proof; it yields an almost tight bound for n(k).

Second proof of the Erdés—Szekeres theorem. In this proof, by a set
in general position we mean a set with no 3 points on a common line and no
2 points having the same z-coordinate. The latter can always be achieved by
rotating the coordinate system.

Let X be a finite point set in the plane in general position. We call X a
cup if X is convex independent and its convex hull is bounded from above by
a single edge (in other words, if the points of X lie on the graph of a convex
function).
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Similarly, we define a cap, with a single edge bounding the convex hull from
below.

A k-cap is a cap with k points, and similarly for an ¢-cup.

We define f(k,£) as the smallest number N such than any N-point set in
general position contains a k-cup or an ¢-cap. By induction on k and ¢, we
prove the following formula for f(k, ¢):

Fk,0) < <k;:f;4) +1. (3.1)

Theorem 3.1.3 clearly follows from this, with n(k) < f(k,k). For k < 2
or £ < 2 the formula holds. Thus, let k£, > 3, and consider a set P in
general position with N = f(k—1,¢) + f(k,£—1)—1 points. We prove that
it contains a k-cup or an {-cap. This will establish the inequality f(k,£) <
f(k—=1,£) + f(k,£—1)—1, and then (3.1) follows by induction; we leave the
simple manipulation of binomial coefficients to the reader.

Suppose that there is no f-cap in X. Let E C X be the set of points
p € X such that X contains a (k—1)-cup ending with p.

We have |[E| > N — f(k—1,£) + 1 = f(k,¢—1), because X \ E contains no
(k—1)-cup and so |X \ E| < f(k—1,%).

Either the set E contains a k-cup, and then we are done, or there is an
(€~1)-cap. The first point p of such an (¢—1)-cap is, by the definition of E,
the last point of some (k—1)-cup in X, and in this situation, either the cup
or the cap can be extended by one point:

k-1 £-1 k-1 -1
| ! | lee- | |
j l ""’ ..... -.“ l > F l 'l
g P S “p
This finishes the inductive step. O

A lower bound for sets without k-cups and £¢-caps. Interestingly, the
bound for f(k,£) proved above is tight, not only asymptotically but exactly!
This means, in particular, that there are n-point planar sets in general posi-
tion where any convex independent subset has at most O(logn) points, which
is somewhat surprising at first sight.

An example of a set Xy, of (¥%3*) points in general position with no
k-cup and no ¢-cap can be constructed, again by induction on k+ ¢. If k < 2

or £ <2, then Xy 4 can be taken as a one-point set.
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Supposing both £ > 3 and ¢ > 3, the set Xj ¢ is obtained from the sets
L =Xy_1,and R= Xj¢_1 according to the following picture:

.
-

r‘ ]’ \ L

e
s

L =X,

The set L is placed to the left of R in such a way that all lines determined
by pairs of points in L go below R and all lines determined by pairs of points
of R go above L.

Consider a cup C in the set X thus constructed. If C N L = (), then
|C| < k—1 by the assumption on R. If CN L # 0, then C has at most 1 point
in R, and since no cup in L has more than k—2 points, we get |C| < k—1 as
well. The argument for caps is symmetric.

We have | Xk | = | Xk—1,| + | Xk-1], and the formula for | X} ¢| follows
by induction; the calculation is almost the same as in the previous proof. O

Determining the exact value of n(k) in the Erdds-Szekeres theorem is
much more challenging. Here are the best known bounds:
2k—5
262 1 1 < n(k) < +2.
k—2
The upper bound is a small improvement over the bound f(k,k) derived

above; see Exercise 5. The lower bound results from an inductive construction
slightly more complicated than that of X} ».

Bibliography and remarks. A recent survey of the topics discussed
in the present chapter is Morris and Soltan {MS00].

The Erdds—Szekeres theorem was one of the first Ramsey-type re-
sults [ES35], and Erdés and Szekeres independently rediscovered the
general Ramsey’s theorem at that occasion. Still another proof, also
using Ramsey’s theorem, was noted by Tarsi: Let the points of X be
numbered z1,Z2,...,%,, and color the triple {z;,z;,zx}, ¢ < j < k,
red if we make a right turn when going from z; to z; via z;, and blue
if we make a left turn. It is not difficult to check that a homogeneous
subset, with all triples having the same color, is in convex position.
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The original upper bound of n(k) < (3~)+1 from [ES35] has been
improved only recently and very slightly; the last improvement to the
bound stated in the text above is due to Téth! and Valtr [TV98].

The Erd8s—Szekeres theorem was generalized to planar convex sets.
The following somewhat misleading term is used: A family of pairwise
disjoint convex sets is in general position if no set is contained in the
convex hull of the union of two other sets of the family. For every k
there exists n such that in any family of n pairwise disjoint convex sets
in the plane in general position, there are k sets in convex position,
meaning that none of them is contained in the convex hull of the union
of the others. This was shown by Bisztriczky and G. Fejes Téth [BT89)
and, with a different proof and better quantitative bound, by Pach and
Téth [PT98). The assumption of general position is necessary.

An interesting problem is the generalization of the Erd6s—Szekeres
theorem to R9, d > 3. The existence of ng(k) such that every ngy(k)
points in R? in general position contain a k-point subset in convex
position is easy to see (Exercise 4), but the order of magnitude is wide
open. The current best upper bound ng(k) < (2]“;3‘3_1) +d [Kér01]
slightly improves the immediate bound. Fiiredi [unpublished] conjec-
tured that nz(k) < e9E)_If true, this would be best possible: A
construction of Karolyi and Valtr [KVO01] shows that for every fixed

d > 3, ng(k) > eca"/" With a suitable ¢; > 0. The construction
starts with a one-point set Xy, and X;41 is obtained from X; by re-

placing each point x € X; by the two points z — (sf,ef—l, ey E5)
and x + (5?,5?"1, ...,&;), with €; > 0 sufficiently small, and then

perturbing the resulting set very slightly, so that X;,; is in suitable
general position. We have |X;| = 2¢, and the key lemma asserts that
me(X;+1) < me(X;)+me(n(X;)), where me(X) denotes the maximum
size of a convex independent subset of X and 7 is the projection to
the hyperplane {z4 = 0}.

Another interesting generalization of the Erdés—Szekeres theorem
to R? is mentioned in Exercise 5.4.3.

The bounds in the Erdés—Szekeres theorem were also investigated
for special point sets, namely, for the so-called dense sets in the plane.
An n-point X C R? is called c-dense if the ratio of the maximum and
minimum distances of points in X is at most ci/n. For every planar
n-point set, this ratio is at least coy/n for a suitable constant cg > 0,
as an easy volume argument shows, and so the dense sets are quite
well spread. Improving on slightly weaker results of Alon, Katchalski,
and Pulleyblank [AKP89], Valtr [Val92a] showed, by a probabilistic
argument, that every c-dense n-point set in general position contains

! The reader should be warned that four mathematicians named Téth are men-
tioned throughout the book. For two of them, the surname is actually Fejes Téth
(Lészl6 and Gabor), and for the other two it is just Téth (Géza and Csaba).
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a convex independent subset of at least c;n!/3 points, for some ¢; >
0 depending on ¢, and he proved that this bound is asymptotically
optimal. Simplified proofs, as well as many other results on dense
sets, can be found in Valtr’s thesis [Val94].

Exercises

1.

2.

Find a configuration of 8 points in general position in the plane with no
5 convex independent points (thereby showing that n(5) > 9). [2]

Prove that the set {(i,7); ¢ = 1,2,...,m, j = 1,2,...,m} contains no
convex independent subset with more that Cm?/3 points (with C' some
constant independent of m). [4]

Prove that for each k there exists n(k) such that each n(k)-point set in
the plane contains a k-point convex independent subset or k points lying
on a common line. [3]

Prove an Erdés-Szekeres theorem in R?: For every k there exists n =
ng(k) such that any n points in R? in general position contain a k-point
convex independent subset. [2]

(A small improvement on the upper bound on n(k)) Let X C R? be a
planar set in general position with f(k,£)+1 points, where f is as in the
second proof of Erdés—Szekeres, and let ¢ be the (unique) topmost point
of X. Prove that X contains a k-cup with respect to t or an £-cap with
respect to t, where a cup with respect to ¢ is a subset Y C X \ {¢} such
that Y U {t} is in convex position, and a cap with respect to t is a subset
Y C X\ {t} such that {z,y, z,t} is not in convex position for any triple
{z,y,z} C Y. Infer that n(k) < f(k—1,k)+1. [2]

Show that the construction of X}, described in the text can be realized
on a polynomial-size grid. That is, if we let n = | X} ¢|, we may suppose
that the coordinates of all points in X ¢ are integers between 1 and n®
with a suitable constant c¢. (This was observed by Valtr.)

3.2 Horton Sets

Let X be a set in R%. A k-point set Y C X is called a k-hole in X if Y
is convex independent and conv(Y) N X =Y. In the plane, Y determines a
convex k-gon with no points of X inside. Erdds raised the question about the
rather natural strengthening of the Erdés-Szekeres theorem: Is it true that
for every k there exists an n(k) such that any n(k)-point set in the plane in
general position has a k-hole?

A construction due to Horton, whose streamlined version we present be-

low, shows that this is false for k > 7: There are arbitrarily large sets without
a 7-hole. On the other hand, a positive result holds for £ < 5. For k = 6, the
answer is not known, and this “6-hole problem” appears quite challenging.
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3.2.1 Proposition (The existence of a 5-hole). Every sufficiently large
planar point set in general position contains a 5-hole.

Proof. By the Erdés—Szekeres theorem, we may assume that there exists a
6-point convex independent subset of our set X. Consider a 6-point convex
independent subset H C X with the smallest possible |X N conv(H)|. Let
I =conv(H)N (X \ H) be the points inside the convex hull of H.

e If I = (), we have a 6-hole.
o If there is one point x in I, we consider a diagonal that partitions the
hexagon into two quadrilaterals:

The point z lies in one of these quadrilaterals, and the vertices of the
other quadrilateral together with z form a 5-hole.

e If |I| > 2, we choose an edge zy of conv(I). Let v be an open half-plane
bounded by the line zy and containing no points of I (it is determined
uniquely unless || = 2).

If [y N H| > 3, we get a 5-hole formed by z, y, and 3 points of v N H.
For |y N H| < 2, we have one of the two cases indicated in the following
picture:

By replacing u and v by z and y in the left situation, or u by x in the
right situation, we obtain a 6-point convex independent set having fewer
points inside than H, which is a contradiction. O

3.2.2 Theorem (Seven-hole theorem). There exist arbitrarily large finite
sets in the plane in general position without a 7-hole.
The sets constructed in the proof have other interesting properties as well.

Definitions. Let X and Y be finite sets in the plane. We say that X is high
above Y (and that Y is deep below X) if the following hold:



36 Chapter 3: Convex Independent Subsets

(i) No line determined by two points of X UY is vertical.
(ii) Each line determined by two points of X lies above all the points of Y.
(iii) Each line determined by two points of Y lies below all the points of X.

For a set X = {x1,22,...,2,}, with no two points having equal z-
coordinates and with notation chosen so that the z-coordinates of the z;
increase with 4, we define the sets Xo = {z2, 4, ...} (consisting of the points
with even indices) and X; = {z1,zs, ...} (consisting of the points with odd
indices).

A finite set H C R? is a Horton set if |H| < 1, or the following conditions
hold: |H| > 1, both Hy and H; are Horton sets, and H; lies high above Hy
or Hy lies high above H;.

3.2.3 Lemma. For every n > 1, an n-point Horton set exists.

Proof. We note that one can produce a smaller Horton set from a larger
one by deleting points from the right. We construct H*), a Horton set of size
2% by induction.

We define H(® as the point (0, 0). Suppose that we can construct a Horton
set H*) with 2% points whose z-coordinates are 0,1, ..., 2¥—1. The induction
step goes as follows.

Let A =2H® (i.e., H®) expanded twice), and B = A + (1, hy), where
hy is a sufficiently large number. We set H(**1) = A U B. It is easily seen
that if hy is large enough, B lies high above A, and so H**1) is Horton as
well. The set H® looks like this:

O

Closedness from above and from below. A set X in R? is r-closed from
above if for any r-cup in X there exists a point in X lying above the r-cup
(i.e., above the bottom part of its convex hull).

| \ :

a point of

X here r=4
=

Lt v"-’

Similarly, we define a set r-closed from below using r-caps.

3.2.4 Lemma. Every Horton set is both 4-closed from above and 4-closed
from below.
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Proof. We proceed by induction on the size of the Horton set. Let H be a
Horton set, and assume that Hp lies deep below H; (the other possible case
is analogous). Let C C H be a 4-cup.

If C C Hy or C C Hi, then a point closing C from above exists by the
inductive hypothesis. Thus, let C N Hy # 0 # C N H;.

The cup C may have at most 2 points in H; (the upper part): If there
were 3 points, say a, b, ¢ (in left-to-right order), then Hy lies below the lines
ab and bc, and so the remaining point of C, which was supposed to lie in Hy,
cannot form a cup with {a,b, c}:

H,

<250 G

H.'HR_ b /,r"'
/ﬁ*-xh"""‘-\.

H,

This means that C has at least 2 points, a and b, in the lower part Hy.
Since the points of Hy and H; alternate along the z-axis, there is a point
¢ € H; between a and b in the ordering by z-coordinates. This c is above the
segment ab, and so it closes the cup C from above. We argue similarly for a
4-cap. O

3.2.5 Proposition. No Horton set contains a 7-hole.

Proof. (Very similar to the previous one.) For contradiction, suppose there
is a 7-hole X in the considered Horton set H. If X C Hy or X C H;, we
use induction. Otherwise, we select the part (Hy or Hy) containing the larger
portion of X; this has at least 4 points of X. If this part is, say, Hg, and it lies
deep below Hi, these 4 points must form a cup in Hy, for if some 3 of them
were a cap, no point of H; could complete them to a convex independent set.
By Lemma 3.2.4, Hy (being a Horton set) contains a point closing the 4-cup
from above. Such a point must be contained in the convex hull of the 7-hole
X, a contradiction. O

Bibliography and remarks. The existence of a 5-hole in every 10-
point planar set in general position was proved by Harborth [Har79).
Horton [Hor83] constructed arbitrarily large sets without a 7-hole; we
followed a presentation of his construction according to Valtr [Val92a].

The question of existence of k-holes can be generalized to point sets
in R¢. Valtr [Val92b] proved that (2d+1)-holes exist in all sufficiently
large sets in general position in R?, and he constructed arbitrarily
large sets without k-holes for k > 2¢1(P(d—1)+1), where P(d~1) is
the product of the first d—1 primes. We outline the construction. Let H
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be a finite set in R%, d > 2, in general position (no d+1 on a common
hyperplane and no two sharing the value of any coordinate). Let H =
{z1,22,...,2,} be enumeration of H by increasing first coordinate,
and let Hy, = {x;: ¢ = 7 (mod ¢)}. Let p1 = 2,p; = 3,...,pa—1 be
the first d—1 primes, and let us write p = pg—; for brevity. The set H
is called d-Horton if

(i) its projection on the first d—1 coordinates is a (d—1)-Horton set in
R4-! (where all sets in R! are 1-Horton), and

(ii) either |[H| <1 or all the sets Hp . are d-Horton, 7 =0,1,...,p—1,
and for every subset I C {0,1,...,p—1} of at least two indices, there
is a partition I = JUK, J # 0 # K, such that J,.; Hp, lies high
above U,.cx Hp,r-

Here A lies high above B if every hyperplane determined by d points
of A lies above B (in the direction of the dth coordinate) and vice
versa. Arbitrarily large d-Horton sets can be constructed by induc-
tion: We first construct the (d—1)-dimensional projection, and then
we determine the dth coordinates suitably to meet condition (ii). The
nonexistence of large holes is proved using an appropriate generaliza-
tion of r-closedness from above and from below.

Since large sets generally need not, contain k-holes, it is natural to
look for other, less special, configurations. Bialostocki, Dierker, and
Voxman [BDV91] proved the existence of k-holes modulo q: For every
g and for all k > ¢+2, each sufficiently large set X (in terms of ¢ and
k) in general position contains a k-point convex independent subset
Y such that the number of points of X in the interior of conv(Y)
is divisible by g¢; see Exercise 6. Kérolyi, Pach, and Té6th [KPTO01]
obtained a similar result with the weaker condition k£ > 2 ¢ + O(1).
They also showed that every sufficiently large 1-almost conver set in
the plane contains a k-hole, and Valtr [Val01] extended this to k-almost
convex sets, where X is k-almost convex if no triangle with vertices at
points of X contains more than k points of X inside.

Exercises

1.

2.

3.

Prove that an n-point Horton set contains no convex independent subset

with more than 4log, n points. [2]

Find a configuration of 9 points in the plane in general position with no

5-hole.

Prove that every sufficiently large set in general position in R3 has a

7-hole.

Let H be a Horton set and let £ > 7. Prove that if Y C H is a k-point
subset in convex position, then |H N conv(Y)| > 2%/4]. Thus, not only
does H contain no k-holes, but each convex k-gon has even exponentially

many points inside. [4]
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This result is due to Nyklova [Nyk00], who proved exact bounds for
Horton sets and observed that the number of points inside each convex
k-gon can be somewhat increased by replacing each point of a Horton set
by a tiny copy of a small Horton set.

. Call a set X C R? in general position almost convez if no triangle with
vertices at points of X contains more than 1 point of X in its interior.
Let X C R? be a finite set in general position such that no triangle with
vertices at vertices of conv(X) contains more than 1 point of X. Prove
that X is almost convex.

. (a) Let ¢ > 2 be an integer and let k = mq+2 for an integer m > 1. Prove
that every sufficiently large set X C R? in general position contains a
k-point convex independent subset Y such that the number of points of
X in the interior of conv(Y') is divisible by ¢g. Use Ramsey’s theorem for
triples. [«

(b) Extend the result of (a) to all k > ¢ + 2.
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Incidence Problems

In this chapter we study a very natural problem of combinatorial geometry:
the maximum possible number of incidences between m points and n lines
in the plane. In addition to its mathematical appeal, this problem and its
relatives are significant in the analysis of several basic geometric algorithms.
In the proofs we encounter number-theoretic arguments, results about graph
drawing, the probabilistic method, forbidden subgraphs, and line arrange-
ments.

4.1 Formulation

Point—line incidences. Consider a set P of m points and a set L of n lines
in the plane. What is the maximum possible number of their incidences, i.e.,
pairs (p,£) such that p € P, £ € L, and p lies on £? We denote the number
of incidences for specific P and L by I(P,L), and we let I(m,n) be the
maximum of I (P, L) over all choices of an m-element P and an n-element L.
For example, the following picture illustrates that 1(3,3) > 6,

=

and it is not hard to see that actually I(3,3) = 6.

A trivial upper bound is I(m,n) < mn, but it it can never be attained
unless m = 1 or n = 1. In fact, if m has a similar order of magnitude as n then
I(m,n) is asymptotically much smaller than mn. The order of magnitude is
known exactly:

4.1.1 Theorem (Szemerédi-Trotter theorem). For all m,n > 1, we
have I(m,n) = O(m?/3n?/3 4+ m+n), and this bound is asymptotically tight.
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We give two proofs in the sequel, one simpler and one including techniques
useful in more general situations. We will mostly consider only the most
interesting case m = n. The general case needs no new ideas but only a little
more complicated calculation.

Of course, the problem of point-line incidences can be generalized in many
ways. We can consider incidences between points and hyperplanes in higher
dimensions, or between points in the plane and some family of curves, and
so on. A particularly interesting case is that of points and unit circles, which
is closely related to counting unit distances.

Unit distances and distinct distances. Let U(n) denote the maximum
possible number of pairs of points with unit distance in an n-point set in the
plane. For n < 3 we have U(n) = (3) (all distances can be 1), but already
for n = 4 at most 5 of the 6 distances can be 1; i.e.,, U(4) = 5:

We are interested in the asymptotic behavior of the function U(n) for n — oo.

This can also be reformulated as an incidence problem. Namely, consider
an m-point set P and draw a unit circle around each point of p, thereby
obtaining a set C of n unit circles. Each pair of points at unit distance con-
tributes two point—circle incidences, and hence U(n) < %Ilcgrc(n, n), where
Icire(m, n) denotes the maximum possible number of incidences between m
points and n unit circles.

Unlike the case of point-line incidences, the correct order of magnitude of
U(n) is not known. An upper bound of O(n*/3) can be obtained by modifying
proofs of the Szemerédi—Trotter theorem. But the best known lower bound
is U(n) > nltei/loglogn for some positive constant c;; this is superlinear in
n but grows more slowly than n!*¢ for every fixed € > 0.

A related quantity is the minimum possible number of distinct distances
determined by n points in the plane; formally,

= i dist : P}.
g(n) =, _min _ |{dist(z,y): 2,y € P}

Clearly, g(n) > (3)/U(n), and so the bound U(n) = O(n*/3) mentioned
above gives g(n) = Q(n?/3). This has been improved several times, and the
current best lower bound is approximately Q(n?-863). The best known upper
bound is O(n/+/logn).

Arrangements of lines. We need to introduce some terminology concern-
ing line arrangements. Consider a finite set L of lines in the plane. They
divide the plane into convex subsets of various dimensions, as is indicated in
the following picture with 4 lines:
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The intersections of the lines, indicated by black dots, are called the vertices.
By removing all the vertices lying on a line ¢ € L, the line is split into
two unbounded rays and several segments, and these parts are the edges.
Finally, by deleting all the lines of L, the plane is divided into open convex
polygons, called the cells. In Chapter 6 we will study arrangements of lines
and hyperplanes further, but here we need only this basic terminology and
(later) the simple fact that an arrangement of n lines in general position has
(3) vertices, n? edges, and (})+n+1 cells. For the time being, the reader can
regard this as an exercise, or wait until Chapter 6 for a proof.

o

Many cells in arrangements. What is the maximum total number of
vertices of m distinct cells in an arrangement of n lines in the plane? Let us
denote this number by K(m,n). A simple construction shows that the maxi-
mum number of incidences I{m,n) is asymptotically bounded from above by
K (m,n); more exactly, we have I(m,n) < 1 K(m,2n). To see this, consider
a set P of m points and a set L of n lines realizing I(m,n), and replace each
line £ € L by a pair of lines ¢, ¢" parallel to £ and lying at distance ¢ from ¢:

If € > 0 is sufficiently small, then a point p € P incident to k lines in the
original arrangement now lies in a tiny cell with 2k vertices in the modified
arrangement.

It turns out that K(m,n) has the same order of magnitude as I(m,n),
and the upper bound can be obtained by methods similar to those used
for I(m,n). In higher-dimensional problems, even determining the maximum
possible complexity of a single cell can be quite challenging. For example, the
maximum complexity of a single cell in an arrangement of n hyperplanes is
described by the so-called upper bound theorem from the 1970s, which will
be discussed in Chapter 5.
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Bibliography and remarks. This chapter is partially based on
a nice presentation of the discussed topics in the book by Pach and
Agarwal [PA95], which we recommend as a source of additional in-
formation concerning history, bibliographic references, and various re-
lated problems. But we also include some newer results and techniques
discovered since the publication of that book.

The following neat problem concerning point-line incidences was
posed by Sylvester [Syl93] in 1893: Prove that it is impossible to ar-
range a finite number of points in the plane so that a line through
every two of them passes through a third, unless they all lie on the
same line. This problem remained unsolved until 1933, when it was
asked again by Erdés and solved shortly afterward by Gallai. The so-
lution shows, in particular, that it is impossible to embed the points of
a finite projective plane F into R? in such a way that points of each
line of F lie on a straight line in R2. For example, the well-known
drawing of the Fano plane of order 3 has to contain a curved line:

Recently Pinchasi [Pin02] proved the following conjecture of Bez-
dek, resembling Sylvester’s problem: For every finite family of at least
5 unit circles in the plane, every two of them intersecting, there exists
an intersection point common to exactly 2 of the circles.

The problems of estimating the maximum number of point-line
incidences, the maximum number of unit distances, and the minimum
number of distinct distances were raised by Erdés [Erd46]. For point-
line incidences, he proved the lower bound I(m,n) = Q(m?/3n2/3 +
m + n) (see Section 4.2) and conjectured it to be the right order of
magnitude. This was first proved by Szemerédi and Trotter [ST83].
Simpler proofs were found later by Clarkson, Edelsbrunner, Guibas,
Sharir, and Welzl [CEG190], by Székely [Szé97], and by Aronov and
Sharir [ASO0la]; they are quite different from one another, and we dis-
cuss them all in this chapter.

Téth [T6t01a] proved the analogy of the Szemerédi-Trotter the-
orem for the complex plane; he used the original Szemerédi—Trotter
technique, since none of the simpler proofs seems to work there.

A beautiful application of techniques of Clarkson et al. [CEGT90)
in geometric measure theory can be found in Wolfl [Wol97]. This pa-
per deals with a variation of the Kakeya problem: It shows that any
Borel set in the plane containing a circle of every radius has Hausdorff
dimension 2.



4.1 Formulation

45

For unit distances in the plane Erdés [Erd46] established the lower
bound U(n) = Q(nl+e/108logn) (Section 4.2) and again conjectured it
to be tight, but the best known upper bound remains O(n*3). This
was first shown by Spencer, Szemerédi, and Trotter [SST84], and it
can be re-proved by modifying each of the proofs mentioned above for
point—line incidences. Further improvement of the upper bound prob-
ably needs different, more “algebraic,” methods, which would use the
“circularity” in a strong way, not just in the form of simple combi-
natorial axioms (such as that two points determine at most two unit
circles).

For the analogous problem of unit distances among n points in R3,
Erdés [Erd60] proved Q(n*/3loglogn) from below and O(n®3) from
above. The example for the lower bound is the grid {1,2,..., [n'/3]}3
appropriately scaled; the bound Q(n*/3) is entirely straightforward,
and the extra loglogn factor needs further number-theoretic consid-
erations. The upper bound follows by an argument with forbidden
K3 3; similar proofs are shown in Section 4.5. The current best bound
is close to O(n®/2); more precisely, it is n3/220(@*(n) [CEG+90]. Here
the function a(n), to be defined in Section 7.2, grows extremely slowly,
more slowly than logn, loglogn, log log log n, etc. In dimensions 4 and
higher, the number of unit distances can be Q(n?) (Exercise 2). Here
even the constant at the leading term is known; see [PA95]. Among
other results related to the unit-distance problems and considering
point sets with various restrictions, we mention a neat construction of
Erdés, Hickerson, and Pach [EHP89] showing that, for every « € (0, 2),
there is an n-point set on the 2-dimensional unit sphere with the dis-
tance a occurring at least Q(nlog* n) times (the special distance v/2
can even occur £}(n%/3) times), and the annoying (and still unsolved)
problem of Erd6s and Moser, whether the number of unit distances in
an n-point planar set in convex position is always bounded by O(n)
(see [PA95] for partial results and references).

For distinct distances in the plane, the best known upper bound,
due to Erdés, is O(n/+/logn). This bound is attained for the v/nx+/n
square grid. After a series of increases of the lower bound (Moser
[Mos52], Chung [Chu84], Beck [Bec83], Clarkson et al. [CEG190],
Chung, Szemerédi, and Trotter [CST92], Székely [Sz£97], Solymosi and
Téth [STO1]) the current record is Q(n*/(5=1/€)=¢) for every fixed e > 0
(the exponent is approximately 0.863) by Tardos [Tar0l], who im-
proved a number-theoretic lemma in the Solymosi—T'6th proof. Aronov
and Sharir [AS01b] obtained the lower bound of approximately n°-526
for distinct distances in R3.

Another challenging quantity is the number I..(m,n) of inci-
dences of m points with n arbitrary circles in the plane. The lower
bound for point-line incidences can be converted to an example with
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m points, n circles, and Q(m?/3n?/3 + m 4 n) incidences, but in the
case of I.c(m,n), this lower bound is not the best possible for all m
and n: Consider an example of an n-point set with ¢ = O(n/+/logn)
distinct distances and draw the ¢ circles with these distances as radii
around each point; the resulting tn = o(n?) circles have Q(n?) in-
cidences with the n points. The current record in the upper bound
is due to Aronov and Sharir [ASOla], and for m = n it yields
Lire(n,n) = O(n'/11+e) = O(n!-364). A little more about their ap-
proach is mentioned in the notes to Section 4.5, including an outline
of a proof of a weaker bound I.(n,n) = O(n*4). Two other methods
for obtaining upper bounds are indicated in Exercises 4.4.2 and 4.6.4.

More generally, one can consider I{P,T"), the number of incidences
between an m-point P C R? and a family T of n planar curves. Pach
and Sharir [PS98a] proved by Székely’s method that if I is a family
of curves with k degrees of freedom and multiplicity type s, meaning
that for any & points there are at most s curves of I' passing through
all of them and no two curves intersect in more than k points, then
[I(P,T)| = O (mk/(k=Dp1-1/(2k=1) 4y 4 n), with the constant of
proportionality depending on k and s. Earlier [PS92], they proved the
same bound with some additional technical assumptions on the family
I by the technique of Clarkson et al. [CEG90]. Most likely this bound
is not tight for k£ > 3. Aronov and Sharir [ASOla] improved the bound
slightly for I' a family of graphs of univariate polynomials of degree
at most k. The best known lower bound is mentioned in the notes to
Section 4.2 below.

Point-plane incidences. Considering n points on a line in R® and
m planes containing that line, we see that the number of incidences
can be mn without further assumptions on the position of the points
and/or planes. Agarwal and Aronov [AA92] proved the upper bound
O(m®/®n*/® 4 m 4 n) for the number of incidences between m planes
and n points in R3 if no 3 of the points are collinear, slightly improving
on a result of Edelsbrunner, Guibas, and Sharir [EGS90]. In dimension
d, the maximum number of incidences of n hyperplanes with m vertices
of their arrangement is O(m?/3n?/3 + nd-1) [AA92], and this is tight
for m > n?=2 (for smaller m, the trivial O(mn) bound is tight).

The complexity of many cells in an arrangement of lines was first
studied by Canham [Can69], who proved K(m,n) = O(m? + n),
using the fact that two cells can have at most 4 lines incident to
both of them (essentially a “forbidden K,j5” argument; see Sec-
tion 4.5). The tight bound O(m?/3n?/3 + m + n) was first achieved
by Clarkson et al. [CEGT90]. Among results for the complexity
of m cells in other types of arrangements we mention the bound
O(m?*3n?/3 + na(n) 4+ nlogm) for segments by Aronov, Edelsbrun-
ner, Guibas, and Sharir [AEGS92], O(m?/3n?/3a(n)!/3 4+ n) for unit



4.1 Formulation

47

circles [CEG™90] (improved to O(m?/3n2/3) +n) by Agarwal, Aronov,
and Sharir [AAS01]), O(m3/5n#/52042(n) 1 p) for arbitrary circles
[CEG™90] (also improved in [AASO1]; see the notes to Section 4.5),
O(m?/3n+n?) for planes in R3 by Agarwal and Aronov [AA92] (which
is tight), and O(m!/2n%/2(log n)(L4/2)-1)/2) for hyperplanes in R? by
Aronov, Matousek, and Sharir [AMS94]. If one counts only facets of m
cells in an arrangement of n hyperplanes in R?, then the tight bound
is O(m?/3n4/3 4+ nd=1) [AA92]. A few more references on this topic
can be found in Agarwal and Sharir [AS00a].

The number of similar copies of a configuration. The problem of unit
distances can be rephrased as follows. Let K denote a set consisting
of two points in the plane with unit distance. What is the maximum
number of congruent copies of K that can occur in an n-point set in
the plane? This reformulation opens the way to various interesting
generalizations, where one can vary K, or one can consider homo-
thetic or similar copies of K, and so on. Elekes’s survey [Ele01] nicely
describes these problems, their relation to the incidence bounds, and
other connections. Here we sketch some of the main developments.

Beautiful results were obtained by Laczkovich and Ruzsa [LR97],
who investigated the maximum number of similar copies of a given
finite configuration K that can be contained in an n-point set in the
plane. Earlier, Elekes and Erdds [EE94] proved that this number is
Q(n2~1°8™)™°) for all K, where ¢ > 0 depends on K, and it is Q(n?)
whenever all the coordinates of the points in K are algebraic num-
bers. Building on these results, Laczkovich and Ruzsa proved that the
maximum number of similar copies of K is Q(n?) if and only if the
cross-ratio of every 4 points of K is algebraic, where the cross-ratio
of points a,b,c,d € R? equals o2 -fil—:—g, with a, b, ¢, d interpreted as
complex numbers in this formula.

Their proof makes use of very nice results from the additive the-
ory of numbers, most notably a theorem of Freiman [Fre73] (also see
Ruzsa [Ruz94]): If A is a set of n integers such that |A + A| < cn,
where A+ A = {a+b:a,b € A} and ¢ > 0 is a constant, then A
is contained in a d-dimensional generalized arithmetic progression of
size at most Cn, with C and d depending on ¢ only. Here a d-dimen-
sional generalized arithmetic progression is a set of integers of the form
{zo+i1q1+32g2+ - -+igqq: 11 =0,1,...,m1, 52 =0,1,...,n9,...,iqg =
0,1,...,n4} for some integers zg and q1, g2, . . . , gq. It is easy to see that
|A + A| < Cy4lA| for every d-dimensional generalized arithmetic pro-
gression, and Freiman’s theorem is a sort of converse statement: If
|A+ A] = O(]A]), then A is not too far from a generalized arithmetic
progression. (Freiman’s theorem has also been used for incidence-
related problems by Erdés, Fiiredi, Pach, and Ruzsa [EFPR93], and
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Gowers’s paper [Gow98] is an impressive application of results of this
type in combinatorial number theory.)

Polynomials attaining O(n) values on Cartesian products. Interesting
results related to those of Freiman, as well as to incidence problems,
were obtained in a series of papers by Elekes and his coworkers (they
are described in the already mentioned survey [Ele01]). Perhaps even
more significant than the particular results is the direction of research
opened by them, combining algebraic and combinatorial tools. Let us
begin with a conjecture of Purdy proved by Elekes and Rényai [ER00]
as a consequence of their theorems. Let P be a set of n distinct points
lying on a line v C R2, let Q be a set of n distinct points lying on
a line v C R?, and let Dist(P,Q) = {|lp — q|: p € P,q € Q}. If, for
example, u and v are parallel and if both P and @ are placed with equal
spacing along their lines, then | Dist(P, Q)| < 2n. Another such case
is P={(+4,0):i=1,2,...,n} and Q = {(0,v/7):7 = 1,2,...,n}:
This time v and v are perpendicular, and again |Dist(P, Q)| < 2n.
According to Purdy’s conjecture, these are the only possible positions
of u and v if the number of distances is linear: For every C > 0 there
is an ng such that if n > ng and | Dist(P, Q)| < Cn, then u and v are
parallel or perpendicular.

If we parameterize the line u by a real parameter z, and v by y, and
denote the cosine of the angle of u and v by A, then Purdy’s conjecture
can be reformulated in algebraic terms as follows: Whenever X, Y C R
are n-point sets such that the polynomial F(z,y) = z? + y? + 2\zy
attains at most Cn distinct valueson X XY, i.e,, |{F(z,y): z € X,y €
Y'}| < Cn, then necessarily A = 0 or A = +1, provided that n > ng(C).

Elekes and Rényai [ER00] characterized all bivariate polynomials
F(z,y) that attain only O(n) values on Cartesian products X x Y.
For every C,d there exists an ng such that if F(z,y) is a bivariate
polynomial of degree at most d and X,Y C R are n-point sets, n > ng,
such that F'(z,y) attains at most Cn distinct values on X x Y, then
F(z,y) has one of the two special forms f(g(z)+h(y)) or f(g(z)h(y)),
where f, g, h are univariate polynomials. In fact, we need not consider
the whole X xY; it suffices to assume that F' attains at most Cn values
on an arbitrary subset of dn? pairs from X x Y (with ny depending
on 4, too). A similar result holds for a bivariate rational function
F(z,y), with one more special form to consider, namely, F(z,y) =
f((g(z) + h(y))/(1 — g(z)h(y)))-

We indicate a proof only for the special case of the polynomial
F(z,y) = 22 + y? + 2\zy from Purdy’s conjecture (following Elekes
[Ele99]); the basic idea of the general case is similar, but several more
tools are needed, especially from elementary algebraic geometry. So let
Z = F(X,Y) be the set of values attained by F on X x Y. For each
vi € Y, put fi(x) = F(x,y), and define the family I’ = {v;;: 4,5 =
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1,2,...,n,i # j} of planar curves by v; = {(fi(t), f;(t)):t € R}
(this is the key trick). Each -y;; contains at least ¥ points of Z x Z,
since among the n points (f;(zx), fj(zx)), x € X, no 3 can coincide,
because the f; are quadratic polynomials. Moreover, a straightfor-
ward (although lengthy) calculation using resultants verifies that for
A & {0,%1}, at most 8 distinct curves ;; can pass through any two
given distinct points a,b € R2. Consequently, I' contains at least $n?
distinct curves. Using the bound of Pach and Sharir [PS92], [PS98a]
on the number of incidences between points and algebraic curves men-
tioned above, with Z x Z as the points and the at least %nz distinct
curves of ' as the curves, we obtain that |Z| = Q(n%*). So there is
even a significant gap: Either A € {0,+1}, and then F(X,Y") can have
only 2n distinct elements for suitable X,Y, or A ¢ {0,£1} and then
|F(X,Y)] = Q(n¥*) for all X,Y.

Perhaps this latter bound can be improved to (n2~¢) for every
€ > 0 (so there would be an almost-dichotomy: either the number of
values of F' can be linear, or it has to be always near-quadratic). On the
other hand, it is known that the polynomial 22 +y2 4+ xy attains only
O(n?/+/logn) distinct values for z,y ranging over {1,2,...,n}, and
so the bound need not always be linear or quadratic. It seems likely
that in the general case of the Elekes—Rényai theorem the number of
values attained by F should be near-quadratic unless F' is one of the
special forms.

Further generalizations of the Elekes—Rényai theorem were ob-
tained by Elekes and Szabé; see [Ele01].

Exercises

1. Let Iicirc(m,n) be the maximum number of incidences of m points with
n unit circles and let U(n) be the maximum number of unit distances for
an n-point set.

(a) Prove that I1girc(2n,2n) = O(I1cire(n, n)). [
(b) We have seen that U(n) < %Ilcirc(n, n). Prove that [icr.(n,n) =
O(U(n)). 2

2. Show that an n-point set in R* may determine Q(n?) unit distances. [4]

3. Prove that if X C R% is a set where every two points have distance 1,
then |X| < d+1. [&]

4. What can be said about the maximum possible number of incidences of
n lines in R3 with m points? [z

5. Use the Szemerédi—Trotter theorem to show that n points in the plane
determine at most
(a) O(n"/3) triangles of unit area,

(b) O(n"/3) triangles with a given fixed angle a. [2]
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The result in (a) was first proved by Erdés and Purdy [EPT71]. As for
(b), Pach and Sharir [PS92] proved the better bound O(n?logn); also
see [PA95].

. (a) Using the Szemerédi-Trotter theorem, show that the maximum pos-

sible number of distinct lines such that each of them contains at least k
points of a given m-point set P in the plane is O(m?/k® + m/k).

(b) Prove that such lines have at most O(m?2/k? +m) incidences with P.
(]

. (Many points on a line or many lines)

(a) Let P be an m-point set in the plane and let k < /m be an integer
parameter. Prove (using Exercise 6, say) that at most O(m?/k) pairs of
points of P lie on lines containing at least k£ and at most /m points of
P.

(b) Similarly, for K > /m, the number of pairs lying on lines with at
least v/m and at most K points is O(Km).

(c) Prove the following theorem of Beck [Bec83]: There is a constant
¢ > 0 such that for any n-point P C R2, at least cn? distinct lines are
determined by P or there is a line containing at least cn points of P. [2]
(d) Derive that there exists a constant ¢ > 0 such that for every n-point
set P in the plane that does not lie on a single line there exists a point
p € P lying on at least cn distinct lines determined by points of P.
Part (d) is a weak form of the Dirac-Motzkin conjecture; the full conjec-
ture, still unsolved, is the same assertion with ¢ = %

. (Many distinct radii)

(a) Assume that Isirc(m,n) = O(m®*nf +m+n) for some constants o < 1
and S < 1, where Ic(m,n) is the maximum number of incidences of m
points with n circles in the plane. In analogy with to Exercise 7, derive
that there is a constant ¢ > 0 such that for any n-point set P C R2,
there are at least cn® distinct circles containing at least 3 points of P
each or there is a circle or line containing at least cn points of P.

(b) Using (a), prove the following result of Elekes (an answer to a question
of Balog): For any n-point set P C R? not lying on a common circle or
line, the circles determined by P (i.e., those containing 3 or more points
of P) have Q(n) distinct radii. [«

(c) Find an example of an n-point set with only O(n) distinct radii.

. (Sums and products cannot both be few) Let A C R be a set of n distinct

real numbers and let S= A+ A={a+ba,be Aand P=A-A=
{ab: a,be A},

(a) Check that each of the n? lines {(z,y) € R%: y = a(z —b)}, a,b € 4,
contains at least n distinct points of S x P.

(b) Conclude using Exercise 6 that |S x P| = Q(n®/2), and consequently,
max(|S|, |P) = Q(n5/%); i.e., the set of sums and the set of products can
never both have almost linear size. [2] (This is a theorem of Elekes [Ele97]
improving previous results on a problem raised by Erdés and Szemerédi.)
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10. (a) Find n-point sets in the plane that contain €2(n?) similar copies of
the vertex set of an equilateral triangle.
(b) Verify that the following set P, has n = O(m?*) points and contains
Q(n?) similar copies of the vertex set of a regular pentagon: Identify R?
with the complex plane C, let w = ¢?™/5 denote a primitive 5th root of
unity, and put

Py, = {io + i1w + i2w? + i3w: dg, i1, 12,13 € Z, |i;| < m}.

(]
The example in (b) is from Elekes and Erdés [EE94], and the set P, is
called a pentagonal pseudolattice. The following picture shows Py:

4.2 Lower Bounds: Incidences and Unit Distances

4.2.1 Proposition (Many point—line incidences). We have I(n,n) =
Q(n4/ 3), and so the upper bound for the maximum number of incidences
of n points and n lines in the plane in the Szemerédi-Trotter theorem is
asymptotically optimal.

It is not easy to come up with good constructions “by hand.” Small cases
do not seem to be helpful for discovering a general pattern. Surprisingly, an
asymptotically optimal construction is quite simple. The appropriate lower
bound for I(m,n) with n # m is obtained similarly (Exercise 1).

Proof. For simplicity, we suppose that n = 4k3 for a natural number k.
For the point set P, we choose the k x 4k? grid; i.e., we set P = {(i,4): i =
0,1,2,...,k=1,j=0,1,...,4k?—1}. The set L consists of all the lines with
equations y = ar + b, where @ = 0,1,...,2k—1 and b = 0,1,...,2k?—1.
These are n lines, as it should be. For z € [0, k), we have az + b < ak + b <
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2k? +2k? = 4k2. Therefore, for each ¢ = 0, 1,...,k—1, each line of L contains
a point of P with the z-coordinate equal to ¢, and so I(P, L) > k-|L| = § n*/3.
O

Next, we consider unit distances, where the construction is equally simple
but the analysis uses considerable number-theoretic tools.

4.2.2 Theorem (Many unit distances). For all n > 2, there exist con-
figurations of n points in the plane determining at least nlt¢1/108logn ynjt
distances, with a positive constant c;.

A configuration with the asymptotically largest known number of unit
distances is a v/n X y/n regular grid with a suitably chosen step. Here unit
distances are related to the number of possible representations of an integer
as a sum of two squares. We begin with the following claim:

4.2.3 Lemma. Let p; < p2 < --- < p, be primes of the form 4k+1, and
put M = p1ps---p.. Then M can be expressed as a sum of two squares of
integers in at least 2" ways.

Proof. As we know from Theorem 2.3.1, each p; can be written as a sum
of two squares: p; = af + b?. In the sequel, we work with the ring Z[i], the
so-called Gaussian integers, consisting of all complex numbers u + iv, where
u,v € Z. We use the fact that each element of Z[i] can be uniquely factored
into primes. From algebra, we recall that a prime in the ring Z[i] is an element
v € ZJi] such that whenever v = y;7v5 with v1,72 € Z[i], then || = 1 or
|v2| = 1. Both existence and uniqueness of prime factorization follows from
the fact that Zli] is a Euclidean ring (see an introductory course on algebra
for an explanation of these notions).

Let us put a; = a; +ib;, and let &; = a; —ib; be the complex con-
jugate of a;. We have a;a; = (a; +1ib;)(a; —ib;) = a 4+ b? = p;. Let us
choose an arbitrary subset J C I = {1,2,...,r} and define 4; +iB; =

(HjEJaj) (njeI\J aj)- Then Ay —iBy = (Hjede) (HjeI\J aj)’ and
hence M = (Ay +iBy)(As — iB;) = A% + BZ. This gives one expression of
the number M as a sum of two squares. It remains to prove that for two sets
J#£J, A +iBy # Ay +iBy. To this end, it suffices to show that all the
a; and @; are primes in Z[i]. Then the numbers Ay +1B; and A +iBy are
distinct, since they have distinct prime factorizations. (No a; or &; can be
obtained from another one by multiplying it by a unit of the ring Z[i]: The
units are only the elements 1, —1,i, and —i.)

So suppose that o = 7172, 71,72 € Z[i]. We have p; = o;&; =
1Y27172 = [711%72]%. Now, |11|? and |y2|? are both integers, and since p; is
a prime, we get that |y1| =1 or |2 = 1. ad

Next, we need to know that the primes of the form 4k+1 are sufficiently
dense. First we recall the well-known prime number theorem: If m(n) denotes
the number of primes not exceeding n, then
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w(n) =1+ 0(1))1—1%1— as n — 0o.

Proofs of this fact are quite complicated; on the other hand, it is not so hard
to prove weaker bounds cn/logn < w(n) < Cn/logn for suitable positive
constants ¢, C.

We consider primes in the arithmetic progression 1,5,9,...,4k+1,... . A
famous theorem of Dirichlet asserts that every arithmetic progression con-
tains infinitely many primes unless this is impossible for a trivial reason,
namely, unless all the terms have a nontrivial common divisor. The following
theorem is still stronger:

4.2.4 Theorem. Let d and a be relatively prime natural numbers, and let
T4,o(n) be the number of primes of the form a + kd (k = 0,1,2,...) not
exceeding n. We have

1 n
o(d) Inn’
where ¢ denotes the Euler function: ¢(d)is the number of integers between 1
and d that are relatively prime to d.

7d,a(n) = (1 + o(1))

For every d > 2, there are ¢(d) residue classes modulo d that can possi-
bly contain primes. The theorem shows that the primes are quite uniformly
distributed among these residue classes.

The proof of the theorem is not simple, and we omit it, but it is very
nice, and we can only recommend to the reader to look it up in a textbook
on number theory.

Proof of the lower bound for unit distances (Theorem 4.2.2). Let us
suppose that n is a square. For the set P we choose the points of the \/n x /1
grid with step 1/v/M, where M is the product of the first 7—1 primes of the
form 4k+1, and r is chosen as the largest number such that M < 7.

It is easy to see that each point of the grid participates in at least as many
unit distances as there are representations of M as a sum of two squares of
nonnegative integers. Since one representation by a sum of two squares of
nonnegative integers corresponds to at most 4 representations by a sum of
two squares of arbitrary integers (the signs can be chosen in 4 ways), we have
at least 27~!/16 unit distances by Lemma 4.2.3.

By the choice of r, we have 4p1ps---pr—1 < n < 4pip2---pr, and
hence 2" < n and p, > (%)1/ ". Further, we obtain, by Theorem 4.2.4,
r = mg1(pr) > (5 — o(1))pr/logpr > /Br > n/3" for sufficiently large
n, and thus 73" > n. Taking logarithms, we have 3rlogr > logn, and hence
r > logn/(3logr) > logn/(3loglogn). The number of unit distances is at
least n 274 > pltei/loglogn ag Theorem 4.2.2 claims. Let us remark that for
sufficiently large n the constant ¢; can be made as close to 1 as desired. O

Bibliography and remarks. Proposition 4.2.1 is due to Erdds
[Erd46]. His example is outlined in Exercise 2 (also see [PA95]); the
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analysis requires a bit of number theory. The simpler example in the
text is from Elekes [Ele01]. Its extension provides the best known
lower bound for the number of incidences between m points and n >
m*=1/2 curves with k degrees of freedom: For a parameter t < m!/¥,
let P = {(4,7):0 <4 <t 0 < j < %}, and let T consist of the
graphs of the polynomials Y"b_0 agz? with ap = 0,1,..., |z ], €=
0,1,...,k—1.

Theorem 4.2.2 is due to Erd6s [Erd46], and the proof uses ingredi-
ents well known in number theory. The prime number theorem (and
also Theorem 4.2.4) was proved in 1896, by de la Valée Poussin and
independently by Hadamard (see Narkiewicz [Nar00]).

Exercises

1. By extending the example in the text, prove that for all m,n with n? < m
and m? < n, we have I(m,n) = Q(n?/3m?/3).

2. (Another example for incidences) Suppose that n = 4t® for an integer
t >1andlet P = {(4,5:0 < i,j < /n}. Let S = {(a,b),a,b =
1,2,...,t, ged(a,b) = 1}, where ged(a,b) denotes the greatest common
divisor of a and b. For each point p € P, consider the lines passing
through p with slope a/b, for all pairs (a,b) € S. Let L be the union of
all the lines thus obtained for all points p € P.

(a) Check that |L| < n. 2]
(b) Prove that |S| > ct? for a suitable positive constant ¢ > 0, and infer
that I(P,L) = Q(nt?) = Q(n*/3). [&

4.3 Point-Line Incidences via Crossing Numbers

Here we present a very simple proof of the Szemerédi—Trotter theorem based
on a result concerning graph drawing. We need the notion of the crossing
number of a graph G; this is the minimum possible number of edge crossings
in a drawing of G. To make this rigorous, let us first recall a formal definition
of a drawing.

An arc is the image of a continuous injective map [0,1] — R2. A drawing
of a graph G is a mapping that assigns to each vertex of G a point in the plane
(distinct vertices being assigned distinct points) and to each edge of G an
arc connecting the corresponding two (images of) vertices and not incident
to any other vertex. We do not insist that the drawing be planar, so the
arcs are allowed to cross. A crossing is a point common to at least two arcs
but distinct from all vertices. In this section we will actually deal only with
drawings where each edge is represented by a straight segment.

Let G be a graph (or multigraph). The crossing number of a drawing of
G in the plane is the number of crossings in the considered drawing, where a
crossing incident to k£ > 2 edges is counted ('2“) times. So a drawing is planar



4.3 Point-Line Incidences via Crossing Numbers 55

if and only if its crossing number is 0. The crossing number of the graph G
is the smallest possible crossing number of a drawing of G; we denote it by
cr(@G). For example, cr(K3) = 1:

As is well known, for n > 2, a planar graph with n vertices has at most
3n—6 edges. This can be rephrased as follows: If the number of edges is
at least 3n—5 then cr(G) > 0. The following theorem can be viewed as a
generalization of this fact.

4.3.1 Theorem (Crossing number theorem). Let G = (V| E) be a sim-
ple graph (no multiple edges). Then

1 |EP
cr(G)Za'lT/I—Q 14

(the constant 312 can be improved by a more careful calculation).

The lower bound in this theorem is asymptotically tight; i.e., there exist
graphs with n vertices, m edges, and crossing number O(m3/n?); see Exer-
cise 1. The assumption that the graph is simple cannot be omitted.

For a proof of this theorem, we need a simple lemma:

4.3.2 Lemma. The crossing number of any simple graph G = (V, E) is at
least |E| — 3|V|.

Proof. If |E| > 3|V| and some drawing of the graph had fewer than |E|-3|V|
crossings, then we could delete one edge from each crossing and obtain a
planar graph with more than 3|V| edges. o

Proof of Theorem 4.3.1. Consider some drawing of a graph G = (V, E)
with n vertices, m edges, and crossing number . We may assume m > 4n,
for otherwise, the claimed bound is negative. Let p € (0,1) be a parameter;
later on we set it to a suitable value. We choose a random subset V' C V by
including each vertex v € V into V' independently with probability p. Let G’
be the subgraph of G induced by the subset V'. Put n’ = |V’'|, m’' = |E(G’)|,
and let ' be the crossing number of the graph G’ in the drawing “inherited”
from the considered drawing of G. The expectation of n' is E[n’] = np. The
probability that a given edge appears in E(G’) is p?, and hence E[m/] = mp?,
and similarly we get E[z/] = xp%. At the same time, by Lemma 4.3.2 we
always have ' > m’ — 3n’, and so this relation holds for the expectations as
well: E[z'] > E[m/] — 3E[n/]. So we have zp* > mp? — 3np. Setting p = 42
(which is at most 1, since we assume m > 4n), we calculate that
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m3

>1
=8z

The crossing number theorem is proved. a

Proof of the Szemerédi—Trotter theorem (Theorem 4.1.1). We con-
sider a set P of m points and a set L of n lines in the plane realizing the max-
imum number of incidences I(m,n). We define a certain topological graph
G = (V,E), that is, a graph together with its drawing in the plane. Each
point p € P becomes a vertex of G, and two points p,q € P are connected
by an edge if they lie on a common line £ € L next to one another. So we
have a drawing of G where the edges are straight segments. This is illustrated
below, with G drawn thick:

If a line £ € L contains k£ > 1 points of P, then it contributes k—1 edges to
P, and hence I{m,n) = |E| + n. Since the edges are parts of the n lines, at
most (3) pairs may cross: cr(G) < (2). On the other hand, from the crossing

number theorem we get cr(G) > g5 - |E[¥/m? —m. So & - |E|¥/m? —m <
cr(G) < (3), and a calculation gives |E| = O(n?/3m?/3 +-m). This proves the
Szemerédi-Trotter theorem. o

The best known upper bound on the number of unit distances, U(n) =
O(n*/3), can be proved along similar lines; see Exercise 2.

Bibliography and remarks. The presented proof of the Szemerédi—
Trotter theorem is due to Székely [Sz£97].

The crossing number theorem was proved by Ajtai, Chvéital, New-
born, and Szemerédi [ACNS82] and independently by Leighton [Lei84].
This result belongs to the theory of geometric graphs, which studies
the properties of graphs drawn in the plane (most often with edges
drawn as straight segments). A nice introduction to this area is given
in Pach and Agarwal [PA95], and a newer survey is Pach [Pac99]. In
the rest of this section we mention mainly some of the more recent
results.

Pach and Téth [PT97] improved the constant gz; in Theorem 4.3.1
to approximately 0.0296, which is already within a factor of 2.01 of the
best known upper bound (obtained by connecting all pairs of points of
distance at most d in a regular +/n X 4/ grid, for a suitable d). The im-
provement is achieved by establishing a better version of Lemma 4.3.2,
namely, cr(G) > 5|E| — 25|V| for |E| > 7|V] — 14.
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Pach, Spencer, and Téth [PST00] proved that for graphs with cer-
tain forbidden subgraphs, the bound can be improved substantially:
For example, if G has n vertices, m edges, and contains no cycle of
length 4, then cr(G) = Q(m?*/n?) for m > 400n, which is asymp-
totically tight. Generally, let G be a class of graphs that is mono-
tone (closed under adding edges) and such that any n-vertex graph
in G has at most O(n!*®) edges, for some o € (0,1). Then cr(G) >
em2tl/a pltl/e for any G € G with n vertices and m > Cnlog®n
edges, with suitable constants C,c¢ > 0 depending on G. The proof
applies a generally useful lower bound on the crossing number, which
we outline next. Let bw(G) denote the bisection width of G, i.e., the
minimum number of edges connecting V; and V3, over all partitions
(V1,V2) of V(@) with |V1|,|V2| > %|V(G)|. Leighton [Lei83] proved
that cr(G) = Q(bw(G)?) — |V(G)| for any graph G of maximum de-
gree bounded by a constant. Pach, Shahrokhi, and Szegedy [PSS96],
and independently Sykora and Vrto [SV94], extended this to graphs
with arbitrary degrees:

cr(G) = Q (bw(G)?) — 116 Z degq(v)?, (4.1)

veV(G)

where degs(v) is the degree of v in G. The proof uses the fol-
lowing version, due to Gazit and Miller [GM90], of the well-known
Lipton-Tarjan separator theorem for planar graphs: For any planar
graph H and any nonnegative weight function w: V(H) — [0, 2] with

2 vev(e W(v) = 1, one can delete at most 1.58\/Zv€V(H) degy(v)?

edges in such a way that the total weight of vertices in each component
of the resulting graph is at most % To deduce (4.1), consider a drawing
of G with the minimum number of crossings, replace each crossing by a
vertex of degree 4, assign weight 0 to these vertices and weight IT/TlCJ—N
to the original vertices, and apply the separator theorem (see, e.g.,
[PA95] for a more detailed account). Djidjev and Vrto [DV02] have re-
cently strengthened (4.1), replacing bw(G) by the cutwidth of G. To
define the cutwidth, we consider an injective mapping f: V(G) — R.
Each edge corresponds to a closed interval, and we find the maximum
number of these intervals with a common interior point. The cutwidth
is the minimum of this quantity over all f.

To derive the result of Pach et al. [PST00] on the crossing number
of graphs with forbidden subgraphs mentioned above from (4.1), we
consider a graph G € G with n vertices and m edges. If cr(G) is
small, then the bisection width is small, so G can be cut into two
parts of almost equal size by removing not too many edges. For each
of these parts, we bisect again, and so on, until parts of some suitable
size s (depending on n and m) are reached. By the assumption on G,
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each of the resulting parts has O(s'*%) edges, and so there are O(ns®)
edges within the parts. This number of edges plus the number of edges
deleted in the bisections add up to m, and this provides an inequality
relating cr(G) to n and m; see [PST00] for the calculations.

The notion of crossing number is a subtle one. Actually, one can
give several natural definitions; a study of various notions and of their
relations was made by Pach and Téth [PT00]. Besides counting the
crossings, as we did in the definition of cr(G), one can count the
number of (unordered) pairs of edges that cross; the resulting no-
tion is called the pairwise crossing number in [PT00], and we denote
it by pair-cr(&). We always have pair-cr(G) < cr(G), but since two
edges (arcs) are allowed to cross several times, it is not clear whether
pair-cr(G) = cr(G) for all graphs G, and currently this seems to be a
challenging open problem (see Exercise 4 for a typical false attempt at
a proof). A simple argument shows that cr(G) < 2 pair-cr(G)? (Exer-
cise 4(c)). A stronger claim, proved in [PT00], is cr(G) < 2o0dd-cr(G)?,
where odd-cr(G) is the odd-crossing number of G, counting the num-
ber of pairs of edges that cross an odd number of times. An inspiration
for their proof is a theorem of Hanani and Tutte claiming that a graph
G is planar if and only if odd-cr(G) = 0. In a drawing of G, call an
edge e even if there is no edge crossed by e an odd number of times.
Pach and Téth show, by a somewhat complicated proof, that if we
consider a drawing of G and let Ey be the set of the even edges, then
there is another drawing of G in which the edges of Ey are involved in
no crossings at all. The inequality cr(G) < 2odd-cr(G)? then follows
by an argument similar to that in Exercise 4(c).

Finally, let us remark that if we consider rectilinear drawings
(where each edge is drawn as a straight segment), then the result-
ing rectilinear crossing number can be much larger than any of the
crossing numbers considered above: Graphs are known with cr(G) =4

and arbitrarily large rectilinear crossing numbers (Bienstock and Dean
[BD93]).

Exercises

1.

2.

n

Show that for any n and m, 5n < m < (3), there exist graphs with n
vertices, m edges, and crossing number O(m?/n?).

In a manner similar to the above proof for point—line incidences, prove the
bound I re(n,n) = O(n*/3), where Iicrc(m,n) denotes the maximum
possible number of incidences between m points and n unit circles in the
plane (be careful in handling possible multiple edges in the considered
topological graph!).

. Let K(n,m) denote the maximum total number of edges of m dis-

tinct cells in an arrangement of n lines in the plane. Prove K(n,m) =
O(n?*/3m?2/3 4 n+m) using the method of the present section (it may be
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convenient to classify edges into top and bottom ones and bound each
type separately).

4. (a) Prove that in a drawing of G with the smallest possible number of
crossings, no two edges cross more than once. [2]
(b) Explain why the result in (a) does not imply that pair-cr(G) = cr(G)
(where pair-cr(G) is the minimum number of pairs of crossing edges in a
drawing of G). [z
(c) Prove that if G is a graph with pair-cr(G) = k, then cr(G) < (¥). &

4.4 Distinct Distances via Crossing Numbers

Here we use the methods from the preceding sections to establish a lower
bound on the number of distinct distances determined by an n-point set
in the plane. We do not go for the best known bound, whose proof is too
complicated for our purposes, but in the notes below we indicate how the
improvement is achieved.

4.4.1 Proposition (Distinct distances in R?). The minimum number

g(n) of distinct distances determined by an n-point set in the plane satisfies
g(n) = Q(n*/®).

Proof. Fix an n-point set P, and let ¢t be the number of distinct distances
determined by P. This means that for each point p € P, all the other points
are contained in t circles centered at p (the radii correspond to the t distances

appearing in P).

These tn circles obtained for all the n points of P have n(n—1) incidences
with the points of P. The first idea is to bound this number of incidences from
above in terms of n and ¢, in a way similar to the proof of the Szemerédi-
Trotter theorem in the preceding section, which yields a lower bound for ¢.

First we delete all circles with at most 2 points on them (the innermost
circle and the second outermost circle in the above picture). We have de-
stroyed at most 2nt incidences, and so still almost n? incidences remain (we
may assume that ¢ is much smaller than n, for otherwise, there is nothing
to prove). Now we define a graph G: The vertices are the points of P and
the edges are the arcs of the circles between the points. This graph has n
vertices, almost n? edges, and there are at most t?n? crossings because every
two circles intersect in at most 2 points.
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Now if we could apply the crossing number theorem to this graph, we
would get that with n vertices and n? edges there must be at least Q(nf/n?) =
Q(n*) crossings, and so t = Q(n) would follow. This, of course, is too good
to be true, and indeed we cannot use the crossing number theorem directly
because our graph may have multiple edges: Two points can be connected by

several arcs.
Y @ ¢

A multigraph can have arbitrarily many edges even if it is planar. But if we
have a bound on the maximum edge multiplicity, we can still infer a lower
bound on the crossing number:

4.4.2 Lemma. Let G = (V, E) be a multigraph with maximum edge multi-
plicity k. Then
cr(G) = Q (ﬂ) — O(K?|V]).
k|V|?

We defer the proof to the end of this section.

In the graph G defined above, it appears that the maximum edge multi-
plicity can be as high as ¢. If we used Lemma 4.4.2 with k¥ = ¢ in the manner
indicated above, we would get only the estimate ¢t = Q(n?/3).

The next idea is to deal with the edges of very high multiplicity separately.
Namely, we observe that if a pair {u, v} of points is connected by k arcs, then
the centers of these arcs lie on the symmetry axis £, of the segment uv:

So the line ¢, has at least k incidences with the points of P. But the Sze-
merédi-Trotter theorem tells us that there cannot be too many distinct lines,
each incident to many points of P. Let us make this precise.

By a consequence of the Szemerédi-Trotter theorem stated in Exer-
cise 4.1.6(b), lines containing at least k points of P each have altogether
no more than O(n?/k? + n) incidences with P.

Let M be the set of pairs {u,v} of vertices of G connected by at least
k edges in G, and let E be the set of edges (arcs) connecting these pairs.
Each edge in E connecting the pair {u,v} contributes one incidence of the
bisecting line £,, with a point p € P. On the other hand, one incidence of
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such p with some £,,, can correspond to at most 2t edges of F, because at
most t circles are centered at p, and so £, intersects at most 2t arcs with
center p. So we have |E| = O(tn?/k? + tn).

Let us set k as large as possible but so that |E| < %nz, ie, k=CVt
for a sufficiently large constant C. If we delete all edges of E, the remaining
graph still has (n?) edges, but the maximum multiplicity is now below k.
We can finally apply Lemma 4.4.2: With n vertices, 2(n?) edges, and edge
multiplicity at most k = O(v/%), we have at least Q(n?/+/t) crossings. This
number must be below t2n?, which yields t = Q(n*/%) as claimed. a

Proof of Lemma 4.4.2. Consider a fixed drawing of G. We choose a
subgraph G’ of G by the following random experiment. In the first stage,
we consider each edge of G independently, and we delete it with probability
1- % In the second stage, we delete all the remaining multiple edges, and
this gives G’, which has n vertices, m’ edges, and z’ crossing pairs of edges.
Consider the probability p. that a fixed edge e € E remains in G’. Clearly,
Pe < . On the other hand, if e was one of ¥’ < k edges connecting the same
pair of vertices, then the probability that e survives the first stage while all
the other edges connecting its two vertices are deleted is

K —1
141 > L
k k — 3k
(since (1—1/k)k=1 > 1). We get E[m’] > |E|/3k and E[2'] < z/k?. Applying

the crossing number theorem for the graph G’ and taking expectations, we

have [ ,3]
, 1 Elm

> S S |
Elz] > 64 n?

By convexity (Jensen’s inequality), we have E [m"3] > (E[m])® = Q(|EP}/k%).
Plugging this plus the bound E[z] < z/k? into the above formula, we get

z EP
k2 2 (k3n2> - o),

and the lemma follows. O

- n.

Bibliography and remarks. The proof presented above is, with
minor modifications, that of Székely [Szé97]. The bound has subse-
quently been improved by Solymosi and Téth [STO1] to Q(n%/7) and
then by Tardos [Tar01] to (approximately) §2(n0-863).

The weakest point of the proof shown above seems to be the lower
bound on the number of incidences between the points of P and the
“rich” bisectors £y, ({u,v} being the pairs connected by k or more
edges). We counted as if each such incidence could be responsible for as
many as t edges. While this does not look geometrically very plausible,
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it seems hard to exclude such a possibility directly. Instead, Solymosi
and Téth prove a better lower bound for the number of incidences of
P with the rich bisectors differently; they show that if there are many
edges with multiplicity at least k, then each of Q(n) suitable points is
incident to many (namely Q(n/t3/2) in their proof) rich bisectors. We
outline this argument.

We need to modify the definition of the graph GG. The new definition
uses an auxiliary parameter r (a constant, with r = 3 in the original
Solymosi-T6th proof). First, we note that by the theorem of Beck
mentioned in Exercise 4.1.7, there is a subset P’ C P of 2(n) points
such that each p € P’ sees the other points of P in Q(n) distinct
directions. For each p € P’, we draw the ¢t circles around p. If several
points of P are visible from p in the same direction, we temporarily
delete all of them but one. Then, on each circle, we group the remaining
points into groups by 7 consecutive points, and on each circle we delete
the at most r—1 leftover points fitting in no such group. This still
leaves Q(n) r-point groups on the circles centered at p.

Next, we consider one such r-point group and all the (;) bisecting
lines of its points. If at least one of these bisectors, call it £,,,, contains
fewer than k points of P (k being a suitable threshold), then we add
the arc connecting u and v as an edge of G:

(7

; If this bisector has at most k points of P,

then the arc {u, v} is added to G.

(This is not quite in agreement with our definition of a graph drawing,
since the arc may pass though other vertices of GG, but it is easy to
check that if we permit arcs through vertices and modify the definition
of the crossing number appropriately, Lemma 4.4.2 remains valid.) The
groups where every bisector contains at least k points of P (call them
rich groups) do not contribute any edges of G.

Setting k = an?/t? for a small constant o, we argue by Lemma, 4.4.2
that G has at most On? edges for a small 3 = B(a) > 0. It follows
that most of the r-point groups must be rich, and so there is a subset
P" C P’ of Q(n) points, each of them possessing (n) rich groups
on its circles. It remains to prove that each point p € P” is incident
to many rich bisectors. We divide the plane around p into angular
sectors such that each sector contains about 3rt¢ points (of the Q(n)
points in the rich groups belonging to p). Each sector contains at least
t complete rich groups (since there are ¢ circles, and so the sector’s
boundaries cut through at most 2¢ groups), and we claim that it has
to contain many rich bisectors. This leads to the following number-
theoretic problem: we have tr distinct real numbers (corresponding to
the angles of the points in the sector as seen from p), arranged into
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t groups by r numbers, and we form all the (;) arithmetic averages

of the pairs in each group (corresponding to the rich bisectors of the
group). This yields ¢(3) real numbers, and we want to know how many
of them must be distinct.

It is not hard to see that for r = 3, there must be at least Q(t/3)
distinct numbers, because the three averages (a +b)/2, (a+¢)/2, and
(b + ¢)/2 determine the numbers a,b, c uniquely. It follows, still for
r = 3, that each of the Q(%) sectors has Q(t!/3) distinct bisectors,
and so each point in P" has Q(n/t?/3) incidences with the rich lines.
Applying Szemerédi-Trotter now yields the Solymosi-T6th bound of
t = Q(n8/7) distinct distances.

Tardos [Tar01] considered the number-theoretic problem above for
larger r, and he proved, by a complicated argument, that for r large
but fixed, the number of distinct pairwise averages is Q(t1/¢+¢), with
€ — 0 as r — oo. Plugging this into the proof leads to the current
best bound mentioned above. An example by Ruzsa shows that the
number of distinct pairwise averages can be O(v/t) for any fixed r,
and it follows that the Solymosi—-T6th method as is cannot provide a
bound better than Q(n®?). But surely one can look forward to the
further continuation of the adventure of distinct distances.

Exercises

1. Let Irc(m, n) be the maximum number of incidences between m points
and n arbitrary circles in the plane. Fill in the details of the following
approach to bounding I.;c(n,n). Let K be a set of n circles, C' the set
of their centers, and P a set of n points.

(a) First, assume that the centers of the circles are mutually distinct, i.e.,
|C} = |K|. Proceed as in the proof in the text: Remove circles with at
most 2 incidences, and let the others define a drawing of a multigraph G
with vertex set P and arcs of the circles as edges. Handle the edges with
multiplicity k or larger via Szemerédi-Trotter, using the incidences of the
bisectors with the set C, and those with multiplicity < k by Lemma 4.4.2.
Balance k suitably. What bound is obtained for the total number of
incidences?

(b) Extend the argument to handle concentric circles too.

2. This exercise provides another bound for I c(n,n), the maximum possi-
ble number of incidences between n arbitrary circles and n points in the
plane. Let K be the set of circles and P the set of points. Let P; be the
points with at least d; = 2° and fewer than 2°*! incidences; we will argue
for each P; separately.

Define the multigraph G on P; as usual, with arcs of circles of K con-
necting neighboring points of P; (the circles with at most 2 incidences
with P; are deleted). Let E be the set of edges of G. For a point u € F;,
let N(u) be the set of its neighboring points, and for a v € N(u), let
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p(u, v) be the number of edges connecting u and v. For an edge e, define
its partner edge as the edge following after e clockwise around its circle.
(a) Show that for each u € P;, |[{v € N(u): u(u,v) > 4/d;}| < Vd;/2.
(b) Let E;, C E be the edges of multiplicity at least 41/d;. Argue that
for at least I of the edges in Ej, their partner edges do not belong to
E}, and hence |E \ E| = Q(|E|). &

(c) Delete the edges of Ej from the graph, and apply Lemma 4.4.2 to
bound |E \ Ej|. What overall bound does all this give for I ic(n,n)?
A similar proof appears in Pach and Sharir [PS98a] (for the more general
case of curves mentioned in the notes to Section 4.1).

I

4.5 Point—Line Incidences via Cuttings

Here we explain another proof of the upper bound I(n,n) = O(n%/3) for
point-line incidences. The technique is quite different. It leads to an efficient
algorithm and seems more generally applicable than the one with the crossing
number theorem.

4.5.1 Lemma (A worse but useful bound).

I(m, ) = O(ny/m +m), (42)
I(m,n) = O(my/n +n). (4.3)

Proof. There are at most (3) crossing pairs of lines in total. On the other
hand, a point p; € P with d; incidences “consumes” (dg) crossing pairs (their

intersections all lie at p;). Therefore, 370 | (%) < (7).
We want to bound )i, d; from above. Since points with no incidences
can be deleted from P in advance, we may assume d; > 1 for all ¢, and then

we have (%) > (d;—1)?/2. By the Cauchy-Schwarz inequality,

and hence 3" d; = O(ny/m +m).

The other inequality in the lemma can be proved similarly by looking at
pairs of points on each line. Alternatively, the equality I(n,m) = I(m,n) for
all m,n follows using the geometric duality introduced in Section 5.1. o

Forbidden subgraph arguments. For integers r,s > 1, let K, ; denote
the complete bipartite graph on r + s vertices; the picture shows K3 4:

PR
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The above proof can be expressed using graphs with forbidden K5 as a
subgraph and thus put into the context of extremal graph theory.

A typical question in extremal graph theory is the maximum possible
number of edges of a (simple) graph on n vertices that does not contain a
given forbidden subgraph, such as K3 . Here the subgraph is understood in
a noninduced sense: For example, the complete graph K4 does contain Ky 9
as a subgraph. More generally, one can forbid all subgraphs from a finite or
infinite family F of graphs, or consider “containment” relations other than
being a subgraph, such as “being a minor.”

If the forbidden subgraph H is not bipartite, then, for example, the com-
plete bipartite graph K, , has 2n vertices, n? edges, and no subgraph iso-
morphic to H. This shows that forbidding a nonbipartite H does not reduce
the maximum number of edges too significantly, and the order of magnitude
remains quadratic.

On the other hand, forbidding K s with some fixed r and s decreases
the exponent of n, and forbidden bipartite subgraphs are the key to many
estimates in incidence problems and elsewhere.

4.5.2 Theorem (K&vari—-Sés—Turdn theorem). Let r < s be fixed nat-
ural numbers. Then any graph on n vertices containing no K, s as a subgraph
has at most O(n?~1/7) edges.

If G is a bipartite graph with color classes of sizes m and n containing no
subgraph K, s with the r vertices in the class of size m and the s vertices in
the class of size n, then

|E(G)| =0 (min(mnl'l/r +n,m!"Yon 4+ m)) .

(In both parts, the constant of proportionality depends on r and s.)

Note that in the second part of the theorem, the situation is not symmet-
ric: By forbidding the “reverse” placement of K, s, we get a different bound
in general.

The upper bound in the theorem is suspected to be tight, but a matching
lower bound is known only for some special values of r and s, in particular
for r <3 (and all s > 7).

To see the relevance of forbidden K, to the point-line incidences, we
consider a set P of points and a set L of lines and we define a bipartite
graph with vertex set P U L and with edges corresponding to incidences.
An edge {p,¢} means that the point p lies on the line £. So the number of
incidences equals the number of edges. Since two points determine a line,
this graph contains no K32 as a subgraph: Its presence would mean that
two distinct lines both contain the same two distinct points. The K6vari-
Sés—Turdn theorem thus immediately implies Lemma 4.5.1, and the above
proof of this lemma is the usual proof of that theorem, for the special case
r = § = 2, rephrased in terms of points and lines.
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As was noted above, for arbitrary bipartite graphs with forbidden K3 o,
not necessarily being incidence graphs of points and lines in the plane, the
bound in the K&vari-Sés—Turdn theorem cannot be improved. So, in order
to do better for point-line incidences, one has to use some more geometry
than just the excluded K 3. In fact, this was one of the motivations of the
problem of point-line incidences: In a finite projective plane of order g, we
have n = g?+¢+1 points, n lines, and (g+1)n ~ n®/2 incidences, and so the
Szemerédi-Trotter theorem strongly distinguishes the Euclidean plane from
finite projective planes in a combinatorial sense.

Proof of the Szemerédi-Trotter theorem (Theorem 4.1.1) for m =
n. The bound from Lemma 4.5.1 is weaker than the tight Szemerédi—Trotter
bound, but it is tight if n2 < m or m? < n. The idea of the present proof
is to convert the “balanced” case (n points and n lines) into a collection of
“unbalanced” subproblems, for which Lemma, 4.5.1 is optimal. We apply the
following important result:

4.5.3 Lemma (Cutting lemma ). Let L be a set of n lines in the plane,
and let r be a parameter, 1 < r < n. Then the plane can be subdivided
into t generalized triangles (this means intersections of three half-planes)
Ay, Ag, ..., A; in such a way that the interior of each A; is intersected by at
most % lines of L, and we have t < Cr? for a certain constant C independent
of n and r.

Such a collection Aq,...,A; may look like this, for example:

The lines of L are not shown.

In order to express ourselves more economically, we introduce the follow-
ing terminology. A cutting is a subdivision of the plane into finitely many
generalized triangles. (We sometimes omit the adjective “generalized” in the
sequel.) A given cutting is a %-cuttmg for a set L of n lines if the interior of
each triangle of the cutting is intersected by at most 2 lines of L.

Proofs of the cutting lemma will be discussed later, and now we continue
the proof of the Szemerédi-Trotter theorem.

Let P be the considered n-point set, L the set of n lines, and I(P, L)
the number of their incidences. We fix a “magic” value r = n!/3, and we
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divide the plane into ¢t = O(r?) = O(n?/3) generalized triangles A1,..., A,
so that the interior of each A; is intersected by at most n/r = n?3 lines of
L, according to the cutting lemma .

Let P; denote the points of P lying inside A; or on its boundary but not at
the vertices of A;, and let L; be the set of lines of L intersecting the interior
of A;. The pairs (L;, P;) define the desired “unbalanced” subproblems. We
have |L;| < n?/3, and while the size of the P; may vary, the average |P;| is
2 ~ n!/3, which is about the square root of the size of L;.

We have to be a little careful, since not all incidences of L and P are
necessarily included among the incidences of some L; and P;. One exceptional
case is a point p € P not appearing in any of the P;.

Ay tel

P
Ay A,

Aj

Such a point has to be the vertex of some A;, and so there are no more than
3t such exceptional points. These points have at most I(n, 3t) incidences with
the lines of L. Another exceptional case is a line of L containing a side of A;
but not intersecting its interior and therefore not included in L;, although it
may be incident with some points on the boundary of A;.

fel
p

There are at most 3t such exceptional lines, and they have at most 1(3t,n)
incidences with the points of P. So we have

t
I(L,P) < I(n,3t) + I(3t,n) + > _ I(L;, ;).
i=1
By Lemma 4.5.1, I(n,3t) and I(3t,n) are both bounded by O(t\/n + n) =
O(n"/6) < n*/3, and it remains to estimate the main term. We have |L;| <

n2/3 and Z§=1 |P;| < 2n, since each point of P goes into at most two F;.
Using the bound (4.2) for each I(L;, P;) we obtain

t t t

D I(Li, P) < Y I3, |P) = Y O( Pt/ +n?/%)

i=1 i=1 i=1

= O(n1/3)<i |Pi|> + O(tn?®) = O(n*/3).

i=1
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This finally shows that I(n,n) = O(n*/3).

Bibliography and remarks. The bound in Lemma 4.5.1 using
excluded K3 s is due to Erdés [Erd46].

Determining the maximum possible number of edges in a K, s-
free bipartite graph with given sizes of the two color classes is known
as the Zarankiewicz problem. The general upper bound given in the
text was shown by K&vari, Sés, and Turdn [KST54]. For a long time,
matching lower bounds (constructions) were known only for r < 3
and all s > r (in these cases, even the constant in the leading term
is known exactly; see Fiiredi [Fiir96] for some of these results and
references). In particular, Ky o-free graphs on n vertices with Q(n/?)
edges are provided by incidence graphs of finite projective planes, and
K3 3-free graphs on n vertices with Q(n%3) edges were obtained by
Brown [Bro66]. His construction is the “distance-k graph” in the 3-
dimensional affine space over finite fields of order ¢ = —1 mod 4, for
a suitable k& = k(q). Recently, Kolldr, Rényai, and Szabs [KRS96]
constructed asymptotically optimal K, s-free graphs for s very large
compared to r, namely s > r!+1, using results of algebraic geometry.
This was slightly improved by Alon, Rényai, and Szab6 [ARS99] to s >
(r—1)!4+1. They also obtained an alternative to Brown’s construction
of K3 3-free graphs with a better constant, and asymptotically tight
lower bounds for some “asymmetric” instances of the Zarankiewicz
problem, where one wants a K, ;-free bipartite graph with color classes
of sizes n and m (with the “orientation” of the forbidden K, ; fixed).

The approach to incidence problems using cuttings first appeared
in a seminal paper of Clarkson, Edelsbrunner, Guibas, Sharir, and
Welzl [CEG190], based on probabilistic methods developed in compu-
tational geometry ([Cla87], [HW87], and [CS89] are among the most
influential papers in this development). Clarkson et al. did not use
cuttings in our sense but certain “cuttings on the average.” Namely,
if n; is the number of lines intersecting the interior of A;, then their
cuttings have ¢ = O(r?) triangles and satisfy Yy ._, n§ < C(c)-r?(2)°,
where ¢ > 1 is an integer constant, which can be selected as needed
for each particular application, and C(c) is a constant depending on
¢. This means that the cth degree average of the n; is, up to a con-
stant, the same as if all the n; were O(2). Technically, these “cuttings
on the average” can replace the optimal %-cuttings in most applica-
tions. Clarkson et al. [CEGT90] proved numerous results on various
incidence problems and many-cells problems by this method; see the
notes to Section 4.1.

The cutting lemma was first proved by Chazelle and Friedman
[CF90] and, independently, by Matousek [Mat90a]. The former proof
yields an optimal cutting lemma in every fixed dimension and will be
discussed in Section 6.5, while the latter proof applies only to planar
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cutting and is presented in Section 4.7. A third, substantially different,
proof was discovered by Chazelle [Cha93a).

Yet another proof of the Szemerédi-Trotter theorem was recently
found by Aronov and Sharir (it is a simplification of the techniques
in [ASO1a)]). It is based on the case d = 2 of the following partition
theorem of Matousek [Mat92]: For every n-point set X C RY, d fixed,
and everyr, 1 < r < n, there exists a partition X = X; UXaU---UXj,
t = O(r), such that & < |X;| < 22 for all i and no hyperplane h crosses
more than O(r'~1/%) of the sets X;. Here h crossing X; means that X;
is not completely contained in one of the open half-spaces defined by
h or in h itself.! This result is proved using the d-dimensional cutting
lemma. (see Section 4.6). The bound O(r1~1/9) is asymptotically the
best possible in general.

To use this result for bounding I(L, P), where L is a set of n lines
and P a set of n points in the plane, we let X = Dy(L) be the set of
points dual to the lines of L (see Section 5.1). We apply the partition
theorem to X with r = n2/3 and dualize back, which yields a partition
L=L,ULyU---ULy, t =0(r), with |L;| = & = n!/3. The crossing
condition implies that no point p is incident to lines from more than
O(4/7) of the L;, not counting the pathological L; where p is common
to all the lines of L;.

We consider the incidences of a point p € P with the lines of L;.
The i where p lies on at most one line of L; contribute at most O(+/r)
incidences, which gives a total of O(ny/r) = O(n/3) for all p € P.
On the other hand, if p lies on at least two lines of L; then it is a
vertex of the arrangement of L;. As is easy to show, the number of in-
cidences of k lines with the vertices of their arrangement is O(k?)
(Exercise 6.1.6), and so the total contribution from these cases is
O(3|Li|?) = O(n?/r) = O(n*/?). This proves the balanced case of
Szemerédi-Trotter, and the unbalanced case works in the same way
with an appropriate choice of r. Unlike the previous proofs, this one
does not directly apply with pseudolines instead of lines.

Improved point-circle incidences. A similar method also proves that
Lirc(n,n) = O(n**) (see Exercise 4.4.2 for another proof). Circles
are dualized to points and points to surfaces of cones in R2, and the
appropriate partition theorem holds as well, with no surface of a cone
crossing more than O(r%/3) of the subsets X;.

Aronov and Sharir [ASOla] improved the bound to Isc(m,n) =
O(m2/3n2/3 4 m) for large m, namely m > n(5-3)/(4=9) and to
Iire(m,n) = O(m6+36)/117,0=€)/11 1 ) for the smaller m (here, as
usual, € > 0 can be chosen arbitrarily small, influencing the constants

! A slightly stronger result is proved in [Mat92]: For every X; we can choose

a relatively open simplex o; D X;, and no h crosses more than O(rl_l/ d) of
the o;.
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of proportionality). Agarwal et al. [AASO1] obtained almost the same
bounds for the maximum complexity of m cells in an arrangement of
n circles.

A key ingredient in the Aronov-Sharir proof are results on the
following question of independent interest. Given a family of n curves
in the plane, into how many pieces (“pseudosegments”) must we cut
them, in the worst case, so that no two pieces intersect more than once?
This problem, first studied by Tamaki and Tokuyama [T'T98], will be
briefly discussed in the notes to Section 11.1. For the curves being
circles, Aronov and Sharir [ASO1a] obtained the estimate O(n3/2+¢),
improving on several previous results.

To bound the number I (P, C) of incidences of an m-point set P and
aset C of n circles, we delete the circles containing at most 2 points, we
cut the circles into O(n3/2+%) pieces as above, and we define a graph
with vertex set P and with edges being the circle arcs that connect
consecutive points along the pieces. The number of edges is at least
I(P,C) — O(n®/?%¢). The crossing number theorem applies (since the
graph is simple) and yields I(P,C) = O(m?/3n2/3 4 n3/2+¢) which is
tight for m about 7%/ and larger. For smaller m, Aronov and Sharir
use the method with partition in the dual space outlined above to
divide the original problem into smaller subproblems, and for these
they use the bound just mentioned.

Exercises

1. Let I1cire(m, n) be the maximum number of incidences between m points
and n unit circles in the plane. Prove that I1cc(m,n) = O(my/n+n) by
the method of Lemma 4.5.1.

2. Let I c(m,n) be the maximum possible number of incidences between
m points and n arbitrary circles in the plane. Prove that I.c(m,n) =
O(ny/m + n) and Ige(m,n) = O(mn?/3 +n). &

4.6 A Weaker Cutting Lemma

Here we prove a version of the cutting lemma (Lemma 4.5.3) with a slightly
worse bound on the number of the A;. The proof uses the probabilistic
method and the argument is very simple and general. We will improve on
it later and obtain tight bounds in a more general setting in Section 6.5. In
Section 4.7 below we give another, self-contained, elementary geometric proof
of the planar cutting lemma .

Here we are going to prove that every set of n lines admits a %-cutting
consisting of O(r?log®n) triangles. But first let us see why at least Q(r2)
triangles are necessary.
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A lower bound. Consider n lines in general position. Their arrangement
has, as we know, (72’)+n+1 > n2/2 cells. On the other hand, considering
a triangle A; whose interior is intersected by & < 2 lines (k > 1), we see
that A; is divided into at most (’2“) +k+1 < 2k? cells. Since each cell of the
arrangement has to show up in the interior of at least one triangle A;, the
number of triangles is at least n?/4k? = Q(r2). Hence the cutting lemma is
asymptotically optimal for r — oo.

Proof of a weaker version of the cutting lemma (Lemma 4.5.3). We
select a random sample S C L of the given lines. We make s independent
random draws, drawing a random line from L each time. These are draws
with replacement: One line can be selected several times, and so S may have
fewer than s lines.

Consider the arrangement of S. Partition the cells that are not (general-
ized) triangles by adding some suitable diagonals, as illustrated below:

lines of S

added r]i£|,21:||:l|.\

lines of L\ S

This creates (generalized) triangles Ay, Ag, ..., A; with t = O(s?) (since we
have a drawing of a planar graph with (;)-l-l vertices; also see Exercise 2).

4.6.1 Lemma. For s = 6rinn, the following holds with a positive probabil-
ity: The A; form a %—cutting for L; that is, the interior of no A; is intersected
by more than 7 lines of L.

This implies the promised weaker version of the cutting lemma: Since the
probability of the sample S being good is positive, there exists at least one
good S that yields the desired collection of triangles.

Proof of Lemma 4.6.1. Let us say that a triangle T" is dangerous if its
interior is intersected by at least £ = 7 lines of L. We fix some arbitrary
dangerous triangle 7. What is the probability that no line of the sample S
intersects the interior of T'? We select a random line s times. The probability
that we never hit one of the k lines intersecting the interior of T" is at most
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(1 — k/n)®. Using the well-known inequality 14z < €%, we can bound this
probability by e~ks/m = ¢=6Inn — =6

Call a triangle T interesting (for L) if it can appear in a triangulation for
some sample S C L. Any interesting triangle has vertices at some three ver-
tices of the arrangement of L, and hence there are fewer than n® interesting
triangles.? Therefore, with a positive probability, a random sample S inter-
sects the interiors of all the dangerous interesting triangles simultaneously.
In particular, none of the triangles A; appearing in the triangulation of such
a sample S can be dangerous. This proves Lemma, 4.6.1. |

More sophisticated probabilistic reasoning shows that it is sufficient to
choose s = const - rlogr in Lemma 4.6.1, instead of const - rlogn, and still,
with a positive probability no interesting dangerous triangle is missed by S
(see Section 6.5 and also Exercise 10.3.4). This improvement is important for
r small, say constant: It shows that the number of triangles in a %—cutting
can be bounded independent of n.

To prove the asymptotically tight bound O(r2?) by a random sampling
argument seems considerably more complicated and we will discuss this in
Section 6.5.

Bibliography and remarks. The ideas in the above proof of the
weaker cutting lemma can be traced back at least to early papers of
Clarkson (such as [Cla87]) on random sampling in computational ge-
ometry. The presented proof was constructed ex post facto for didactic
purposes; the cutting lemma was first proved, as far as I know, in a
stronger form (with logr instead of logn).

Exercises

1. Calculate the exact expected size of S, a sample drawn from n elements
by s independent random draws with replacements.

2. Calculate the number of (generalized) triangles arising by triangulating
an arrangement of n lines in the plane in general position. (First, specify
how exactly the unbounded cells are triangulated.) [2]

3. (A cutting lemma for circles) Consider a set K of n circles in the plane.
Select a sample S C K by s independent random draws with replacement.
Consider the arrangement of S, and construct its vertical decomposition;
that is, from each vertex extend vertical segments upwards and down-
wards until they hit a circle of S (or all the way to infinity). Similarly
extend vertical segments from the leftmost and rightmost points of each
circle.

2 The unbounded triangles have only 1 or 2 vertices, but they are completely
determined by their two unbounded rays, and so their number is at most n2.
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(a) Show that this partitions the plane into O(s?) “circular trapezoids”
(shapes bounded by at most two vertical segments and at most two cir-
cular arcs). [2]
(b) Show that for s = Crlnn with a sufficiently large constant C, there
is a positive probability that the sample S intersects all the dangerous
interesting circular trapezoids, where “dangerous” and “interesting” are
defined analogously to the definitions in the proof of the weaker version
of the cutting lemma . [5]

4. Using Exercises 3 and 4.5.1, show that the number of unit distances
determined by n points in the plane is O(n/31og?3 n).

5. Using Exercises 3 and 4.5.2, show that I..(n,n) = O(n'*log®n) (for
some constant ¢), where Ig..(m,n) is the maximum possible number of
incidences between m points and n arbitrary circles in the plane.

4.7 The Cutting Lemma: A Tight Bound

Here we prove the cutting lemma in full strength. The proof is simple and
elementary, but it does not seem to generalize to higher-dimensional situa-
tions.

For simplicity, we suppose that the given set L of n lines is in general
position. (If not, perturb it slightly to get general position, construct the —i——
cutting, and perturb back; this gives a %—cutting for the original collection of
lines; we omit the details.) First we need some definitions and observations
concerning levels.

Levels and their simplifications. Let L be a fixed finite set of lines in
the plane; we assume that no line of L is vertical. The level of a point z € R?
is defined as the number of lines of L lying strictly below z.

We note that the level of all points of an (open) cell of the arrangement of
L is the same, and similarly for a (relatively open) edge. On the other hand,
the level of an edge can differ from the levels of its endpoints, for example.

We define the level k of the arrangement of L, where 0 < k£ < n, as the set
Ey, of all edges of the arrangement of L having level exactly k. These edges
plus their endpoints form an z-monotone polygonal line, where z-monotone
means that each vertical line intersects it at exactly one point.

It is easy to see that the level k¥ makes a turn at each endpoint of its
edges; it looks somewhat like this:
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The level k is drawn thick, while the thin segments are pieces of lines of L
and they do not belong to the level k.

Let eg, e1,...,€e: be the edges of Ey, numbered from left to right; ey and
e: are the unbounded rays. Let us fix a point p; in the interior of e;. For an
integer parameter ¢ > 2, we define the g-simplification of the level k as the
monotone polygonal line containing the left part of eg up to the point pg, the
segments popg, PgP2gs- - -» P|(t—1)/q)qPt> and the part of e; to the right of p;.
Thus, the g-simplification has at most $+2 edges. Here is an illustration for
t=9,9g=4:

Ps

p 3 p4 pg

D2

(We could have defined the g-simplification by connecting every gth vertex
of the level, but the present way makes some future considerations a little
simpler.)

4.7.1 Lemma.

(i) The portion II of the level k (considered as a polygonal line) between the
points p; and pjy4 is intersected by at most g+1 lines of L.
(i) The segment p;p;4q is intersected by at most q+1 lines of L.
(iii) The g-simplification of the level k is contained in the strip between the
levels k — [q/2] and k + [q/2].

Proof. Part (i) is obvious: Each line of L intersecting II contains one of
the edges e;,€e;41,...,€j14. As for (ii), II is connected, and hence all lines
intersecting its convex hull must intersect II itself as well. The segment p;p;+4
is contained in conv(II).

Concerning (iii), imagine walking along some segment p;p;y, of the ¢-
simplification. We start at an endpoint, which has level k. Our current level
may change only as we cross lines of L. Moreover, having traversed the whole
segment we must be back to level k. Thus, to get from level k to k + ¢ and
back to k£ we need to cross at least 2i lines on the way. From this and (ii),
2¢ < ¢+1, and hence i < |(¢+1)/2] = [q/2]. |

Proof of the cutting lemma for lines in general position. Let r be the
given parameter. If r = Q(n), then it suffices to produce a 0-cutting of size
O(n?) by simply triangulating the arrangement of L. Hence we may assume
that 7 is much smaller than n.

Set ¢ = [n/10r]. Divide the levels Ey, Ey,...,E,_; into q groups: The
ith group contains all E; with j congruent to ¢ modulo ¢ (¢ =0,1,...,q—1).
Since the total number of edges in the arrangement is n?, there is an 4 such
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that the ith group contains at most n?/q edges. We fix one such ; from now
on, we consider only the levels i, g+1, 2¢+1, . . ., and we construct the desired
%—cutting from them.

Let P; be the g-simplification of the level jq+i. If F;q4; has m; edges,
then P; has at most m;/q+ 3 edges, and the total number of edges of the P;,
j=0,1,...,[(n—1)/q], can be estimated by n?/q? + 3(n/q+1) = O(n?/q?).
We note that the polygonal chains P; never intersect properly: If they did, a
vertex of some P;, which has level gj + ¢, would be above P;;, and this is
ruled out by Lemma 4.7.1(iii).

We form the vertical decomposition for the Pj; that is, we extend vertical
segments from each vertex of P; upwards and downwards until they hit P;_;
and Pjy1:

Py

P

Pj_l

This subdivides the plane into O(n?/q?) = O(r?) trapezoids.

We claim that each such trapezoid is intersected by at most = lines of L.
We look at a trapezoid in the strip between P; and P; ;. By Lemma 4.7.1(iii),
it lies between the levels ¢j +i— [q/2] and q(j+1) +4+ [¢/2], and therefore,
each of its vertical sides is intersected by no more than 3¢ lines. The bottom
side is a part of an edge of P;, and consequently, it is intersected by no
more than g+1 lines; similarly for the top side. Hence the number of lines
intersecting the considered trapezoid is certainly at most 10g < Z. (A more
careful analysis shows that one trapezoid is in fact intersected by at most
2q + O(1) lines; see Exercise 1.)

Finally, a 1-cutting can be obtained by subdividing each trapezoid into
two triangles by a diagonal. But let us remark that for applications of %—
cuttings, trapezoids are usually as good as triangles. O

Bibliography and remarks. The basic ideas of the presented proof
are from [Mat90a], and the presentation basically follows [Mat98].
The latter paper provides some estimates for the number of trian-
gles or trapezoids in a %-cutting, as r — oo: For example, at least
2.54(1 —o(1))r? trapezoids are sometimes necessary, and 8(1+ o(1))r?
trapezoids always suffice. The notion of levels and their simplifications,
as well as Lemma 4.7.1, are due to Edelsbrunner and Welzl [EW86).
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Exercises
1. (a) Verify that each trapezoid arising in the described construction is
intersected by at most 2.5¢+0O(1) lines. Setting g appropriately, show that
the plane can subdivided into 12.5r% + O(r) trapezoids, each intersected

by at most 2 lines, assuming 1 < r < n. [2]
(b) Improve the bounds from (a) to 2¢+0O(1) and 8r2+O(r), respectively.

[



5

Convex Polytopes

Convex polytopes are convex hulls of finite point sets in R%. They constitute
the most important class of convex sets with an enormous number of appli-
cations and connections.

Three-dimensional convex polytopes, especially the regular ones, have
been fascinating people since the antiquity. Their investigation was one of
the main sources of the theory of planar graphs, and thanks to this well-
developed theory they are quite well understood. But convex polytopes in
dimension 4 and higher are considerably more challenging, and a surprisingly
deep theory, mainly of algebraic nature, was developed in attempts to under-
stand their structure.

A strong motivation for the study of convex polytopes comes from prac-
tically significant areas such as combinatorial optimization, linear program-
ming, and computational geometry. Let us look at a simple example illus-
trating how polytopes can be associated with combinatorial objects. The
3-dimensional polytope in the picture

2341 1342

4213 3214
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is called the permutoahedron. Although it is 3-dimensional, it is most natu-
rally defined as a subset of R*, namely, the convex hull of the 24 vectors
obtained by permuting the coordinates of the vector (1,2, 3,4) in all possible
ways. In the picture, the (visible) vertices are labeled by the correspond-
ing permutations. Similarly, the d-dimensional permutahedron is the con-
vex hull of the (d+1)! vectors in R4*! arising by permuting the coordinates
of (1,2,...,d+1). One can observe that the edges of the polytope connect
exactly pairs of permutations differing by a transposition of two adjacent
numbers, and a closer examination reveals other connections between the
structure of the permutahedron and properties of permutations.

There are many other, more sophisticated, examples of convex polytopes
assigned to combinatorial and geometric objects such as graphs, partially or-
dered sets, classes of metric spaces, or triangulations of a given point set. In
many cases, such convex polytopes are a key tool for proving hard theorems
about the original objects or for obtaining efficient algorithms. Two impres-
sive examples are discussed in Chapter 12, and several others are scattered
in other chapters.

The present chapter should convey some initial working knowledge of
convex polytopes for a nonpolytopist. It is just a small sample of an extensive
theory. A more comprehensive modern introduction is the book by Ziegler
[Zie94).

5.1 Geometric Duality

First we discuss geometric duality, a simple technical tool indispensable in
the study of convex polytopes and handy in many other situations. We begin
with a simple motivating question.

How can we visualize the set of all lines intersecting a convex pentagon
as in the picture?

as
a1 Gy

az
as

A suitable way is provided by line—point duality.

5.1.1 Definition (Duality transform). The (geometric) duality transform
is a mapping denoted by Dy. To a point a € R\ {0} it assigns the hyperplane

Do(a) = {z € R*: (a,z) = 1},

and to a hyperplane h not passing through the origin, which can be uniquely
written in the form h = {z € R%: (a,z) = 1}, it assigns the point Dy(h) =
a € R4\ {0}.
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Here is the geometric meaning of the duality transform. If a is a point
at distance ¢ from 0, then Dg(a) is the hyperplane perpendicular to the line
Oa and intersecting that line at distance % from 0, in the direction from 0
towards a.

A nice interpretation of duality is obtained by working in R%*+! and iden-
tifying the “primal” R with the hyperplane 7 = {z € R 244, = 1}
and the “dual” R? with the hyperplane p = {z € R%*': 24,1 = —1}. The
hyperplane dual to a point a € 7 is produced as follows: We construct the
hyperplane in R%*! perpendicular to Oa and containing 0, and we intersect
it with p. Here is an illustration for d = 2:

In this way, the duality Dy can be naturally extended to k-flats in R¢, whose
duals are (d—k—1)-flats. Namely, given a k-flat f C m, we consider the (k+1)-
flat F' through 0 and f, we construct the orthogonal complement of F, and
we intersect it with p, obtaining Do(f).

Let us consider the pentagon drawn above and place it so that the origin
lies in the interior. Let v; = Dy(¢;), where ¢; is the line containing the side
a;a;+1. Then the points dual to the lines intersecting the pentagon ajas...as
fill exactly the exterior of the convex pentagon vyvs ... vs:

2 /T Vg

_a
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This follows easily from the properties of duality listed below (of course, there
is nothing special about a pentagon here). Thus, the considered set of lines
can be nicely described in the dual plane. A similar passage from lines to
points or back is useful in many geometric or computational problems.

Properties of the duality transform. Let p be a point of R? distinct
from the origin and let h be a hyperplane in R? not containing the origin.
Let A~ stand for the closed half-space bounded by h and containing the
origin, while At denotes the other closed half-space bounded by h. That is,
if h = {z € R% (a,z) = 1}, then h~ = {x € R%: {a,z) < 1}.

5.1.2 Lemma (Duality preserves incidences).

(i) p € h if and only if Dy(h) € Do(p).
(ii) p € h™ if and only if Do(h) € Do(p)~.

Proof. (i) Let h = {z € R% (a,z) = 1}. Then p € h means (a,p) = 1.
Now, Dy (h) is the point a, and Dy(p) is the hyperplane {y € R%: (y,p) = 1},
and hence Dy(h) = a € Dy(p) also means just {(a,p) = 1. Part (ii) is proved
similarly. |

5.1.3 Definition (Dual set). For a set X C R%, we define the set dual to
X, denoted by X*, as follows:

X*={yeR%: (z,y) <1 forallz € X}.

Another common name used for the duality is polarity; the dual set would
then be called the polar set. Sometimes it is denoted by X°.

Geometrically, X* is the intersection of all half-spaces of the form Dy(z)~
with x € X. Or in other words, X* consists of the origin plus all points y
such that X C Dy(y)~. For example, if X is the pentagon ajas...as drawn
above, then X* is the pentagon v,vs ... vs.

For any set X, the set X* is obviously closed and convex and contains the
origin. Using the separation theorem (Theorem 1.2.4), it is easily shown that
for any set X C R?, the set (X*)* is the closure conv(X U{0}). In particular,
for a closed convex set containing the origin we have (X*)* = X (Exercise 3).

For a hyperplane h, the dual set h* is different from the point Dy(h).

For readers familiar with the duality of planar graphs, let us remark that
it is closely related to the geometric duality applied to convex polytopes in
R3. For example, the next drawing illustrates a planar graph and its dual
graph (dashed):

! In the literature, however, the “star” notation is sometimes also used for the dual
point or hyperplane, so for a point p, the hyperplane Dy(p) would be denoted by
p*, and similarly, h* may stand for Dy(h).
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Later we will see that these are graphs of the 3-dimensional cube and of
the regular octahedron, which are polytopes dual to each other in the sense
defined above. A similar relation holds for all 3-dimensional polytopes and
their graphs.

Other variants of duality. The duality transform Dy defined above is just
one of a class of geometric transforms with similar properties. For some pur-
poses, other such transforms (dualities) are more convenient. A particularly
important duality, denoted by D, corresponds to moving the origin to the
“minus infinity” of the z4-axis (the z4-axis is considered vertical). A formal
definition is as follows.

5.1.4 Definition (Another duality). A nonvertical hyperplane h can be
uniquely written in the form h = {z € R 2y =ayz1 4+ +0a4-1Zg—1 — aq}-
We set D(h) = (a1, . ..,aq—1,aq). Conversely, the point a = (ay, .. .,04-1,0q)
maps back to h.

The property (i) of Lemma, 5.1.2 holds for this D, and an analogue of (ii)
is:
(ii") A point p lies above a hyperplane h if and only if the point D(h) lies
above the hyperplane D(p).

Exercises

1. Let C = {z € R% |z1| + - -+ + |z4| < 1}. Show that C* is the d-dimen-
sional cube {z € R%: max |z;| < 1}. Picture both bodies for d = 3. [2]

2. Prove the assertion made in the text about the lines intersecting a convex
pentagon.

3. Show that for any X C R, (X*)* equals the closure of conv(X U {0}),
where X* stands for the dual set to X. [8]

4. Let C C R? be a convex set. Prove that C* is bounded if and only if 0
lies in the interior of C.

5. Show that C' = C* if and only if C' is the unit ball centered at the origin.
(2]

6. (a) Let C = conv(X) C R%. Prove that C* = (,cx Do(z) . (2]
(b) Show that if C = [,y h~, where H is a collection of hyperplanes not
passing through 0, and if C is bounded, then C* = conv{Dy(h): h € H}.
(2]
(c) What is the right analogue of (b) if C' is unbounded?

7. What is the dual set h* for a hyperplane h, and what about A**?
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8. Verify the geometric interpretation of the duality Dy outlined in the text
(using the embeddings of R¢ into R4+1).

9. (a) Let s be a segment in the plane. Describe the set of all points dual
to lines intersecting s.
(b) Consider n > 3 segments in the plane, such that none of them contains
0 but they all lie on lines passing through 0. Show that if every 3 among
such segments can be intersected by a single line, then all the segments
can be simultaneously intersected by a line.
(c) Show that the assumption in (b) that the extensions of the segments
pass through O is essential: For each n > 1, construct n+1 pairwise
disjoint segments in the plane that cannot be simultaneously intersected
by a line but every n of them can (such an example was first found by
Hadwiger and Debrunner). [4]

5.2 H-Polytopes and V-Polytopes

A convex polytope in the plane is a convex polygon. Famous examples of
convex polytopes in R? are the Platonic solids: regular tetrahedron, cube,
regular octahedron, regular dodecahedron, and regular icosahedron. A convex
polytope in R3 is a convex set bounded by finitely many convex polygons.
Such a set can be regarded as a convex hull of a finite point set, or as an
intersection of finitely many half-spaces. We thus define two types of convex
polytopes, based on these two views.

5.2.1 Definition (H-polytope and V-polytope). An H-polyhedron is
an intersection of finitely many closed half-spaces in some R%. An H-poly-
tope is a bounded H-polyhedron.

A V-polytope is the convex hull of a finite point set in R?.

A basic theorem about convex polytopes claims that from the mathemat-
ical point of view, H-polytopes and V-polytopes are equivalent.

5.2.2 Theorem. Each V-polytope is an H-polytope. Each H-polytope is a
V-polytope.

This is one of the theorems that may look “obvious” and whose proof
needs no particularly clever idea but does require some work. In the present
case, we do not intend to avoid it. Actually, we have quite a neat proof in
store, but we postpone it to the end of this section.

Although H-polytopes and V-polytopes are mathematically equivalent,
there is an enormous difference between them from the computational point
of view. That is, it matters a lot whether a convex polytope is given to
us as a convex hull of a finite set or as an intersection of half-spaces. For
example, given a set of n points specifying a V-polytope, how do we find
its representation as an H-polytope? It is not hard to come up with some
algorithm, but the problem is to find an efficient algorithm that would allow
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one to handle large real-world problems. This algorithmic question is not yet
satisfactorily solved. Moreover, in some cases the number of required half-
spaces may be astronomically large compared to the number n of points, as
we will see later in this chapter.

As another illustration of the computational difference between V-po-
lytopes and H-polytopes, we consider the maximization of a given linear
function over a given polytope. For V-polytopes it is a trivial problem, since
it suffices to substitute all points of V' into the given linear function and select
the maximum of the resulting values. But maximizing a linear function over
the intersection of a collection of half-spaces is the basic problem of linear
programming, and it is certainly nontrivial.

Terminology. The usual terminology does not distinguish V-polytopes and
H-polytopes. A convez polytope means a point set in R? that is a V-polytope
(and thus also an H-polytope). An arbitrary, possibly unbounded, H-poly-
hedron is called a convex polyhedron. All polytopes and polyhedra considered
in this chapter are convex, and so the adjective “convex” is often omitted.
The dimension of a convex polyhedron is the dimension of its affine hull.

It is the smallest dimension of a Euclidean space containing a congruent copy
of P.

Basic examples. One of the easiest classes of polytopes is that of cubes.
The d-dimensional cube as a point set is the Cartesian product [—1,1]¢.

d=1 d=2 d=3

As a V-polytope, the d-dimensional cube is the convex hull of the set {—1,1}¢
(2¢ points), and as an H-polytope, it can be described by the inequalities
-1<z;<1,i=1,2,...,d, i.e., by 2d half-spaces. We note that it is also
the unit ball of the maximum norm ||zl = max; |z;|.

Another important example is the class of crosspolytopes (or generalized
octahedra). The d-dimensional crosspolytope is the convex hull of the “co-
ordinate cross,” i.e., conv{ei, —e1, ez, —€2,...,€q, —€4}, where ey, ..., eq are
the vectors of the standard orthonormal basis.
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It is also the unit ball of the ¢;-norm ||z|; = Z?:l |z;| . As an H-polytope,
it can be expressed by the 2¢ half-spaces of the form (o, <)1, where o runs
through all vectors in {—1,1}.

The polytopes with the smallest possible number of vertices (for a given
dimension) are called simplices.

5.2.3 Definition (Simplex). A simplex is the convex hull of an affinely
independent point set in some R®.

A d-dimensional simplex in R can also be represented as an intersection
of d+1 half-spaces, as is not difficult to check.

A regular d-dimensional simplex is the convex hull of d+1 points with all
pairs of points having equal distances.

d=0 d=1 d=2

Unlike cubes and crosspolytopes, d-dimensional regular simplices do not have
a very nice coordinate representation in R%. The simplest and most useful
representation lives one dimension higher: The convex hull of the d+1 vectors
€1,-..,e4y1 of the standard orthonormal basis in R%*! is a d-dimensional
regular simplex with side length /2.

(0,0,1)

7(0,1,0)

Proof of Theorem 5.2.2 (equivalence of H-polytopes and V-poly-
topes). We first show that any H-polytope is also a V-polytope. We proceed
by induction on d. The case d = 1 being trivial, we suppose that d > 2.

So let I" be a finite collection of closed half-spaces in R¢ such that P = T’
is nonempty and bounded. For each v € ', let F,, = PNy be the intersection
of P with the bounding hyperplane of v. Each nonempty F, is an H-polytope
of dimension at most d—1 (correct?), and so it is the convex hull of a finite
set V, C F, by the inductive hypothesis.

We claim that P = conv(V), where V' = |, V,. Let z € P and let ¢
be a line passing through z. The intersection £ N P is a segment; let y and z
be its endpoints. There are a, 8 € T such that y € F,, and z € Fg (if y were
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not on the boundary of any v € T', we could continue along ¢ a little further
within P).

We have y € conv(V,) and z € conv(Vjs), and thus z € conv(V, U V) C
conv(V).

We have proved that any H-polytope is a V-polytope, and it remains to
show that a V-polytope can be expressed as the intersection of finitely many
half-spaces. This follows easily by duality (and implicitly uses the separation
theorem).

Let P = conv(V) with V finite, and assume that 0 is an interior point
of P. By Exercise 5.1.6(a), the dual body P* equals (,cy Do(v)~, and by
Exercise 5.1.4 it is bounded. By what we have already proved, P* is a V-
polytope, and by Exercise 5.1.6(a) again, P = (P*)* is the intersection of
finitely many half-spaces. m]

Bibliography and remarks. The theory of convex polytopes is
a well-developed area covered in numerous books and surveys, such
as the already recommended recent monograph [Zie94] (with addenda
and updates on the web page of its author), the very influential book
by Griinbaum [Grii67], the chapters on polytopes in the handbooks
of discrete and computational geometry [GO97], of convex geometry
[GW93], and of combinatorics [GGLI5], or the books McMullen and
Shephard [MS71] and Bregnsted [Brg83], concentrating on questions
about the numbers of faces. Recent progress in combinatorial and com-
putational polytope theory is reflected in the collection [KZ00]. For
analyzing examples, one should be aware of (free) software systems
for manipulating convex polytopes, such as polymake by Gawrilow
and Joswig [GJ00].

Interesting discoveries about 3-dimensional convex polytopes were
already made in ancient Greece. The treatise by Schlafli [Sch01] writ-
ten in 1850-52 is usually mentioned as the beginning of modern theory,
and several books were published around the turn of the century. We
refer to Griinbaum [Grii67], Schrijver [Sch86], and to the other sources
mentioned above for historical accounts.

The permutahedron mentioned in the introduction to this chapter
was considered by Schoute [Sch11], and it arises by at least two other
quite different and natural constructions (see [Zie94]).

There are several ways of proving the equivalence of H-polytopes
and V-polytopes. Ours is inspired by a proof by Edmonds, as presented
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in Fukuda’s lecture notes (ETH Ziirich). A classical algorithmic proof
is provided by the Fourier—-Motzkin elimination procedure, which pro-
ceeds by projections on coordinate hyperplanes; see [Zie94] for a de-
tailed exposition. The double-description method is a similar algorithm
formulated in the dual setting, and it is still one of the most efficient
known computational methods. We will say a little more about the
algorithmic problem of expressing the convex hull of a finite set as the
intersection of half-spaces in the notes to Section 5.5.

One may ask, What is a “vertex description” of an unbounded H-
polyhedron? Of course, it is not the convex hull of a finite set, but it
can be expressed as the Minkowski sum P + C, where P is a V-poly-
tope and C is a convex cone described as the convex hull of finitely
many rays emanating from 0.

Exercises

1. Verify that a d-dimensional simplex in R® can be expressed as the inter-
section of d+1 half-spaces. (2]

2. (a) Show that every convex polytope in R? is an orthogonal projection
of a simplex of a sufficiently large dimension onto the space R¢ (which
we consider embedded as a d-flat in some R™). [&]

(b) Prove that every convex polytope P symmetric about 0 (i.e., with
P = —P) is the affine image of a crosspolytope of a sufficiently large
dimension.

5.3 Faces of a Convex Polytope

The surface of the 3-dimensional cube consists of 8 “corner” points called
vertices, 12 edges, and 6 squares called facets. According to the perhaps more
usual terminology in 3-dimensional geometry, the facets would be called faces.
But in the theory of convex polytopes, the word face has a slightly different
meaning, defined below. For the cube, not only the squares but also the
vertices and the edges are all called faces of the cube.

5.3.1 Definition (Face). A face of a convex polytope P is defined as

e either P itself, or
e a subset of P of the form P N h, where h is a hyperplane such that P is
fully contained in one of the closed half-spaces determined by h.
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Here is an example of a 3-dimensional polytope, the regular octahedron,
with its graph:

V.

For polytopes in R3, the graph is always planar: Project the polytope from its
interior point onto a circumscribed sphere, and then make a “cartographic
map” of this sphere, say by stereographic projection. Moreover, it can be
shown that the graph is vertex 3-connected. (A graph G is called vertez k-
connected if |V(G)| > k+1 and deleting any at most k—1 vertices leaves G
connected.) Nicely enough, these properties characterize graphs of convex 3-
polytopes:

5.3.3 Theorem (Steinitz theorem). A finite graph is isomorphic to the
graph of a 3-dimensional convex polytope if and only if it is planar and vertex
3-connected.

We omit a proof of the considerably harder “if” part (exhibiting a poly-
tope for every vertex 3-connected planar graph); all known proofs are quite
complicated.

Graphs of higher-dimensional polytopes probably have no nice description
comparable to the 3-dimensional case, and it is likely that the problem of
deciding whether a given graph is isomorphic to a graph of a 4-dimensional
convex polytope is NP-hard. It is known that the graph of every d-dimen-
sional polytope is vertex d-connected (Balinski’s theorem), but this is only a
necessary condition. :

Examples. A d-dimensional simplex has been defined as the convex hull of
a (d+1)-point affinely independent set V. It is easy to see that each subset of
V determines a face of the simplex. Thus, there are (zﬂ) faces of dimension
k, k= —1,0,...,d, and 2%*! faces in total.

The d-dimensional crosspolytope has V = {e1, —es,...,eq,—eq} as the
vertex set. A proper subset F' C V determines a face if and only if there is
no 4 such that both e; € F and —e; € F (Exercise 2). It follows that there
are 3941 faces, including the empty one and the whole crosspolytope.

The nonempty faces of the d-dimensional cube [~1,1]¢ correspond to
vectors v € {—1,1,0}. The face corresponding to such v has the vertex
set {u € {~1,1}%: u; = v; for all i with v; # 0}. Geometrically, the vector v
is the center of gravity of its face.

The face lattice. Let F(P) be the set of all faces of a (bounded) convex
polytope P (including the empty face @ of dimension —1). We consider the
partial ordering of F(P) by inclusion.
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We observe that each face of P is a convex polytope. This is because P is
the intersection of finitely many half-spaces and h is the intersection of two
half-spaces, so the face is an H-polyhedron, and moreover, it is bounded.

If P is a polytope of dimension d, then its faces have dimensions —1, 0,
1,..., d, where —1 is, by definition, the dimension of the empty set. A face
of dimension j is also called a j-face.

Names of faces. The 0O-faces are called vertices, the 1-faces are called
edges, and the (d—1)-faces of a d-dimensional polytope are called facets. The
(d—2)-faces of a d-dimensional polytope are ridges; in the familiar 3-dimen-
sional situation, edges =ridges. For example, the 3-dimensional cube has 28
faces in total: the empty face, 8 vertices, 12 edges, 6 facets, and the whole
cube.

The following proposition shows that each V-polytope is the convex hull
of its vertices, and that the faces can be described combinatorially: They are
the convex hulls of certain subsets of vertices. This includes some intuitive
facts such as that each edge connects two vertices.

A helpful notion is that of an extremal point of a set: For a set X C RY,
a point z € X is extremal if z & conv(X \ {z}).

5.3.2 Proposition. Let P C R? be a (bounded) convex polytope.

(i) (“Vertices are extremal”) The extremal points of P are exactly its ver-
tices, and P is the convex hull of its vertices.

(ii) (“Face of a face is a face”) Let F' be a face of P. The vertices of F are
exactly those vertices of P that lie in F'. More generally, the faces of F'
are exactly those faces of P that are contained in F'.

The proof is not essential for our further considerations, and it is given at
the end of this section (but Exercise 9 below illustrates that things are not
quite as simple as it might perhaps seem). The proposition has an appropriate
analogue for polyhedra, but in order to avoid technicalities, we treat the
bounded case only.

Graphs of polytopes. Each 1-dimensional face, or edge, of a convex poly-
tope has exactly two vertices. We can thus define the graph G(P) of a polytope
P in the natural way: The vertices of the polytope are vertices of the graph,
and two vertices are connected by an edge in the graph if they are vertices of
the same edge of P. (The terms “vertices” and “edges” for graphs actually
come from the corresponding notions for 3-dimensional convex polytopes.)
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5.3.4 Definition (Combinatorial equivalence). Two convex polytopes
P and Q are called combinatorially equivalent if F(P) and F(Q) are isomor-
phic as partially ordered sets.

We are going to state some properties of the partially ordered set F(P)
without proofs. These are not difficult and can be found in [Zie94].

It turns out that JF(P) is a lattice (a partially ordered set satisfying
additional axioms). We recall that this means the following two conditions:

e Meets condition: For any two faces F,G € F(P), there exists a face
M € F(P), called the meet of F' and G, that is contained in both F' and
G and contains all other faces contained in both F and G.

e Joins condition: For any two faces F,G € F(P), there exists a face
J € F(P), called the join of F and G, that contains both F' and G and
is contained in all other faces containing both F' and G.

The meet of two faces is their geometric intersection F' N G.

For verifying the joins and meets conditions, it may be helpful to know
that for a finite partially ordered set possessing the minimum element and the
maximum element, the meets condition is equivalent to the joins condition,
and so it is enough to check only one of the conditions.

Here is the face lattice of a 3-dimensional pyramid:

The vertices are numbered 1-5, and the faces are labeled by the vertex sets.

The face lattice is graded, meaning that every maximal chain has the same
length (the rank of a face F' is dim(F')+1). Quite obviously, it is atomic: Every
face is the join of its vertices. A little less obviously, it is coatomic; that is,
every face is the meet (intersection) of the facets containing it. An important
consequence is that combinatorial type of a polytope is determined by the
vertex—facet incidences. More precisely, if we know the dimension and all
subsets of vertices that are vertex sets of facets (but without knowing the
coordinates of the vertices, of course), we can uniquely reconstruct the whole
face lattice in a simple and purely combinatorial way.

Face lattices of convex polytopes have several other nice properties, but no
full algebraic characterization is known, and the problem of deciding whether
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a given lattice is a face lattice is algorithmically difficult (even for 4-dimen-
sional polytopes).

The face lattice can be a suitable representation of a convex polytope in
a computer. Each j-face is connected by pointers to its (j—1)-faces and to
the (j+1)-faces containing it. On the other hand, it is a somewhat redundant
representation: Recall that the vertex—facet incidences already contain the
full information, and for some applications, even less data may be sufficient,
say the graph of the polytope.

The dual polytope. Let P be a convex polytope containing the origin in
its interior. Then the dual set P* is also a polytope; we have verified this in
the proof of Theorem 5.2.2.

5.3.5 Proposition. For each j = —1,0,...,d, the j-faces of P are in a
bijective correspondence with the (d—j—1)-faces of P*. This correspondence
also reverses inclusion; in particular, the face lattice of P* arises by turning
the face lattice of P upside down.

Again we refer to the reader’s diligence or to [Zie94] for a proof. Let us
examine a few examples instead.

Among the five regular Platonic solids, the cube and the octahedron are
dual to each other, the dodecahedron and the icosahedron are also dual, and
the tetrahedron is dual to itself. More generally, if we have a 3-dimensional
convex polytope and G is its graph, then the graph of the dual polytope
is the dual graph to G, in the usual graph-theoretic sense. The dual of a
d-simplex is a d-simplex, and the d-dimensional cube and the d-dimensional
crosspolytope are dual to each other.

We conclude with two notions of polytopes “in general position.”
g p

5.3.6 Definition (Simple and simplicial polytopes). A polytope P is
called simplicial if each of its facets is a simplex (this happens, in particular, if
the vertices of P are in general position, but general position is not necessary).
A d-dimensional polytope P is called simple if each of its vertices is contained
in exactly d facets.

The faces of a simplex are again simplices, and so each proper face of a sim-
plicial polytope is a simplex. Among the five Platonic solids, the tetrahedron,
the octahedron, and the icosahedron are simplicial; and the tetrahedron, the
cube, and the dodecahedron are simple. Crosspolytopes are simplicial, and
cubes are simple. An example of a polytope that is neither simplicial nor
simple is the 4-sided pyramid used in the illustration of the face lattice.

The dual of a simple polytope is simplicial, and vice versa. For a simple
d-dimensional polytope, a small neighborhood of each vertex looks combina-
torially like a neighborhood of a vertex of the d-dimensional cube. Thus, for
each vertex v of a d-dimensional simple polytope, there are d edges emanat-
ing from v, and each k-tuple of these edges uniquely determines one k-face
incident to v. Consequently, v belongs to (Z) k-faces, k =0,1,...,d.
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Proof of Proposition 5.3.2. In (i) (“vertices are extremal”), we assume
that P is the convex hull of a finite point set. Among all such sets, we fix one
that is inclusion-minimal and call it V;. Let V,, be the vertex set of P, and
let V, be the set of all extremal points of P. We prove that Vj = V,, = V,,
which gives (i). We have V, C V, by the definition of an extremal point.

Next, we show that V,, C V.. If v € V,, is a vertex of P, then there is a
hyperplane h with PN h = {v}, and all of P\ {v} lies in one of the open
half-spaces defined by h. Hence P \ {v} is convex, which means that v is an
extremal point of P, and so V,, C V..

Finally we verify Vy C V,,. Let v € Vp; by the inclusion-minimality of Vj,
we get that v &€ C = conv(Vy \ {v}). Since C and {v} are disjoint compact
convex sets, they can be strictly separated by a hyperplane h. Let h,, be the
hyperplane parallel to h and containing v; this h, has all points of Vp \ {v}
on one side.

We want to show that P Nh, = {v} (then v is a vertex of P, and we are
done). The set P\ h, = conv(Vj) \ h,, being the intersection of a convex set
with an open half-space, is convex. Any segment vz, where € P\ h,,, shares
only the point v with the hyperplane h,, and so (P \ h,) U {v} is convex as
well. Since this set contains Vj and is convex, it contains P = conv(Vy), and
so PN hy, = {v} indeed.

As for (ii) (“face of a face is a face”), it is clear that a face G of P contained
in F is a face of F' too (use the same witnessing hyperplane). For the reverse
direction, we begin with the case of vertices. By a consideration similar to
that at the end of the proof of (i), we see that F' = conv(V)Nh = conv(VNh).
Hence all the extremal points of F, which by (i) are exactly the vertices of
F,arein V.

Finally, let F' be a face of P defined by a hyperplane h, and let G C F be
a face of F defined by a hyperplane g within h; that is, g is a (d—2)-dimen-
sional affine subspace of & with G = g N F and with all of F' on one side. Let
~ be the closed half-space bounded by h with P C ~. We start rotating the
boundary h of v around g in the direction such that the rotated half-space
~' still contains F'.

n! / P
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If we rotate by a sufficiently small amount, then all the vertices of P not
lying in F' are still in the interior of 4'. At the same time, the interior of v
contains all the vertices of F' not lying in G, while all the vertices of G remain
on the boundary A’ of 4'. So h’ defines a face of P (since all of P is on one
side), and this face has the same vertex set as G, and so it equals G by the
first part of (ii) proved above. |

Bibliography and remarks. Most of the material in this section
is quite old, and we restrict ourselves to a few comments and remarks
on recent developments.

Graphs of polytopes. The Steinitz theorem was published in [Ste22]. A
proof (of the harder implication) can be found in [Zie94]. In this type
of proof, one starts with the planar graph Ky, which is obviously re-
alizable as a graph of a 3-dimensional polytope, and creates the given
3-connected planar graph by a sequence of suitable elementary opera-
tions, the so-called AY transformations, which are shown to preserve
the realizability. Another type of proof first finds a suitable straight
edge planar drawing of the given graph G and then shows that the
vertices of such a drawing can be lifted to R? to form the appropriate
polytope. The drawings needed here are “rubber band” drawings: Pin
down the vertices of an outer face and think of the edges as rubber
bands of various strengths, which left alone would contract to points.
Then the equilibrium position, where the forces at every inner vertex
add up to 0, specifies the drawing (see, e.g., Richter-Gebert [RG97]
for a presentation). These ideas go back to Maxwell; the result about
the equilibrium position specifying straight edge drawing for every
3-connected planar graph was proved by Tutte [Tut60]. Very interest-
ing related results about graphs with higher connectivity are due to
Linial, Lovész, and Wigderson [LW88]. Another way of obtaining suit-
able drawings is via Koebe’s representation theorem (see, e.g., [PA95]
for an exposition): Every planar graph G can be represented by touch-
ing circles; that is, every vertex v € V(G) can be assigned a circular
disk in the plane in such a way that the disks have pairwise disjoint
interiors and two of them touch if and only if their two vertices are
connected by an edge.
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On the other hand, Koebe’s theorem follows easily from a stronger
version of the Steinitz theorem due to Andreev: Every 3-connected
planar graph has a cage representation, i.e., as the graph of a 3-di-
mensional convex polytope P whose edges are all tangent to the unit
sphere (each vertex of P can see a cap of the unit sphere, and a suitable
stereographic projection of these caps yields the disks as in Koebe’s
theorem). These beautiful results, as well as several others along these
lines, would certainly deserve to be included in a book like this, but
here they are not for space and time reasons.

A result of Blind and Mani-Levitska, with a beautiful simple new
proof by Kalai [Kal88], shows that a simple polytope is determined by
its dimension and its graph; that is, if two d-dimensional simple poly-
topes P and ) have isomorphic graphs, then they are combinatorially
equivalent.

One of the most challenging problems about graphs of convex poly-
topes is the Hirsch conjecture. In its basic form, it states that the
graph of any d-dimensional polytope with n facets has diameter at
most n—d; i.e., every two vertices can be connected by a path of at
most n—d edges. This conjecture is implied by its special case with
n = 2d, the so-called d-step conjecture. There are several variants of
the Hirsch conjecture. Some of them are known to be false, such as
the Hirsch conjecture for d-dimensional polyhedra with n-facets; their
graph can have diameter at least n—d+|d/5]. But even here the con-
jecture fails just by a little, while the crucial and wide open question
is whether the diameter of the graph can be bounded by a fixed poly-
nomial in d and n.

The Hirsch conjecture is motivated by linear programming (and it
was published in Dantzig’s book [Dan63]), since the running time of
all variants of the simplex algorithm is bounded from below by the
number of edges that must be traversed in order to get from the start-
ing vertex of the polyhedron of admissible solutions to the optimum
vertex.

The best upper bound is due to Kalai. He published several papers
on this subject, successively improving and simplifying his arguments,
and this sequence is concluded with [Kal92]. He proves the following:
Let P be a convex polyhedron in R® with n facets. Assume that no
edge of P is horizontal and that P has a (unique) topmost vertex w.
Then from every vertex v of P there is a path to w consisting of at most
f(d,n) < 2n(?* U‘:f_?lnj_l) < 2nlo82 4+ edges and going upward all the
time. The proof is quite short and uses only very simple properties of
polytopes (also see [Zie94] or [Kal97]).

Kalai [Kal92] also discovered a randomized variant of the simplex
algorithm for linear programming for which the expected number of
pivot steps, for every linear program with n constraints in RY, is
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bounded by a subexponential function of n and d, namely by nOd),
All the previous worst-case bounds were exponential. Interestingly, es-
sentially the same algorithm (in a dual setting) was found by Sharir
and Welzl and a little later analyzed in [MSW96], independent of
Kalai’s work and at almost the same time, but coming from a quite
different direction. The Sharir-Welzl algorithm is formulated in an
abstract framework, and it can be used for many other optimization
problems besides linear programming.

Realizations of polytopes. By a realization of a d-dimensional polytope
P we mean any polytope Q@ C R? that is combinatorially equivalent
to P. The proof of Steinitz’s theorem shows that every 3-dimension-
al polytope has a realization whose vertices have integer coordinates.
For 3-polytopes with n vertices, Richter-Gebert [RG97] proved that
the vertex coordinates can be chosen as positive integers no larger than
218"2, and if the polytope has at least one triangular facet, the upper
bound becomes 43™ (a previous, slightly worse, estimate was given by
Onn and Sturmfels [0S94]). No nontrivial lower bounds seem to be
known. Let us remark that for straight edge drawings of planar graphs,
the vertices of every n-vertex graph can be placed on a grid with
side O(n). This was first proved by de Fraysseix, Pach, and Pollack
[dFPP90] with the (2n—4) x (n—2) grid, and re-proved by Schnyder
[Sch90] by a different method, with the (n—1) x (n—1) grid; see also
Kant [Kan96] for more recent results in this direction.

For higher-dimensional polytopes, the situation is strikingly differ-
ent. Although all simple polytopes and all simplicial polytopes can be
realized with integer vertex coordinates, there are 4-dimensional poly-
topes for which every realization requires irrational coordinates (we
will see an 8-dimensional example in Section 5.6). There are also 4-di-
mensional n-vertex polytopes for which every realization with integer
coordinates uses doubly exponential coordinates, of order 22%" There
are numerous other results indicating that the polytopes of dimension
4 and higher are complicated. For example, the problem of deciding
whether a given finite lattice is isomorphic to the face lattice of a
4-dimensional polytope is algorithmically difficult; it is polynomially
equivalent to the problem of deciding whether a system of polynomial
inequalities with integer coefficients in n variables has a solution. This
latter problem is known to be NP-hard, but most likely it is even
harder; the best known algorithm needs exponential time and poly-
nomial space. An overview of such results, and references to previous
work on which they are built, can be found in Richter-Gebert [RG99],
and detailed proofs in [RG97]. Section 6.2 contains a few more remarks
on realizability (see, in particular, Exercise 6.2.3).
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Exercises

1.

10.

Verify that if V C R? is affinely independent, then each subset F C V
determines a face of the simplex conv(V).

. Verify the description of the faces of the cube and of the crosspolytope

given in the text.

Consider the (n—1)-dimensional permutahedron as defined in the intro-
duction to this chapter.

(a) Verify that it really has n! vertices corresponding to the permutations
of {1,2,...,n}.

(b) Describe all faces of the permutahedron combinatorially (what sets
of permutations are vertex sets of faces?).

(c) Determine the dimensions of the faces found in (b). In particular, show
that the facets correspond to ordered partitions (A, B) of {1,2,...,n},
A, B # (), and count them.

. Let P C R* = conv{+te; +e;: 4,5 = 1,2,3,4, i # j}, where e1,...,eq is

the standard basis (this P is called the 24-cell). Describe the face lattice
of P and prove that P is combinatorially equivalent to P* (in fact, P can
be obtained from P* by an isometry and scaling).

. Using Proposition 5.3.2, prove the following:

(a) If F is a face of a convex polytope P, then F is the intersection of P
with the affine hull of F.

(b) If F' and G are faces of a convex polytope P, then FF'N G is a face,
too.

. Let P be a convex polytope in R3 containing the origin as an interior

point, and let F' be a j-face of P, j =0,1,2.

(a) Give a precise definition of the face F’ of the dual polytope P* cor-
responding to F (i.e., describe F’ as a subset of R3). [2]

(b) Verify that F” is indeed a face of P*.

Let V C R< be the vertex set of a convex polytope and let U C V. Prove
that U is the vertex set of a face of conv(V) if and only if the affine hull
of U is disjoint from conv(V \ U).

Prove that the graph of any 3-dimensional convex polytope is 3-connected;
i.e., removing any 2 vertices leaves the graph connected. [5]

Let C be a convex set. Call a point z € C' exposed if there is a hyperplane
h with CNh = {z} and all the rest of C on one side. For convex polytopes,
exposed points are exactly the vertices, and we have shown that any
extremal point is also exposed. Find an example of a compact convex set
C C R? with an extremal point that is not exposed.

(On extremal points) For a set X C RY, let ex(X) = {r € X:2 ¢
conv(X \ {z})} denote the set of extremal points of X.

(a) Find a convex set C C R? with C # conv(ex(C)).

(b) Find a compact convex C C R3 for which ex(C) is not closed. [4]
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(c) By modifying the proof of Theorem 5.2.2, prove that C' = conv(ex(C))
for every compact convex C' C R? (this is a finite-dimensional version of
the well known Krein—-Milman theorem). [4]

5.4 Many Faces: The Cyclic Polytopes

A convex polytope P can be given to us by the list of vertices. How difficult
is it to recover the full face lattice, or, more modestly, a representation of P
as an intersection of half-spaces? The first question to ask is how large the
face lattice or the collection of half-spaces can be, compared to the number
of vertices. That is, what is the maximum total number of faces, or the
maximum number of facets, of a convex polytope in R¢ with n vertices? The
dual question is, of course, the maximum number of faces or vertices of a
bounded intersection of n half-spaces in R4,

Let f; = f;(P) denote the number of j-faces of a polytope P. The vector
(fo, f1,---, fa) is called the f-vector of P. We thus assume fy = n and we
are interested in estimating the maximum value of f;_; and of ZZ:O fr-

In dimensions 2 and 3, the situation is simple and favorable. For d = 2, our
polytope is a convex polygon with n vertices and n edges, and so fo = f1 = n,
f2 = 1. The f-vector is even determined uniquely.

A 3-dimensional polytope can be regarded as a drawing of a planar graph,
in our case with n vertices. By well-known results for planar graphs, we have
fi £ 3n—6 and fo < 2n—4. Equalities hold if and only if the polytope is
simplicial (all facets are triangles).

In both cases the total number of faces is linear in n. But as the dimension
grows, polytopes become much more complicated. First of all, even the total
number of faces of the most innocent convex polytope, the d-dimensional
simplex, is exponential in d. But here we consider d fixed and relatively
small, and we investigate the dependence on the number of vertices n.

Still, as we will see, for every n > 5 there is a 4-dimensional convex
polytope with n vertices and with every two vertices connected by an edge,
i.e., with (3) edges! This looks counterintuitive, but our intuition is based
on the 3-dimensional case. In any fixed dimension d, the number of facets
can be of order nl%/2! | which is rather disappointing for someone wishing to
handle convex polytopes efficiently. On the other hand, complete desperation
is perhaps not appropriate: Certainly not all polytopes exhibit this very bad
behavior. For example, it is known that if we choose n points uniformly at
random in the unit ball B¢, then the expected number of faces of their convex
hull is only o(n), for every fixed d.

It turns out that the number of faces for a given dimension and number of
vertices is the largest possible for so-called cyclic polytopes, to be introduced
next. First we define a very useful curve in R?.
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5.4.1 Definition (Moment curve). The curve v = {(¢,2,...,t%): t € R}
in R% is called the moment curve.

5.4.2 Lemma. Any hyperplane h intersects the moment curve v in at most
d points. If there are d intersections, then h cannot be tangent to ~, and thus
at each intersection, v passes from one side of h to the other.

Proof. A hyperplane h can be expressed by the equation (a,z} = b, or
in coordinates ai;zy + az2x2 + -+ + agxqy = b. A point of vy has the form
(t,t2,...,t%), and if it lies in h, we obtain a;t+ agt? + - - -+ a4t —b = 0. This
means that ¢ is a root of a nonzero polynomial pp(t) of degree at most d,
and hence the number of intersections of h with v is at most d. If there are d
distinct roots, then they must be all simple. At a simple root, the polynomial
ph(t) changes sign, and this means that the curve v passes from one side of
h to the other. m|

As a corollary, we see that every d points of the moment curve are affinely
independent, for otherwise, we could pass a hyperplane through them plus
one more point of 4. So the moment curve readily supplies explicit examples
of point sets in general position.

5.4.3 Definition (Cyclic polytope). The convex hull of finitely many
points on the moment curve is called a cyclic polytope.

How many facets does a cyclic polytope have? Each facet is determined
by a d-tuple of vertices, and distinct d-tuples determine distinct facets. Here
is a criterion telling us exactly which d-tuples determine facets.

5.4.4 Proposition (Gale’s evenness criterion). Let V be the vertex set
of a cyclic polytope P considered with the linear ordering < along the mo-
ment curve (larger vertices have larger values of the parameter t). Let F =
{v1,v2,...,v4} CV be a d-tuple of vertices of P, where v; < v < --- < vgq.
Then F determines a facet of P if and only if for any two verticesu,v € V\F,
the number of vertices v; € F' with u < v; < v Is even.

Proof. Let hr be the hyperplane affinely spanned by F. Then F' determines
a facet if and only if all the points of V' \ F lie on the same side of hp.
Since the moment curve v intersects hp in exactly d points, namely at
the points of F, it is partitioned into d+1 pieces, say 7o, .- -, 74, €ach lying
completely in one of the half-spaces, as is indicated in the drawing:

o
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Hence, if the vertices of V' \ F' are all contained in the odd-numbered pieces

1,73, - - -, as in the picture, or if they are all contained in the even-numbered
pieces Yo, Yo, - .-, then F' determines a facet. This condition is equivalent to
Gale’s criterion. |

Now we can count the facets.

5.4.5 Theorem. The number of facets of a d-dimensional cyclic polytope
with n vertices (n > d+1) is

(n Idbcéﬁ 2]) n (n Id%ﬂ 21 ; 1> for d even, and

2(" - ng N 1) for d odd.

For fixed d, this has the order of magnitude nl%/2],

Proof. The number of facets equals the number of ways of placing d black
circles and n — d white circles in a row in such a way that we have an even
number of black circles between each two white circles.

Let us say that an arrangement of black and white circles is paired if any
contiguous segment of black circles has an even length (the arrangements
permitted by Gale’s criterion need not be paired because of the initial and
final segments). The number of paired arrangements of 2k black circles and
n — 2k white circles is (”;k), since by deleting every second black circle we
get a one-to-one correspondence with selections of the positions of £ black
circles among n — k possible positions.

Let us return to the original problem, and first consider an odd d = 2k+1.
In a valid arrangement of circles, we must have an odd number of consecutive
black circles at the beginning or at the end (but not both). In the former case,
we delete the initial black circle, and we get a paired arrangement of 2k black
and n—1—2k white circles. In the latter case, we similarly delete the black
circle at the end and again get a paired arrangement as in the first case. This
establishes the formula in the theorem for odd d.

For even d = 2k, the number of initial consecutive black circles is ei-
ther odd or even. In the even case, we have a paired arrangement, which
contributes (";k) possibilities. In the odd case, we also have an odd num-
ber of consecutive black circles at the end, and so by deleting the first and
last black circles we obtain a paired arrangement of 2(k—1) black circles and

n—2k white circles. This contributes (";f;z) possibilities. O

Bibliography and remarks. The convex hull of the moment curve
was studied by by Carathéodory [Car07]. In the 1950s, Gale con-
structed neighborly polytopes by induction. Cyclic polytopes and the
evenness criterion appear in Gale [Gal63]. The moment curve is an
important object in many other branches besides the theory of convex
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polytopes. For example, in elementary algebraic topology it is used
for proving that every (at most countable) d-dimensional simplicial
complex has a geometric realization in R2¢+1,

Convex hulls of random sets. Bérany [Bar89] proved that if n points
are chosen uniformly and independently at random from a fixed d-
dimensional convex polytope K (for example, the unit cube), then
the number of k-dimensional faces of their convex hull has the order
(logn)4~1 for every fixed d and k, 0 < k < d—1 (the constant of pro-
portionality depending on d, k, and K). If K is a smooth convex body
(such as the unit ball), then the order of magnitude is n(d-1)/(d+1),
again with d, k, and K fixed. For more references and wider context
see, e.g., Weil and Wieacker [WW93].

Exercises

1. (a) Show that if V is a finite subset of the moment curve, then all the
points of V' are extreme in conv(V); that is, they are vertices of the
corresponding cyclic polytope. [2]

(b) Show that any two cyclic polytopes in R? with n vertices are com-
binatorially the same: They have isomorphic face lattices. Thus, we can
speak of the cyclic polytope.

2. (Another curve like ) Let 8 C R be the curve {(;37, 575, - Hid): te
R, ¢t > 0}. Show that any hyperplane intersects 3 in at most d points
(and if there are d intersections, then there is no tangency), and conclude
that any n distinct points on 3 form the vertex set of a polytope com-
binatorially isomorphic to the cyclic polytope. [4] (Let us remark that
many other curves have these properties as well; the moment curve is
just the most convenient example.)

3. (Universality of the cyclic polytope)

(a) Let z1,...,z, be points in R%. Let y; denote the vector arising by
appending 1 as the (d+1)st component of x;. Show that if the determi-
nants of all matrices with columns y; ,...,¥,,,, for all choices of indices
11 < ig < --+ < %441, have the same nonzero sign, then zi,...,z, form
the vertex set of a convex polytope combinatorially equivalent to the n-
vertex cyclic polytope in R¢. [4]

(b) Show that for any integers n and d there exists N such that among any
N points in R? in general position, one can choose n points forming the
vertex set of a convex polytope combinatorially equivalent to the n-vertex
cyclic polytope. [2] (This can be seen as a d-dimensional generalization of
the Erdés—Szekeres theorem.)

4. Prove that if n is sufficiently large in terms of d, then for every set of
n points in R? in general position, one can choose d+1 simplices of di-
mension d with vertices at some of these points such that any hyperplane
avoids at least one of these simplices. Use Exercise 3. [2]
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This exercise is a special case of a problem raised by Lovész, and it was
communicated to me by Bardny. A detailed solution can be found in
[BVSt99).

5. Show that for cyclic polytopes in dimensions 4 and higher, every pair
of vertices is connected by an edge. For dimension 4 and two arbitrary
vertices, write out explicitly the equation of a hyperplane intersecting the
cyclic polytope exactly in this edge. [5]

6. Determine the f-vector of a cyclic polytope with n vertices in dimensions
4, 5, and 6.

5.5 The Upper Bound Theorem

The upper bound theorem, one of the earlier major achievements of the theory
of convex polytopes, claims that the cyclic polytope has the largest possible
number of faces.

5.5.1 Theorem (Upper bound theorem). Among all d-dimensional con-
vex polytopes with n vertices, the cyclic polytope maximizes the number of
faces of each dimension.

In this section we prove only an approximate result, which gives the cor-
rect order of magnitude for the maximum number of facets.

5.5.2 Proposition (Asymptotic upper bound theorem). A d-dimen-
sional convex polytope with n vertices has at most 2(L d72 J) facets and no

more than 2%+1 (L 42 J) faces in total. For d fixed, both quantities thus have
the order of magnitude nl4/2},

First we establish this proposition for simplicial polytopes, in the following
form.

5.5.3 Proposition. Let P be a d-dimensional simplicial polytope. Then

(@) fo(P)+ fi(P)+ -+ fo(P) < 24fy_1(P), and
(b) fa-1(P) < 2f[d/21_1(P).

This implies Proposition 5.5.2 for simplicial polytopes, since the number
of (|d/2]—1)-faces is certainly no bigger than ( L d72 | ), the number of all |d/2]-
tuples of vertices.

Proof of Proposition 5.5.3. We pass to the dual polytope P*, which
is simple. Now we need to prove ZZ=0 fe(P*) < 2¢£5(P*) and fo(P*) <
2fra/2 (P*).

Each face of P* has at least one vertex, and every vertex of a simple
d-polytope is incident to 2¢ faces, which gives the first inequality.
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We now bound the number of vertices in terms of the number of [d/2]-
faces. This is the heart of the proof, and it shows where the mysterious
exponent |d/2| comes from.

Let us rotate the polytope P* so that no two vertices share the x4-co-
ordinate (i.e., no two vertices have the same vertical level).

Consider a vertex v with the d edges emanating from it. By the pigeonhole
principle, there are at least [d/2] edges directed downwards or at least [d/2]
edges directed upwards. In the former case, every [d/2]-tuple of edges going
up determines a [d/2]-face for which v is the lowest vertex. In the latter case,
every |d/2]-tuple of edges going down determines a [d/2]-face for which v
is the highest vertex. Here is an illustration, unfortunately for the not too
interesting 3-dimensional case, showing a situation with 2 edges going up and
the corresponding 2-dimensional face having v as the lowest vertex:

We have exhibited at least one [d/2]-face for which v is the lowest vertex or
the highest vertex. Since the lowest vertex and the highest vertex are unique

for each face, the number of vertices is no more than twice the number of
[d/2]-faces. |

Warning. For simple polytopes, the total combinatorial complexity is pro-
portional to the number of vertices, and for simplicial polytopes it is pro-
portional to the number of facets (considering the dimension fixed, that is).
For polytopes that are neither simple nor simplicial, the number of faces of
intermediate dimensions can have larger order of magnitude than both the
number of facets and the number of vertices; see Exercise 1.

Nonsimplicial polytopes. To prove the asymptotic upper bound theorem,
it remains to deal with nonsimplicial polytopes. This is done by a perturba-
tion argument, similar to numerous other results where general position is
convenient for the proof but where we want to show that the result holds
in degenerate cases as well. In most instances in this book, the details of
perturbation arguments are omitted, but here we make an exception, since
the proof seems somewhat nontrivial.

5.5.4 Lemma. For any d-dimensional convex polytope P there exists a d-
dimensional simplicial polytope @ with fo(P) = fo(Q) and fr(Q) > fr(P)
forallk=1,2,...,d.

Proof. The basic idea is very simple: Move (perturb) every vertex of P by a
very small amount, in such a way that the vertices are in general position, and
show that each k-face of P gives rise to at least one k-face of the perturbed
polytope. There are several ways of doing this proof.
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We process the vertices one by one. Let V be the vertex set of P and
let v € V. The operation of e-pushing v is as follows: We choose a point v’
lying in the interior of P, at distance at most ¢ from v, and on no hyperplane
determined by the points of V, and we set V/ = (V \ {v}) U {v'}. If we
successively ¢,-push each vertex v of the polytope, the resulting vertex set is
in general position and we have a simple polytope.

It remains to show that for any polytope P with vertex set V and any
v € V, there is an £ > 0 such that e-pushing v does not decrease the number
of faces.

Let U C V be the vertex set of a k-face of P, 0 < k < d—1, and let V’
arise from V by e-pushing v. If v € U, then no doubt, U determines a face of
conv(V'), and so we assume that v € U. First suppose that v lies in the affine
hull of U \ {v}; we claim that then U \ {v} determines a k-face of conv(V").
This follows easily from the criterion in Exercise 5.3.7: A subset U C V is the
vertex set of a face of conv(V) if and only if the affine hull of U is disjoint
from conv(V \ U). We leave a detailed argument to the reader (one must use
the fact that v is pushed inside).

If v lies outside of the affine hull of U \ {v}, then we want to show that
U' = (U\ {v}) U {v'} determines a k-face of conv(V’). The affine hull of U
is disjoint from the compact set conv(V \ U). If we move v continuously by
a sufficiently small amount, the affine hull of U moves continuously, and so
there is an € > 0 such that if we move v within € from its original position,
the considered affine hull and conv(V \ U) remain disjoint. ]

The h-vector and such. Here we introduce some notions extremely useful
for deeper study of the f-vectors of convex polytopes. In particular, they are
crucial in proofs of the (exact) upper bound theorem.

Let us go back to the setting of the proof of Proposition 5.5.3. There we
considered a simple polytope that used to be called P* but now, for simplicity,
let us call it P. It is positioned in R¢ in such a way that no edge is horizontal,
and so for each vertex v, there are some 4, edges going upwards and d — i,
edges going downwards.

The central definition is this: The h-vector of P is (hg, hy,. .., hg), where
h; is the number of vertices v with exactly ¢ edges going upwards. So, for
example, we have hg = hg = 1.

Next, we relate the h-vector to the f-vector. Each vertex v is the lowest
vertex for exactly (l,:) faces of dimension k, and each k-face has exactly one

lowest vertex, and so
d ,.
i

(for i < k we have (}) = 0). So the h-vector determines the f-vector. Less
obviously, the h-vector can be uniquely reconstructed from the f-vector! A
quick way of seeing this is via generating functions: If f(z) is the polynomial
ZZZO frz® and h(z) = Z?:o h;zt, then (5.1) translates to f(z) = h(z+1),
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and therefore h(z) = f(z—1). Explicitly, we have

hi = zd:(—l)i_k (]Zc) fi- (5.2)

k=0

We have defined the h-vector using one particular choice of the vertical
direction, but now we know that it is determined by the f-vector and thus
independent of the chosen direction. By turning P upside down, we see that

hi=hg; foralli=0,1,...,d.

These equalities are known as the Dehn-Sommerville relations. They include
the usual Euler formula fy + f» = f1 4 2 for 3-dimensional polytopes.

Let us stress once again that all we have said about h-vectors concerns
only simple polytopes. For a simplicial polytope P, the h-vector can now be
defined as the h-vector of the dual simple polytope P*. Explicitly,

& '_k(d—k>
b= 2 (g ) e

The upper bound theorem has the following neat reformulation in terms
of h-vectors: For any d-dimensional simplicial polytope with fo = n vertices,
we have )

hig(”_d;“”), i=0,1,...,1d/2]. (5.3)
Proving the upper bound theorem is not one of our main topics, but an
outline of a proof can be found in this book. It starts in the next section
and finishes in Exercise 11.3.6, and it is not among the most direct possible
proofs. Deriving the upper bound theorem from (5.3) is a pure and direct
calculation, verifying that the h-vector of the cyclic polytope satisfies (5.3)
with equality. We omit this part.

Bibliography and remarks. The upper bound theorem was con-
jectured by Motzkin in 1957 and proved by McMullen [McM70]. Many
partial results have been obtained in the meantime. Perhaps most no-
tably, Klee [Kle64] found a simple proof for polytopes with not too few
vertices (at least about d? vertices in dimension d). That proof applies
to simplicial complexes much more general than the boundary com-
plexes of simplicial polytopes: It works for Eulerian pseudomanifolds
and, in particular, for all simplicial spheres, i.e., simplicial complexes
homeomorphic to S%~1. Presentations of McMullen’s proof and Klee’s
proof can be found in Ziegler’s book [Zie94]. A nice variation was de-
scribed by Alon and Kalai [AK85]. Another proof, based on linear
programming duality and results on hyperplane arrangements, was
given by Clarkson [Cla93]. An elegant presentation of similar ideas,
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using the Gale transform discussed below in Section 5.6, can be found
in Welzl [Wel01] and in Exercises 11.3.5 and 11.3.6. Our exposition of
the asymptotic upper bound theorem is based on Seidel [Sei95].

The ordering of the vertices of a simple polytope P by their height
in the definition of the h-vector corresponds to a linear ordering of the
facets of P*. This ordering of the facets is a shelling. Shelling, even
in the strictly peaceful mathematical sense, is quite important, also
beyond the realm of convex polytopes. Let K be a finite cell complex
whose cells are convex polytopes (such as the boundary complex of a
convex polytope), and suppose that all maximal cells have the same
dimension k. Such K is called shellable if k = 0 or £k > 1 and K has
a shelling. A shelling of K is an enumeration Fi, F3,..., F, of the
facets (maximum-dimension cells) of K such that (i) the boundary
complex of Fj is shellable, and (ii) for every i > 1, there is a shelling
of the complex F; N U;;ll F; that can be extended to a shelling of the
boundary complex of F;. The boundary complex of a convex polytope
is homeomorphic to a sphere, and a shelling builds the sphere in such
a way that each new cell is glued by contractible part of its boundary
to the previously built part, except for the last cell, which closes the
remaining hole.

McMullen’s proof of the upper bound theorem does not generalize
to simplicial spheres (i.e., finite simplicial complexes homeomorphic
to spheres), for example because they need not be shellable, counter-
intuitive as this may look. The upper bound theorem for them was
proved by Stanley [Sta75] using much heavier algebraic and algebraic-
topological tools.

An interesting extension of the upper bound theorem was found
by Kalai [Kal91]. Let P be a simplicial d-dimensional polytope. All
proper faces of P are simplices, and so the boundary is a simplicial
complex. Let K be any subcomplex of the boundary (a subset of the
proper faces of P such that if F' € K, then all faces of F' also lie in
K). The strong upper bound theorem, as Kalai’s result is called, asserts
that if K has at least as many (d—1)-faces as the d-dimensional cyclic
polytope on n vertices, then K has at least as many k-faces as that
cyclic polytope, for all k =0,1,...,d—1. (Note that we do not assume
that P has n vertices!) The proof uses methods developed for the
proof of the g-theorem mentioned below as well as Kalai’s technique
of algebraic shifting.

Another major achievement concerning the f-vectors of polytopes
is the so-called g-theorem. The inventive name g-vector of a d-dimen-
sional simple polytope refers to the vector (go, g1,...,9(4/2)), Where
go=ho and g; = h; — hj—1, i =1,2,...,|d/2]. The g-theorem char-
acterizes all possible integer vectors that can appear as the g-vector
of a d-dimensional simple (or simplicial) polytope. Since the g-vector
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uniquely determines the f-vector, we have a complete characteriza-
tion of f-vectors of simple polytopes. In particular, the g-theorem
guarantees that all the components of the g-vector are always non-
negative (this fact is known as the generalized lower bound theorem),
and therefore the h-vector is unimodal: We have hyg < h; < --- <
hid/2] = hfaj21 = --- = hg. (On the other hand, the f-vector of a
simple polytope need not be unimodal; more exactly, it is unimodal
in dimensions up to 19, and there are 20-dimensional nonunimodal
examples.) We again refer to [Zie94] for a full statement of the g-
theorem. The proof has two independent parts; one of them, due to
Billera and Lee [BL81], constructs suitable polytopes, and the other
part, first proved by Stanley [Sta80], shows certain inequalities for all
simple polytopes. For studying the most elementary proof of the sec-
ond part currently available, one can start with McMullen [McM96]
and continue with [McM93].

For nonsimple (and nonsimplicial) polytopes, a characterization
of possible f-vectors remains elusive. It seems, anyway, that the flag
vector might be a more appropriate parameter for nonsimple poly-
topes. The flag vector counts, for every £k = 1,2,...,d and for every
i1 < g < -+ < i}, the number of chains F; C Fy C --- C Fy, where
F,...,Fy are faces with dim(F}) = i; (such a chain is called a flag).

No analogue of the upper bound theorem is known for centrally
symmetric polytopes. A few results concerning their face counts, ob-
tained by methods quite different from the ones for arbitrary poly-
topes, will be mentioned in Section 14.5.

The proof of Lemma 5.5.4 by pushing vertices inside is similar to
an argument in Klee [Kle64], but he proves more and presents the
proof in more detail.

Convex hull computation. What does it mean to compute the convex
hull of a given n-point set V C R?? One possible answer, briefly
touched upon in the notes to Section 5.2, is to express conv(V) as
the intersection of half-spaces and to compute the vertex sets of all
facets. (As we know, the face lattice can be reconstructed from this
information purely combinatorially; see Kaibel and Pfetsch [KP01]
for an efficient algorithm.) Of course, for some applications it may
be sufficient to know much less about the convex hull, say only the
graph of the polytope or only the list of its vertices, but here we will
discuss only algorithms for computing all the vertex—facet incidences
or the whole face lattice. For a more detailed overview of convex hull
algorithms see, e.g., Seidel [Sei97].

For the dimension d considered fixed, there is a quite simple and
practical randomized algorithm. It computes the convex hull of n
points in R% in expected time O(nl%2) 4+ nlogn) (Seidel [Sei91],
simplifying Clarkson and Shor [CS89]), and also a very complicated
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but deterministic algorithm with the same asymptotic running time
(Chazelle [Cha93b]; somewhat simplified in Brénnimann, Chazelle,
and Matousek [BCM99]). This is worst-case optimal, since an n-vertex
polytope may have about nl%/2] facets. There are also output-sensitive
algorithms, whose running time depends on the total number f of faces
of the resulting polytope. Recent results in this direction, including an
algorithm that computes the convex hull of n points in general posi-
tion in R? (d fixed) in time O(nlog f + (nf)1~1/(l4/2]41) (log n)e(d),
can be found in Chan [Cha0Ob].

Still, none of the known algorithms is theoretically fully satisfac-
tory, and practical computation of convex hulls even in moderate di-
mensions, say 10 or 20, can be quite challenging. Some of the algo-
rithms are too complicated and with too large constants hidden in the
asymptotic notation to be of practical value. Algorithms requiring gen-
eral position of the points are problematic for highly degenerate point
configurations (which appear in many applications), since small per-
turbations used to achieve general position often increase the number
of faces tremendously. Some of the randomized algorithms compute
intermediate polytopes that can have many more faces than the fi-
nal result. Often we are interested just in the vertex—facet incidences,
but many algorithms compute all faces, whose number can be much
larger, or even a triangulation of every face, which may again increase
the complexity. Such problems of existing algorithms are discussed in
Avis, Bremner, and Seidel [ABS97).

For actual computations, simple and theoretically suboptimal al-
gorithms are often preferable. One of them is the double-description
method mentioned earlier, and another algorithm that seems to be-
have well in many difficult instances is the reverse search of Avis and
Fukuda [AF92)]. It enumerates the vertices of the intersection of a given
set H of half-spaces one by one, using quite small storage. Conceptu-
ally, one thinks of optimizing a generic linear function over (| H by a
simplex algorithm with Bland’s rule. This defines a spanning tree in
the graph of the polytope, and this tree is searched depth-first starting
from the optimum vertex, essentially by running the simplex algorithm
“backwards.” The main problem of this algorithm is with degenerate
vertices of high degree, which may correspond to an enormous number
of bases in the simplex algorithm.

Also, it sometimes helps if one knows some special properties of
the convex hull in a particular problem, say many symmetries. For ex-
ample, very extensive computations of convex hulls were performed by
Deza, Fukuda, Pasechnik, and Sato [DFPS00], who studied the metric
polytope. Before we define this interesting polytope, let us first intro-

duce the metric cone M,,. This is a set in R(2) representing all metrics
on {1,2,...,n}, where the coordinate z(; ; specifies the distance of
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1toj,1 <4< j<n. SoM,is defined by the triangle inequalities
Z{i iy + Tk < Tk}, Where 4,7,k are three distinct indices. The
metric polytope m, is the subset of M, defined by the additional
inequalities saying that the perimeter of each triangle is at most 2,
namely (; ;1 +Z(j k) + Tk} < 2. Deza et al. were able to enumerate
all the approximately 1.5 - 10° vertices of the 28-dimensional polytope
mg; this may give some idea of the extent of these computational prob-
lems. Without using many symmetries of m.,, a polytope of this size
would currently be out of reach. Such computations might provide in-
sight into various conjectures concerning the metric polytope, which
are important for combinatorial optimization problems (see, e.g., Deza
and Laurent [DL97] for background).

Exercises

1. (a) Let P be a k-dimensional convex polytope in R*, and Q an ¢-dimen-
sional convex polytope in R. Show that the Cartesian product P x Q C
R**¢ is a convex polytope of dimension & + £.

(b) If F is an i-face of P, and G is a j-face of @, 1,5 > 0, then F x G is
an (¢ + j)-face of P x Q. Moreover, this yields all the nonempty faces of
PxQ.

(c) Using the product of suitable polytopes, find an example of a “fat-
lattice” polytope, i.e., a polytope for which the total number of faces has
a larger order of magnitude than the number of vertices plus the number
of facets together (the dimension should be a constant).

(d) Show that the following yields a 5-dimensional fat-lattice polytope:
The convex hull of two regular n-gons whose affine hulls are skew 2-flats
in RS.

For recent results on fat-lattice polytopes see Eppstein, Kuperberg, and
Ziegler [EKZ01].

5.6 The Gale Transform

On a very general level, the Gale transform resembles the duality transform
defined in Section 5.1. Both convert a (finite) geometric configuration into
another geometric configuration, and they may help uncover some properties
of the original configuration by making them more apparent, or easier to
visualize, in the new configuration. The Gale transform is more complicated
to explain and probably more difficult to get used to, but it seems worth the
effort. It was invented for studying high-dimensional convex polytopes, and
recently it has been used for solving problems about point configurations by
relating them to advanced theorems on convex polytopes. It is also closely
related to the duality of linear programming (see Section 10.1), but we will
not elaborate on this connection here.
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The Gale transform assigns to a sequence a = (a1, as,...,a,) of n > d+1
points in R¢ another sequence § = (1,92, .- -,8n) of n points. The points
91,32, - --,0n live in a different dimension, namely in R*~%~!, For example,
n points in the plane are transformed to n points in R*~2 and vice versa.
In the literature one finds many results about k-dimensional polytopes with
k+3 or k+4 vertices; this is because their vertex sets have a low-dimensional
Gale transform.

Let us stress that the Gale transform operates on sequences, not individual
points: We cannot say what g; is without knowing all of a1, a2,...,a,. We
also require that the affine hull of the a; be the whole RY; otherwise, the
Gale transform is not defined. (On the other hand, we do not need any sort
of general position, and some of the a; may even coincide.)

The reader might wonder why the points of the Gale transform are written
with bars. This is to indicate that they should be interpreted as vectors
in a vector space, rather than as points in an affine space. As we will see,
“affine” properties of the sequence a, such as affine dependencies, correspond
to “linear” properties of the Gale transform, such as linear dependencies.

In order to obtain the Gale transform of a, we first convert the a; into
(d+1)-dimensional vectors: @; € R%*! is obtained from a; by appending a
(d+1)st coordinate equal to 1. This is the embedding R? — R4+ often used
for relating affine notions in R? to linear notions in R%*!; see Section 1.1.

Let A be the d x n matrix with a; as the ith column. Since we assume that
there are d+1 affinely independent points in a, the matrix A has rank d+1,
and so the vector space V generated by the rows of A is a (d+1)-dimensional
subspace of R”. We let V* be the orthogonal complement of V in R”; that is,
Vi ={we R™ (v,w) =0 for all v € V}. We have dim(V+) = n—d—1. Let
us choose some basis (b1, bs, - .. ,by_g_1) of V1, and let B be the (n—d—1)xn
matrix with b; as the jth row. Finally, we let §; € R*~%~! be the ith column
of B. The sequence § = (g1, gz, - - -, gn) is the Gale transform of a. Here is a
pictorial summary:

n
d — - d+1 Gale transform
a . an T[T
point sequence a1 e On basis of
n—d—1]orthogonal —
complement

5.6.1 Observation.

(i) (The Gale transform is determined up to linear isomorphism) In the
construction of g, we can choose an arbitrary basis of VL. Choosing a
different basis corresponds to multiplying the matrix B from the left by a
nonsingular (n—d—1) X (n—d—1) matrix T (Exercise 1), and this means
transforming (g, . ..,Jn) by a linear isomorphism of R*~4~1,
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(i) A sequence § in R"~9~! is the Gale transform of some a if and only if
it spans R"~9~1 and has 0 as the center of gravity: Y .., §; = 0.

(iii) Let us consider a sequence § in R"~9~1 satisfying the condition in (ii).
If we interpret it as a point sequence (breaking the convention that the
result of the Gale transform should be thought of as a sequence of vec-
tors), apply the Gale transform to it, again consider the result as a point
sequence, and apply the Gale transform the second time, we recover the
original §, up to linear isomorphism (Exercise 5).

Two ways of probing a configuration. We would like to set up a dictio-
nary for translating between geometric properties of a sequence @ and those
of its Gale transform. First we discuss how some familiar geometric proper-
ties of a configuration of points or vectors are reflected in the values of affine
or linear functions on the configuration, and how they manifest themselves
in affine or linear dependencies. For a sequence @ = (@,, . .. ,ady,) of vectors in
R%*! we define two vector subspaces of R™:

LinVal(@) = {(f(@1), f(@2),..., f(@,)): f:R**! = R is a linear function},
LinDep(@) = {a € R™ o181 + asds + - - + andyn = 0}.

For a point sequence a = (ay, ..., a,), we then let AffVal(a) = LinVal(@) and
AffDep(a) = LinDep(a), where @ is obtained from a as above, by appending
1’s. Another description is

AftVal(a) = {(f(a1), f(az),-.., f(az)): f:R? — R is an affine function},
AffDep(a) = {a € R™: aya1 + -+ + anan = 0,01 + - - - + a, =0}

The knowledge of LinVal(@) tells us a lot about @, and we only have to
learn to decode the information. As usual, we assume that @ linearly spans
all of R4+1,

Each nonzero linear function f:R%*! — R determines the linear hy-
perplane hy = {z € R f(z) = 0} (by a linear hyperplane we mean a
hyperplane passing through 0). This hy is oriented (one of its half-spaces is
positive and the other negative), and the sign of f(d@;) determines whether a;
lies on hy, on its positive side, or on its negative side.

fz)>0

We begin our decoding of the properties of @ with the property “span-
ning a linear hyperplane.” That is, we choose our favorite index set I C
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{1,2,...,n}, and we ask whether the points of the subsequence @; = (a;: i €
I) span a linear hyperplane. First, we observe that they lie in a common linear
hyperplane if and only if there is a nonzero ¢ € LinVal(@) such that p; = 0 for
all ¢ € I. It could still happen that all of @; lies in a lower-dimensional linear
subspace. Using the assumption that @ spans R%*!, it is not difficult to see
that @; spans a linear hyperplane if and only if all ¢ € LinVal(a) that vanish
on @y have identical zero sets; that is, the set {i: ¢; = 0} is the same for all
such . If we know that @; spans a linear hyperplane, we can also see how
the other vectors in @ are distributed with respect to this linear hyperplane.

Analogously, knowing AffVal(a), we can determine which subsequences of
a span (affine) hyperplanes and how the other points are partitioned by these
hyperplanes. For example, we can tell whether there are some d+1 points on
a common hyperplane, and so we know whether a is in general position. As a
more complicated example, let P = conv(a). We can read off from AffVal(a)
which of the a; are the vertices of P, and also the whole face lattice of P
(Exercise 6).

Similar information can be inferred from AffDep(a) (exactly the same
information, in fact, since AffDep(a) = AffVal(a)l; see Exercise 7). For
an a € AffDep(a) let I (a) = {i € {1,2,...,n}: a; > 0} and [_(a) =
{i € {1,2,...,n}: a; < 0}. As we learned in the proof of Radon’s lemma
(Lemma 1.3.1), I+ = I+ (a) and I_ = I_(a) correspond to Radon partitions
of a. Namely, Zi€I+ @ia; = ) ;5 (—a;)a;, and dividing by Zi€I+ o =
> ier_(—ai), we have convex combinations on both sides, and so conv(ar, )N
conv(ar_) # 0. Conversely, if I; and I, are disjoint index sets with conv(az, )N
conv(ar,) # 0, then there is a nonzero a € AffDep(a) with I.(a) C I, and
I_(a) C I. For example, a; is a vertex of conv(a) if and only if there is no
o € AffDep(a) with I (a) = {i}.

For a sequence @ of vectors, linear dependencies correspond to expressing
0 as a convex combination. Namely, for disjoint index sets I and I, we
have 0 € conv({a;: ¢ € 1} U{—a;: ¢ € Iz}) if and only if there is a nonzero
a € LinDep(@) with I (a) C 1) and I_(a) C I».

Together with these geometric interpretations of LinVal(a), AffVal(a),
LinDep(@), and AffDep(a), the following lemma (whose proof is left to Ex-
ercise 8) allows us to translate properties of point configurations to those of
their Gale transforms.

5.6.2 Lemma. Let a be a sequence of n points in R® whose points affinely
span R?, and let g be its Gale transform. Then LinVal(g) = AffDep(a) and
LinDep(g) = AffVal(a). a

So a Radon partition of a corresponds to a partition of § by a linear
hyperplane, and a partition of @ by a hyperplane translates to a linear de-
pendence (i.e., a “linear Radon partition”) of g.

Let us list several interesting connections, again leaving the simple but
instructive proofs to the reader.
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5.6.3 Corollary (Dictionary of the Gale transform).

(i) (Lying in a common hyperplane) For every (d+1)-point index set I C
{1,2,...,n}, the points a; with i € I lie in a common hyperplane if and
only if all the vectors g; with j ¢ I lie in a common linear hyperplane.

(ii) (General position) In particular, the points of a are in general position
(no d+1 on a common hyperplane) if and only if every n—d—1 vectors
among §u, - - - ,gn Span R %=1 (which is a natural condition of general
position for vectors).

(iii) (Faces of the convex hull) The points a; with i € I are contained in a
common facet of P = conv(a) if and only if 0 € conv{g;: j € I}. In par-
ticular, if P is a simplicial polytope, then its k-faces exactly correspond
to complements of the (n—k—1)-element subsets of § containing 0 in the
convex hull.

(iv) (Convex independence) The a; form a convex independent set if and only
if there is no oriented linear hyperplane with exactly one of the g; on the
positive side.

Here is, finally, a picture of a 3-dimensional convex polytope with 6 ver-
tices and the (planar) Gale transform of its vertex set:

as

a _

5 as 94
For example, the facet ajasasag is reflected by the complementary pair gs,g4
of parallel oppositely oriented vectors, and so on.

Signs suffice. As was noted above, in order to find out whether some
a; is a vertex of conv(a), we ask whether there is an o € AffDep(a) with
I, () = {i}. Only the signs of the vectors in AffDep(a) are important here,
and this is the case with all the combinatorial-geometric information about
point sequences or vector sequences in Corollary 5.6.3. For such purposes,
the knowledge of sgn(AffDep(a)) = {(sgn(e),...,sgn(an)): a € AffDep(a)}
is as good as the knowledge of AffDep(a).

We can thus declare two sequences a and b combinatorially isomorphic if
sgn(AffDep(a)) = sgn(AffDep(b)) and sgn(AffVal(a)) = sgn(AffVal(b)).? We
will hear a little more about this notion of combinatorial isomorphism in
Section 9.3 when we discuss order types, and also in the notes to Section 6.2
in connection with oriented matroids.

2 It is nontrivial but true that either of these equalities implies the other one.
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Here we need only one very special case: If § = (g1, -.,3n) iS a sequence
of vectors, t1,...,t, > 0 are positive real numbers, and §’ = (¢1g1,- - -, tndn),
then clearly,

sgn(LinVal(g)) = sgn(LinVal(g')) and sgn(LinDep(g)) = sgn(LinDep(g’)),

and so § and g’ are combinatorially isomorphic vector configurations.

Affine Gale diagrams. We have seen a certain asymmetry of the Gale
transform: While the sequence a is interpreted affinely, as a point sequence,
its Gale transform needs to be interpreted linearly, as a sequence of vectors
(with 0 playing a special role). Could one reduce the dimension of g by 1 and
pass to an “affine version” of the Gale transform? This is indeed possible, but
one has to distinguish “positive” and “negative” points in the affine version.

Let § be the Gale transform of some a, g1,...,5, € R*" %71, Let us
assume for simplicity that all the g; are nonzero. We choose a hyperplane h
not parallel to any of the g; and not passing through 0, and we project the
g; centrally from 0 into h, obtaining points g1,...,g, € h = R*~ 472 If g;
lies on the same side of 0 as g;, i.e., if g; = ;g; with t; > 0, we set o; = +1,
and call g; a positive point. For g; lying on the other side of 0 than g; we
let 0; = —1, and we call g; a negative point. Here is an example with the
2-dimensional Gale transform from the previous drawing:

91,96 93,94 92 G5
——¢—0—0—

affine Gale diagram

The positive g; are marked by full circles, the negative ones by empty circles,
and we have borrowed the (incomplete) yin—yang symbol for marking the
positions shared by one positive and one negative point. This sequence g of
positive and negative points in R*~%2, or more formally the pair (g,0),
is called an affine Gale diagram of a. It conveys the same combinatorial
information as g, although we cannot reconstruct @ from it up to linear
isomorphism, as was the case with g. (For this reason, we speak of Gale
diagram rather than Gale transform.) One has to get used to interpreting
the positive and negative points properly. If we put

AffVal(g, o) = {(01f(g1),---,0nf(gn)): fiR""*"2 — R affine},
AffDep(g,0) = {a eR™ Y 0i0;9: =0, > 1 oy = O},

then, as is easily checked,
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sgn(AffDep(g, o)) = sgn(LinDep(g)) and sgn(AffVal(g, o)) = sgn(LinVal(g)).

Here is a reinterpretation of Corollary 5.6.3 in terms of the affine Gale dia-
gram.

5.6.4 Proposition (Dictionary of affine Gale diagrams). Let a be a
sequence of n points in R%, let § be the Gale transform of a, and assume that
all the g; are nonzero. Let (g,0) be an affine Gale diagram of a in R*~4-2,

(i) A subsequence aj lies in a common facet of conv(a) if and only if
conv({g;: j &€ I,o5 =1}) Nconv({g;: j &€ I,0; = —1}) # 0.

(ii) The points of a are in convex position if and only if for every oriented
hyperplane in R"~%~2, the number of positive points of g on its positive
side plus the number of negative points of g on its negative side is at
least 2. |

So far we have assumed that g; # 0 for all <. This need not hold in general,
and points g; = 0 need a special treatment in the affine Gale diagram: They
are called the special points, and for a full specification of the affine Gale
diagram, we draw the positive and negative points and give the number
of special points. It is easy to find out how the presence of special points
influences the conditions in the previous proposition.

A nonrational polytope. Configurations of k44 points in R* have planar
affine Gale diagrams. This leads to many interesting constructions of k-dimen-
sional convex polytopes with k+4 vertices. Here we give just one example: an
8-dimensional polytope with 12 vertices that cannot be realized with rational
coordinates; that is, no polytope with isomorphic face lattice has all vertex
coordinates rational. First one has to become convinced that if 9 distinct
points are placed in R? so that they are not all collinear and there are collinear
triples and 4-tuples as is marked by segments in the left drawing below,

then not all coordinates of the points can be rational. We omit the proof,
which has little to do with the Gale transform or convex polytopes.

Next, we declare some points negative, some positive, and some both
positive and negative, as in the right drawing, obtaining 12 points. These
points have a chance of being an affine Gale diagram of the vertex set of
an 8-dimensional convex polytope, since condition (ii) in Proposition 5.6.4
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is satisfied. How do we construct such a polytope? For g; = (z;,v;), we put
gi = (tizs, tiyi, t;) € R3, choosing t; > 0 for positive g; and t; < 0 for negative
ti, in such a way that Zzlil g; = 0. Then the Gale transform of g is the vertex
set of the desired convex polytope P (see Observation 5.6.1(ii) and (iii)).

Let P’ be some convex polytope with an isomorphic face lattice and let
(g’,0") be an affine Gale diagram of its vertex set a’. We have, for exam-
ple, g7 = g1o because {a;: i # 7,10} form a facet of P’, and similarly for
the other point coincidences. The triple g1, g5, 95 (where g is positive) is
collinear, because {ai: 7 # 1,8,12} is a facet. In this way, we see that the
point coincidences and collinearities are preserved, and so no affine Gale dia-
gram of P’ can have all coordinates rational. At the same time, by checking
the definition, we see that a point sequence with rational coordinates has at
least one affine Gale diagram with rational coordinates. Thus, P cannot be
realized with rational coordinates.

Bibliography and remarks. Gale diagrams and the Gale transform
emerged from the work of Gale [Gal56] and were further developed
by Perles, as is documented in [Grii67] (also see, e.g., [MS71]). Our
exposition essentially follows Ziegler’s book [Zie94] (his treatment is
combined with an introduction to oriented matroids). We aim at con-
creteness, and so, for example, the Gale transform is defined using the
orthogonal complement, although it might be mathematically more
elegant to work with the annihilator in the dual space (R™)*, and so
on. The construction of an irrational 8-polytope is due to Perles.

In Section 11.3 (Exercise 6) we mention an interpretation of the
h-vector of a simplicial convex polytope via the Gale transform. Using
this correspondence, Wagner and Welzl [WWO01] found an interesting
continuous analogue of the upper bound theorem, which speaks about
probability distributions in R%. For other recent applications of a sim-
ilar correspondence see the notes to Section 11.3.

Exercises

1. Let B be a kxn matrix of rank k& < n. Check that for any k x n matrix B’
whose rows generate the same vector space as the rows of B, there exists
a nonsingular k x k matrix T with B’ = T'B. Infer that if § = (g1,...,n)
is a Gale transform of a, then any other Gale transform of a has the form
(Tg1,TG2,...,Tgn) for a nonsingular square matrix T'.

2. Let a be a sequence of d+1 affinely independent points in R¢. What is
the Gale transform of a, and what are AffVal(a) and AffDep(a)?

3. Let g be a Gale transform of the vertex set of a convex polytope P C R¢,
and let h be obtained from § by appending the zero vector. Check that
h is again a Gale transform of a convex independent set. What is the
relation of this set to P?
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4. Using affine Gale diagrams, count the number of classes of combinatorial
equivalence of d-dimensional convex polytopes with d+2 vertices. How
many of them are simple, and how many simplicial?

5. Verify the characterization in Observation 5.6.1(ii) of sequences § in
R"~ 9! that are Gale transforms of some a, and check that if the Gale
transform is applied twice to such g, we obtain g up to linear isomor-
phism.

6. Let a = (a1,...,a,) be a point sequence in R¢ whose affine hull is all of
RY, and let P = conv{ay,...,a,}.

Given AffVal(a), explain how we can determine which of the a; are the
vertices of P and how we reconstruct the face lattice of P. [2]
7. Let @ be a sequence of n vectors in R4+! that spans R4+!,
(a) Find dim LinVal(@) and dim LinDep(a). (2]
(b) Check that LinVal(a@) is the orthogonal complement of LinDep(a). [2]
8. Prove Lemma 5.6.2.
9. Verify Corollary 5.6.3.

5.7 Voronoi Diagrams

Consider a finite set P C R%. For each point p € P, we define a region reg(p),
which is the “sphere of influence” of the point p: It consists of the points
z € R? for which p is the closest point among the points of P. Formally,

reg(p) = {z € R%: dist(z, p) < dist(z, q) for all ¢ € P},

where dist(z,y) denotes the Euclidean distance of the points z and y. The
Voronoi diagram of P is the set of all regions reg(p) for p € P. (More precisely,
it is the cell complex induced by these regions; that is, every intersection of
a subset of the regions is a face of the Voronoi diagram.) Here an example of
the Voronoi diagram of a point set in the plane:

(Of course, the Voronoi diagram is clipped by a rectangle so that it fits into a
finite page.) The points of P are traditionally called the sites in the context
of Voronoi diagrams.
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5.7.1 Observation. Each region reg(p) is a convex polyhedron with at most
|P|—1 facets.

Indeed,
reg(p) = ﬂ {z: dist(z, p) < dist(z, ¢)}
g€P\{p}
is an intersection of |P| — 1 half-spaces. a

For d = 2, a Voronoi diagram of n points is a subdivision of the plane
into n convex polygons (some of them are unbounded). It can be regarded as
a drawing of a planar graph (with one vertex at the infinity, say), and hence
it has a linear combinatorial complexity: n regions, O(n) vertices, and O(n)
edges.

In the literature the Voronoi diagram also appears under various other
names, such as the Dirichlet tessellation.

Examples of applications. Voronoi diagrams have been reinvented and
used in various branches of science. Sometimes the connections are surprising.
For instance, in archaeology, Voronoi diagrams help study cultural influences.
Here we mention a few applications, mostly algorithmic.

e (“Post office problem” or nearest neighbor searching) Given a point set
P in the plane, we want to construct a data structure that finds the point
of P nearest to a given query point x as quickly as possible. This prob-
lem arises directly in some practical situations or, more significantly, as
a subroutine in more complicated problems. The query can be answered
by determining the region of the Voronoi diagram of P containing x. For
this problem (point location in a subdivision of the plane), efficient data
structures are known; see, e.g., the book [dBvKOS97] or other introduc-
tory texts on computational geometry.

¢ (Robot motion planning) Consider a disk-shaped robot in the plane. It
should pass among a set P of point obstacles, getting from a given start
position to a given target position and touching none of the obstacles.

If such a passage is possible at all, the robot can always walk along
the edges of the Voronoi diagram of P, except for the initial and final
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segments of the tour. This allows one to reduce the robot motion problem
to a graph search problem: We define a subgraph of the Voronoi diagram
consisting of the edges that are passable for the robot.

e (A nice triangulation: the Delaunay triangulation) Let P C R? be a finite
point set. In many applications one needs to construct a triangulation of
P (that is, to subdivide conv(P) into triangles with vertices at the points
of P) in such a way that the triangles are not too skinny. Of course, for
some sets, some skinny triangles are necessary, but we want to avoid
them as much as possible. One particular triangulation that is usually
very good, and provably optimal with respect to several natural criteria,
is obtained as the dual graph to the Voronoi diagram of P. Two points
of P are connected by an edge if and only if their Voronoi regions share
an edge.

If no 4 points of P lie on a common circle then this indeed defines a
triangulation, called the Delaunay triangulation® of P; see Exercise 5.
The definition extends to points sets in R? in a straightforward manner.
e (Interpolation) Suppose that f: R? — R is some smooth function whose
values are known to us only at the points of a finite set P C R2. We
would like to interpolate f over the whole polygon conv(P). Of course,
we cannot really tell what f looks like outside P, but still we want a
reasonable interpolation rule that provides a nice smooth function with
the given values at P. Multidimensional interpolation is an extensive
semiempirical discipline, which we do not seriously consider here; we
explain only one elegant method based on Voronoi diagrams. To compute
the interpolated value at a point z € conv(P), we construct the Voronoi
diagram of P, and we overlay it with the Voronoi diagram of P U {z}.

3 Being a transcription from Russian, the spelling of Delaunay’s name varies in
the literature. For example, in crystallography literature he is usually spelled
“Delone.”
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The region of the new point z cuts off portions of the regions of some of
the old points. Let w, be the area of the part of reg(p) in the Voronoi
diagram of P that belongs to reg(x) after inserting z. The interpolated

value f(z) is
flz) =Y =2

pEP qup wq

f(p).

An analogous method can be used in higher dimensions, too.

Relation of Voronoi diagrams to convex polyhedra. We now show that
Voronoi diagrams in R® correspond to certain convex polyhedra in R4+,
First we define the unit paraboloid in R4+1:

U={zeR"™ gy =22 + 22+ +23}.

For d =1, U is a parabola in the plane.

In the sequel, let us imagine the space R? as the hyperplane 4,1 = 0 in
R4+1. For a point p = (p1,...,pa) € RY, let e(p) denote the hyperplane in
R with equation

Tar1 = 2171 + 2pa%2 + -+ - + 2paTy — PT — P35 — -+ — P2

Geometrically, e(p) is the hyperplane tangent to the paraboloid U at the point
u(p) = (p1,p2,--.,Pd,P? + -+ + p3) lying vertically above p. It is perhaps
easier to remember this geometric definition of e(p) and derive its equation
by differentiation when needed. On the other hand, in the forthcoming proof
we start out from the equation of e(p), and as a by-product, we will see that
e(p) is the tangent to U at u(p) as claimed.

5.7.2 Proposition. Let p,z € R® be points and let u(x) be the point of U
vertically above x. Then u(z) lies above the hyperplane e(p) or on it, and the
vertical distance of u(z) to e(p) is 62, where § = dist(z, p).

Zg11 =0

Proof. We just substitute into the equations of U and of e(p). The z441-
coordinate of u(z) is 3 + - -- + z2, while the z4,;-coordinate of the point
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of e(p) above z is 2p1z1 + -+ + 2pazq — p? — --- — p2. The difference is
(z1=p1)® + - + (24 — pa)® = 62 m

Let £(p) denote the half-space lying above the hyperplane e(p). Consider
an n-point set P C RY. By Proposition 5.7.2, x € reg(p) holds if and only
if e(p) is vertically closest to U at z among all e(q), ¢ € P. Here is what we
have derived:

5.7.3 Corollary. The Voronoi diagram of P is the vertical projection of the
facets of the polyhedron (), p €(p) onto the hyperplane z441 = 0. O

Here is an illustration for a planar Voronoi diagram:

5.7.4 Corollary. The maximum total number of faces of all regions of the
Voronoi diagram of an n-point set in R% is O(nl4/21),

Proof. We know that the combinatorial complexity of the Voronoi diagram
equals the combinatorial complexity of an H-polyhedron with at most n
facets in R4+, By intersecting this H-polyhedron with a large simplex we
can obtain a bounded polytope with at most n+d+2 facets, and we have not
decreased the number of faces compared to the original H-polyhedron. Then
the dual version of the asymptotic upper bound theorem (Theorem 5.5.2)
implies that the total number of faces is O(n/%/21), since |(d+1)/2] = [d/2].

O

The convex polyhedra in R*t! obtained from Voronoi diagrams in R¢
by the above construction are rather special, and so a lower bound for the
combinatorial complexity of convex polytopes cannot be automatically trans-
ferred to Voronoi diagrams. But it turns out that the number of vertices of a
Voronoi diagram on n points in R? can really be of order n[%/?1 (Exercise 2).

Let us remark that the trick used for transforming Voronoi diagrams
to convex polyhedra is an example of a more general technique, called lin-
earization or Veronese mapping, which will be discussed a little more in
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Section 10.3. This method sometimes allows us to convert a problem about
algebraic curves or surfaces of bounded degree to a problem about k-flats in
a suitable higher-dimensional space.

The farthest-point Voronoi diagram. The projection of the H-poly-
hedron ﬂpe p E(p)°P, where v°P denotes the half-space opposite to v, forms
the farthest-neighbor Voronoi diagram, in which each point p € P is assigned
the regions of points for which it is the farthest point. It can be shown that
all nonempty regions of this diagram are unbounded and they correspond
precisely to the points appearing on the surface of conv(P).

Bibliography and remarks. The concept of Voronoi diagrams in-
dependently emerged in various fields of science, for example as the
medial axis transform in biology and physiology, the Wigner-Seitz
zones in chemistry and physics, the domains of action in crystallo-
graphy, and the Thiessen polygons in meteorology and geography. Ap-
parently, the earliest documented reference to Voronoi diagrams is a
picture in the famous Principia Philosopiae by Descartes from 1644
(that picture actually seems to show a power diagram, a generalization
of the Voronoi diagram to sites with different strengths of influence).
Mathematically, Voronoi diagrams were first introduced by Dirichlet
[Dir50] and by Voronoi [Vor08] for the investigation of quadratic forms.
For more information on the interesting history and a surprising va-
riety of applications we refer to several surveys: Aurenhammer and
Klein [AKO00], Aurenhammer [Aur91], and the book Okabe, Boots,
and Sugihara [OBS92]. Every computational geometry textbook also
has at least a chapter devoted to Voronoi diagrams, and most papers
on this subject appear in computational geometry.

The Delaunay triangulation (or, more correctly, the Delaunay tes-
sellation, since it need not be a triangulation in general) was first
considered by Voronoi as the dual to the Voronoi diagram, and later
by Delaunay [Del34] with the definition given in Exercise 5(b) below.
The Delaunay triangulation of a planar point set P optimizes sev-
eral quality measures among all triangulations of P: It maximizes the
minimum angle occurring in any triangle, minimizes the maximum
circumradius of the triangles, maximizes the sum of inradii, and so
on (see [AKQO] for references). Such optimality properties can usually
be proved by local flipping. We consider an arbitrary triangulation 7
of a given finite P C R? (say with no 4 cocircular points). If there
is a 4-point @ C P such that conv(Q) is a quadrilateral triangulated
by two triangles of 7 but in such a way that these two triangles are
not the Delaunay triangulation of ), then the diagonal of @ can be
flipped:
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not locally }())clally
¥ Delaunay claunay

It can be shown that every sequence of such local flips is finite and
finishes with the Delaunay triangulation of P (Exercise 7). This pro-
cedure has an analogue in higher dimensions, where it gives a simple
and practically successful algorithm for computing Delaunay trian-
gulations (and Voronoi diagrams); see, e.g., Edelsbrunner and Shah
[ES96].

Generalizations of Voronoi diagrams. The example in the text with
robot motion planning, as well as other applications, motivates var-
ious notions of generalized Voronoi diagrams. First, instead of the
Euclidean distance, one can take various other distance functions, say
the £p-metrics. Second, instead of the spheres of influence of points,
we can consider the spheres of influence of other sites, such as dis-
joint polygons (this is what we get if we have a circular robot moving
amidst polygonal obstacles). We do not attempt to survey the numer-
ous results concerning such generalizations, again referring to [AK00).
Results on the combinatorial complexity of Voronoi diagrams under
non-Euclidean metrics and/or for nonpoint sites will be mentioned in
the notes to Section 7.7.

In another, very general, approach to Voronoi diagrams, one takes
the Voronoi diagram induced by two objects as a primitive notion. So
for every two objects we are given a partition of space into two regions
separated by a bisector, and Voronoi diagrams for more than two ob-
jects are built using the 2-partitions for all pairs. If one postulates a
few geometric properties of the bisectors, one gets a reasonable theory
of Voronoi diagrams (the so-called abstract Voronoi diagrams), includ-
ing efficient algorithms. So, for example, we do not even need a notion
of distance at this level of generality. Abstract Voronoi diagrams (in
the plane) were suggested by Klein [Kle89].

A geometrically significant generalization of the Euclidean Voronoi
diagram is the power diagram: Each point p € P is assigned a real
weight w(p), and reg(P) = {z € R%: [|e — pll? — w(p) < |lz — ql|? -
w(q) for all ¢ € P}. While Voronoi diagrams in R? are projections
of certain convex polyhedra in R4*t1, the projection into R? of every
intersection of finitely many nonvertical upper half-spaces in R4t is
a power diagram. Moreover, a hyperplane section of a power diagram
is again a power diagram. Several other generalized Voronoi diagrams
in R? (for example, with multiplicative weights of the sites) can be
obtained by intersecting a suitable power diagram in R%*! with a
simple surface and projecting into R¢, which yields fast algorithms;
see Aurenhammer and Imai [AI88].
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Another generalization are higher-order Voronoi diagrams. The
kth-order Voronoi diagram of a finite point set P assigns to each k-
point T C P the region reg(T) consisting of all z € R? for which the
points of T" are the k nearest neighbors of x in P. The usual Voronoi
diagram arises for £ = 1, and the farthest-point Voronoi diagram for
k = |P| — 1. The kth-order Voronoi diagram of P C R? is the projec-
tion of the kth level facets in the arrangement of the hyperplanes e(p),
p € P (see Chapter 6 for these notions). Lee [Lee82] proved that the
kth-order Voronoi diagram of n points in the plane has combinato-
rial complexity O(k(n—k)); this is better than the maximum possible
complexity of level k in an arrangement of n arbitrary planes in R3.

Applications of Voronoi diagrams are too numerous to be listed here,
and we add only a few remarks to those already mentioned in the
text. Using point location in Voronoi diagrams as in the post office
problem, several basic computational problems in the plane can be
solved efficiently, such as finding the closest pair in a point set or the
largest disk contained in a given polygon and not containing any of
the given points.

Besides providing good triangulations, the Delaunay triangulation
contains several other interesting graphs as subgraphs, such as a min-
imum spanning tree of a given point set (Exercise 6). In the plane,
this leads to an O(nlogn) algorithm for the minimum spanning tree.
In R3, subcomplexes of the Delaunay triangulation, the so-called o-
complexes, have been successfully used in molecular modeling (see,
e.g., Edelsbrunner [Ede98]); they allow one to quickly answer ques-
tions such as, “how many tunnels and voids are there in the given
molecule?”

Robot motion planning using Voronoi diagrams (or, more gener-
ally, the retraction approach, where the whole free space for the robot
is replaced by some suitable low-dimensional skeleton) was first con-
sidered by O’Dﬁnlaig and Yap [OY85]. Algorithmic motion planning
is an extensive discipline with innumerable variants of the problem.
For a brief introduction from the computational-geometric point of
view see, e.g., [dBvKOS97]; among several monographs we mention
Laumond and Overmars [LO96] and Latombe [Lat91].

The spatial interpolation of functions using Voronoi diagrams was
considered by Sibson [Sib81].

Exercises

1. Prove that the region reg(p) of a point p in the Voronoi diagram of a
finite point set P C R? is unbounded if and only if p lies on the surface
of conv(P). [2]
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. (a) Show that the Voronoi diagram of the 2n-point set {(£,0,0): i =
1,2,...,n}U{(0,1,2): j = 1,2,...,n} in R? has Q(n?) vertices. (&

(b) Let d = 2k+1 be odd, let e1,...,eq be vectors of the standard
thonormal basis in R?, and let ey stand for the zero vector. For
=0,1,...,kand j = 1,2,...,n, let p;; = ez + legH_l Prove that

for every choice of jo,J1,.--,Jk € {1 2,...,n}, there is a point in R¢ for

which the nearest points among the p; ; are exactly po jo, P1,j15- -+ » Pk, ji-

Conclude that the Voronoi diagram of the p;; has combinatorial com-

plexity Q(n*) = Q(n/4/2). &

. (Voronoi diagram of flats) Let £1,...,64_1 be small distinct positive

numbers and for 7 = 1,2,...,d-1 and j = 1,2,...,n, let F;; be the

(d—2)-flat {x € R%: z; = j,24 = ;}. For every choice of jy, jo,. .., j4—1 €

{1,2,...,n}, find a point in R? for which the nearest sites (under the

Euclidean distance) among the F; ; are exactly F1 j,, F2 45, ..., Fa—1,j._,-

Conclude that the Voronoi diagram of the F;; has combinatorial com-

plexity Q(nd-1).

This example is from Aronov [Aro00].

. For a finite point set in the plane, define the farthest-point Voronoi dia-

gram as indicated in the text, verify the claimed correspondence with a

convex polyhedron in R3, and prove that all nonempty regions are un-

bounded.

. (Delaunay triangulation) Let P be a finite point set in the plane with no

3 points collinear and no 4 points cocircular.

(a) Prove that the dual graph of the Voronoi diagram of P, where two

points p, ¢ € P are connected by a straight edge if and only if the bound-

aries of reg(p) and reg(q) share a segment, is a plane graph where the
outer face is the complement of conv(P) and every inner face is a trian-
gle.

(b) Define a graph on P as follows: Two points p and q are connected

by an edge if and only if there exists a circular disk with both p and ¢

on the boundary and with no point of P in its interior. Prove that this
graph is the same as in (a), and so we have an alternative definition of

the Delaunay triangulation. [2]

. (Delaunay triangulation and minimum spanning tree) Let P C R? be a

finite point set with no 3 points collinear and no 4 cocircular. Let T be a

spanning tree of minimum total edge length in the complete graph with

the vertex set P, where the length of an edge is just its Euclidean length.

Prove that all edges of T are also edges of the Delaunay triangulation of

P.

. (Delaunay triangulation by local flipping) Let P C R? be an n-point set

with no 3 points collinear and no 4 cocircular. Let 7 be an arbitrary

triangulation of conv(P). Suppose that triangulations 77,7z, ... are ob-
tained from 7 by successive local flips as described in the notes above (in
each step, we select a convex quadrilateral in the current triangulation
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10.

11.

partitioned into two triangles in a way that is not the Delaunay triangu-
lation of the four vertices and we flip the diagonal of the quadrilateral).
(a) Prove that the sequence of triangulations is always finite (and give
as good an estimate for its maximum length as you can). (3]

(b) Show that if no local flipping is possible, then the current triangula-
tion is the Delaunay triangulation of P. [4]

Consider a finite set of disjoint segments in the plane. What types of
curves may bound the regions in their Voronoi diagram? The region of a
given segment is the set of points for which this segment is a closest one.
(2]

Let A and B be two finite point sets in the plane. Choose ag € A arbi-
trarily. Having defined ay, ..., a; and b1,...,b;—1, define b;1; as a point
of B\ {b1,...,b;} nearest to a;, and a;;; as a point of A\ {ao,...,a;}
nearest to b; 1. Continue until one of the sets becomes empty. Prove that
at least one of the pairs (a;, b;+1), (bi+1,ai+1),%2=0,1,2,..., realizes the
shortest distance between a point of A and a point of B. (This was used
by Eppstein [Epp95] in some dynamical geometric algorithms.)

(a) Let C be any circle in the plane z3 = 0 (in R3). Show that there exists
a half-space h such that C is the vertical projection of the set AN U onto
z3 = 0, where U = {z € R3: z3 = % + 2} is the unit paraboloid.
(b) Consider n arbitrary circular disks K7, ..., K, in the plane. Show that
there exist only O(n) intersections of their boundaries that lie inside no
other K; (this means that the boundary of the union of the K consists
of O(n) circular arcs). [2]

Define a “spherical polytope” as an intersection of n balls in R3 (such
an object has facets, edges, and vertices similar to an ordinary convex
polytope).

(a) Show that any such spherical polytope in R* has O(n?) faces. You
may assume that the spheres are in general position. [<]

(b) Find an example of an intersection of n balls having quadratically
many vertices.

(c) Show that the intersection of n unit balls has O(n) complexity only.
(<l
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Number of Faces in
Arrangements

Arrangements of lines in the plane and their higher-dimensional generaliza-
tion, arrangements of hyperplanes in R?, are a basic geometric structure
whose significance is comparable to that of convex polytopes. In fact, ar-
rangements and convex polytopes are quite closely related: A cell in a hyper-
plane arrangement is a convex polyhedron, and conversely, each hyperplane
arrangement in RY corresponds canonically to a convex polytope in R4+!
of a special type, the so-called zonotope. But as is often the case with dif-
ferent representations of the same mathematical structure, convex polytopes
and arrangements of hyperplanes emphasize different aspects of the structure
and lead to different questions.

Whenever we have a problem involving a finite point set in R¢ and parti-
tions of the set by hyperplanes, we can use geometric duality, and we obtain
a problem concerning a hyperplane arrangement. Arrangements appear in
many other contexts as well; for example, some models of molecules give rise
to arrangements of spheres in R3, and automatic planning of the motion of
a robot among obstacles involves, implicitly or explicitly, arrangements of
surfaces in higher-dimensional spaces.

Arrangements of hyperplanes have been investigated for a long time from
various points of view. In several classical areas of mathematics one is mainly
interested in topological and algebraic properties of the whole arrangement.
Hyperplane arrangements are related to such marvelous objects as Lie alge-
bras, root systems, and Coxeter groups. In the theory of oriented matroids
one studies the systems of sign vectors associated to hyperplane arrangements
in an abstract axiomatic setting.

We are going to concentrate on estimating the combinatorial complexity
(number of faces) in arrangements and neglect all the other directions.
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General probabilistic techniques for bounding the complexity of geomet-
ric configurations constitute the second main theme of this chapter. These
methods have been successful in attacking many more problems than can
even be mentioned in this book. We begin with a simple but powerful sam-
pling argument in Section 6.3 (somewhat resembling the proof of the crossing
number theorem), add more tricks in Section 6.4, and finish with quite a so-
phisticated method, demonstrated on a construction of optimal %-cuttings,
in Section 6.5.

6.1 Arrangements of Hyperplanes

We recall from Section 4.1 that for a finite set H of lines in the plane, the
arrangement of H is a partition of the plane into relatively open convex
subsets, the faces of the arrangement. In this particular case, the faces are
the vertices (O-faces), the edges (1-faces), and the cells (2-faces).!

An arrangement of a finite set H of hyperplanes in R? is again a partition
of R? into relatively open convex faces. Their dimensions are 0 through d. As
in the plane, the 0-faces are called vertices, the 1-faces edges, and the d-faces
cells. Sometimes the (d—1)-faces are referred to as facets.

The cells are the connected components of R%\ | J H. To obtain the facets,
we consider the (d—1)-dimensional arrangements induced in the hyperplanes
of H by their intersections with the other hyperplanes. That is, for each
h € H we take the connected components of A \ Uyc . pizp b'- To obtain
k-faces, we consider every possible k-flat L defined as the intersection of some
d—k hyperplanes of H. The k-faces of the arrangement lying within L are
the connected components of L\ |J(H \ Hr), where Hp = {h € H: L C h}.

Remark on sign vectors. A face of the arrangement of H can be described
by its sign vector. First we need to fix the orientation of each hyperplane
h € H. Each h € H partitions R? into three regions: A itself and the two
open half-spaces determined by it. We choose one of these open half-spaces as
positive and denote it by h®, and we let the other one be negative, denoted
by h°.

Let F be a face of the arrangement of H. We define the sign vector of
F (with respect to the chosen orientations of the hyperplanes) as ¢(F) =
(on: h € H), where

+1 if FCh®,
on={0 ifFCh,
-1 if FCh®.

The sign vector determines the face F', since we have F' = [,y h°", where
h® = h, k! = h®, and h~! = h®. The following drawing shows the sign

1 This terminology is not unified in the literature. What we call faces are sometimes
referred to as cells (0-cells, 1-cells, and 2-cells).
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vectors of the marked faces in a line arrangement. Only the signs are shown,
and the positive half-planes lie above their lines.

A ~ 004

hy °

Of course, not all possible sign vectors correspond to nonempty faces. For n
lines, there are 3" sign vectors but only O(n?) faces, as we will derive below.

Counting the cells in a hyperplane arrangement. We want to count
the maximum number of faces in an arrangement of n hyperplanes in R%. As
we will see, this is much simpler than the similar task for convex polytopes!

If a set H of hyperplanes is in general position, which means that the
intersection of every k hyperplanes is (d—k)-dimensional, k£ = 2,3,...,d+1,
the arrangement of H is called simple. For |H| > d+1 it suffices to require that
every d hyperplanes intersect at a single point and no d+1 have a common
point.

Every d-tuple of hyperplanes in a simple arrangement determines exactly
one vertex, and so a simple arrangement of n hyperplanes has exactly (Z)
vertices. We now calculate the number of cells; it turns out that the order of
magnitude is also n? for d fixed.

6.1.1 Proposition. The number of cells (d-faces) in a simple arrangement
of n hyperplanes in R% equals

B4(n) = (g) + (Tf) 4ot (Z) (6.1)

First proof. We proceed by induction on the dimension d and the number
of hyperplanes n. For d = 1 we have a line and n points in it. These divide the
line into n+1 one-dimensional pieces, and formula (6.1) holds. (The formula
is also correct for n = 0 and all d > 1, since the whole space, with no
hyperplanes, is a single cell.)

Now suppose that we are in dimension d, we have n—1 hyperplanes, and
we insert another one. Since we assume general position, the n—1 previous
hyperplanes divide the newly inserted hyperplane h into ®;_;(n—1) cells by
the inductive hypothesis. Each such (d—1)-dimensional cell within h parti-
tions one d-dimensional cell into exactly two new cells. The total increase in
the number of cells caused by inserting h is thus ®4_;(n—1), and so

de(n) = <I>d(n - ].) + @d_l(n — ].)
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Together with the initial conditions (for d = 1 and for n = 0), this recurrence
determines all values of ®, and so it remains to check that formula (6.1)
satisfies the recurrence. We have

Qy(n—1) + Py4_1(n—1) = (no_l) + [("Il) + (no_l)]
)+ ]+ [ + (D)
= () + () @)+ (D) = Baln).
0

Second proof. This proof looks simpler, but a complete rigorous presenta-
tion is perhaps somewhat more demanding.

We proceed by induction on d, the case d = 0 being trivial. Let H be a set
of n hyperplanes in R? in general position; in particular, we assume that no
hyperplane of H is horizontal and no two vertices of the arrangement have
the same vertical level (z4-coordinate).

Let g be an auxiliary horizontal hyperplane lying below all the vertices.
A cell of the arrangement of H either is bounded from below, and in this
case it has a unique lowest vertex, or is not bounded from below, and then it
intersects g. The number of cells of the former type is the same as the number
of vertices, which is (Z) The cells of the latter type correspond to the cells
in the (d—1)-dimensional arrangement induced within g by the hyperplanes
of H, and their number is thus ®;_,(n). m|

What is the number of faces of the intermediate dimensions 1,2,...,d—1
in a simple arrangement of n hyperplanes? This is not difficult to calculate
using Proposition 6.1.1 (Exercise 1); the main conclusion is that the total
number of faces is O(n?) for a fixed d.

What about nonsimple arrangements? It turns out that a simple arrange-
ment of n hyperplanes maximizes the number of faces of each dimension
among arrangements of n hyperplanes. This can be verified by a perturbation
argument, which is considerably simpler than the one for convex polytopes
(Lemma 5.5.4), and which we omit.

Bibliography and remarks. The paper of Steiner [Ste26] from 1826
gives formulas for the number of faces in arrangements of lines, circles,
planes, and spheres. Of course, his results have been extended in many
ways since then (see, e.g., Zaslavsky [Zas75]). An early monograph on
arrangements is Grinbaum [Grii72].

The questions considered in the subsequent sections, such as the
combinatorial complexity of certain parts of arrangements, have been
studied mainly in the last twenty years or so. A recent survey dis-
cussing a large part of the material of this chapter and providing many
more facts and references is Agarwal and Sharir [AS00a).



6.1 Arrangements of Hyperplanes 129

The algebraic and topological investigation of hyperplane arrange-
ments (both in real and complex spaces) is reflected in the book Orlik
and Terao [OT91]. Let us remark that in these areas, one usually
considers central arrangements of hyperplanes, where all the hyper-
planes pass through the origin (and so they are linear subspaces of
the underlying vector space). If such a central arrangement in R® is
intersected with a generic hyperplane not passing through the origin,
one obtains a (d—1)-dimensional “affine” arrangement such as those
considered by us. The correspondence is bijective, and so these two
views of arrangements are not very different, but for many results, the
formulation with central arrangements is more elegant.

The correspondence of arrangements to zonotopes is thoroughly
explained in Ziegler [Zie94].

Exercises

1. (a) Count the number of faces of dimensions 1 and 2 for a simple ar-
rangement of n planes in R3.

(b) Express the number of k-faces in a simple arrangement of n hyper-
planes in R4,

2. Prove that the number of unbounded cells in an arrangement of n hyper-
planes in R% is O(n?~!) (for a fixed d). [

3. (a) Check that an arrangement of d or fewer hyperplanes in R? has no
bounded cell. 2]

(b) Prove that an arrangement of d+1 hyperplanes in general position in
R? has exactly one bounded cell.

4. How many d-dimensional cells are there in the arrangement of the (g)
hyperplanes in R? with equations {z; = z;}, where 1 < i < j < d? [&]

5. How many d-dimensional cells are there in the arrangement of the hy-
perplanes in R? with the equations {z; — z; = 0}, {z; — z; = 1}, and
{zi —z; =—1}, where 1 <i < j < d?[E

6. (Flags in arrangements)

(a) Let H be a set of n lines in the plane, and let V' be the set of vertices
of their arrangement. Prove that the number of pairs (v, h) with v € V,
h € H, and v € h, i.e., the number of incidences I(V, H), is bounded by
O(n?). (Note that this is trivially true for simple arrangements.) [2]

(b) Prove that the maximum number of d-tuples (Fp, F1,...,Fy) in an
arrangement of n hyperplanes in R¢, where F; is an i-dimensional face
and F;_; is contained in the closure of F;, is O(n?) (d fixed). Such d-
tuples are sometimes called flags of the arrangement.

7. Let P = {p1,...,pn} be a point set in the plane. Let us say that points
x,y have the same view of P if the points of P are visible in the same
cyclic order from them. If rotating light rays emanate from z and from y,
the points of P are lit in the same order by these rays. We assume that
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neither z nor y is in P and that neither of them can see two points of P
in occlusion.

(a) Show that the maximum possible number of points with mutually
distinct views of P is O(n?). [2]

(b) Show that the bound in (a) cannot be improved in general.

6.2 Arrangements of Other Geometric Objects

Arrangements can be defined not only for hyperplanes but also for other
geometric objects. For example, what is the arrangement of a finite set H of
segments in the plane? As in the case of lines, it is a decomposition of the
plane into faces of dimension 0,1,2: the vertices, the edges, and the cells,
respectively. The vertices are the intersections of the segments, the edges are
the portions of the segments after removing the vertices, and the cells (2-
faces) are the connected components of R? \ |J H. (Note that the endpoints
of the segments are not included among the vertices.) While the cells of line
arrangements are convex polygons, those in arrangements of segments can be
complicated regions, even with holes:

It is almost obvious that the total number of faces of the arrangement of n
segments is at most O(n?). What is the maximum number of edges on the
boundary of a single cell in such an arrangements? This seemingly innocuous
question is surprisingly difficult, and most of Chapter 7 revolves around it.
Let us now present the definition of the arrangement for arbitrary sets
Ay, Ay, ..., A, C R The arrangement is a subdivision of space into con-
nected pieces again called the faces. Each face is an inclusion-maximal con-
nected set that “crosses no boundary.” More precisely, first we define an
equivalence relation ~ on R?: We put  ~ y whenever z and y lie in the
same subcollection of the A;, that is, whenever {i: x € A;} = {i: y € A;}.
So for each I C {1,2,...,n}, we have one possible equivalence class, namely
{z € R z € A; & i € I} (this is like a field in the Venn diagram of the A4;).
But in typical geometric situations, most of the classes are empty. The faces
of the arrangement of the A; are the connected components of the equivalence
classes. The reader is invited to check that for both hyperplane arrangements
and arrangements of segments this definition coincides with the earlier ones.

Arrangements of algebraic surfaces. Quite often one needs to con-
sider arrangements of the zero sets of polynomials. Let py (21, Z2,...,Z4),- - -,
Pn(21,Z2,...,24) be polynomials with real coefficients in d variables, and let
Z; = {z € R% p;(z) = 0} be the zero set of p;. Let D denote the maximum
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of the degrees of the p;; when speaking of the arrangement of Z,,...,Z,,
one usually assumes that D is bounded by some (small) constant. Without
a bound on D, even a single Z; can have arbitrarily many connected compo-
nents.

In many cases, the Z; are algebraic surfaces, such as ellipsoids, paraboloids,
etc., but since we are in the real domain, sometimes they need not look like
surfaces at all. For example, the zero set of the polynomial p(z1,x2) = z3+x2
consists of the single point (0, 0). Although it is sometimes convenient to think
of the Z; as surfaces, the results stated below apply to zero sets of arbitrary
polynomials of bounded degree.

It is known that if both d and D are considered as constants, the maximum
number of faces in the arrangement of Zy, Z,,...,Z, as above is at most
O(n?). This is one of the most useful results about arrangements, with many
surprising applications (a few are outlined below and in the exercises). In
the literature one often finds a (formally weaker) version dealing with sign
patterns of the polynomials p;. A vector o € {—1,0,+1}" is called a sign
pattern of py, pa, ..., P, if there exists an x € R? such that the sign of p;(x)
is 0y, for all ¢ = 1,2,...,n. Trivially, the number of sign patterns for any n
polynomials is at most 3". For d = 1, it is easy to see that the actual number
of sign patterns is much smaller, namely at most 2nD + 1 (Exercise 1). It is
not so easy to prove, but still true, that there are at most C(d, D) - n? sign
patterns in dimension d. This result is generally called the Milnor-Thom
theorem (and it was apparently first proved by Oleinik and Petrovskii, which
fits the usual pattern in the history of mathematics). Here is a more precise
(and more recent) version of this result, where the dependence on D and d
is specified quite precisely.

6.2.1 Theorem (Number of sign patterns). Let pi,ps,...,p, be d-
variate real polynomials of degree at most D. The number of faces in the
arrangement of their zero sets Z,,Zs, ..., Z, C R%, and consequently the
number of sign patterns of py, . .., py, as well is at most 2(2D)? Y% 2 (*=+h).
For n > d > 2, this expression is bounded by

50Dn\*
(57)

Proofs of these results are not included here because they would require
at least one more chapter. They belong to the field of real algebraic geometry.
The classical, deep, and extremely extensive field of algebraic geometry mostly
studies algebraic varieties over algebraically closed fields, such as the complex
numbers (and the questions of combinatorial complexity in our sense are
not among its main interests). Real algebraic geometry investigates algebraic
varieties and related concepts over the real numbers or other real-closed fields;

the presence of ordering and the missing roots of polynomials makes its flavor
distinctly different.
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Arrangements of pseudolines. An arrangement of pseudolines is a nat-
ural generalization of an arrangement of lines. Lines are replaced by curves,
but we insist that these curves behave, in a suitable sense, like lines: For ex-
ample, no two of them intersect more than once. This kind of generalization
is quite different from, say, arrangements of planar algebraic curves, and so it
perhaps does not quite belong to the present section. But besides mentioning
pseudoline arrangements as a useful and interesting concept, we also need
them for a (typical) example of application of Theorem 6.2.1, and so we kill
two birds with one stone by discussing them here.

An (affine) arrangement of pseudolines can be defined as the arrangement
of a finite collection of curves in the plane that satisfy the following conditions:

(i) Each curve is z-monotone and unbounded in both directions; in other
words, it intersects each vertical line in exactly one point.

(ii) Every two of the curves intersect in exactly one point and they cross
at the intersection. (We do not permit “parallel” pseudolines, for they
would complicate the definition unnecessarily.)?

The curves are called pseudolines, but while “being a line” is an absolute no-
tion, “being a pseudoline” makes sense only with respect to a given collection
of curves.

Here is an example of a (simple) arrangement of 5 pseudolines:

5

=N >

Much of what we have proved for arrangements of lines is true for arrange-
ments of pseudolines as well. This holds for the maximum number of vertices,
edges, and cells, but also for more sophisticated results like the Szemerédi—
Trotter theorem on the maximum number of incidences of m points and n
lines; these results have proofs that do not use any properties of straight lines
not shared by pseudolines.

One might be tempted to say that pseudolines are curves that behave
topologically like lines, but as we will see below, in at least one sense this is

2 This “affine” definition is a little artificial, and we use it only because we do
not want to assume the reader’s familiarity with the topology of the projective
plane. In the literature one usually considers arrangements of pseudolines in
the projective plane, where the definition is very natural: Each pseudoline is a
closed curve whose removal does not disconnect the projective plane, and every
two pseudolines intersect exactly once (which already implies that they cross at
the intersection point). Moreover, one often adds the condition that the curves
do not form a single pencil; i.e., not all of them have a common point, since
otherwise, one would have to exclude the case of a pencil in the formulation of
many theorems. But here we are not going to study pseudoline arrangements in
any depth.
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profoundly wrong. The correct statement is that every two of them behave
topologically like two lines, but arrangements of pseudolines are more general
than arrangements of lines.

We should first point out that there is no problem with the “local” struc-
ture of the pseudolines, since each pseudoline arrangement can be redrawn
equivalently (in a sense defined precisely below) by polygonal lines, as a wiring
diagram:

=N W oDt

The difference between pseudoline arrangements and line arrangements is of
a more global nature.

The arrangement of 5 pseudolines drawn above can be realized by straight
lines:

s O

=N W

What is the meaning of “realization by straight lines”? To this end, we need
a suitable notion of equivalence of two arrangements of pseudolines. There
are several technically different possibilities; we again use an “affine” notion,
one that is very simple to state but not the most common. Let H be a col-
lection of n pseudolines. We number the pseudolines 1,2,...,n in the order
in which they appear on the left of the arrangement, say from the bottom
to the top. For each i, we write down the numbers of the other pseudolines
in the order they are encountered along the pseudoline i from left to right.
For a simple arrangement we obtain a permutation m; of {1,2,...,n}\ {¢}
for each i. For the arrangement in the pictures, we have m; = (2,3,5,4),
me = (1,5,4,3), m3 = (1,5,4,2), 7y = (5,1,3,2), and 75 = (4,1,3,2). For
a nonsimple arrangement, some of the m; are linear quasiorderings, meaning
that several consecutive numbers can be chunked together. We call two ar-
rangements affinely isomorphic if they yield the same my,...,7,, i.e., if each
pseudoline meets the others in the same (quasi)order as the corresponding
pseudoline in the other arrangement. Two affinely isomorphic pseudoline ar-
rangements can be converted one to another by a suitable homeomorphism
of the plane.3

3 The more usual notion of isomorphism of pseudoline arrangements is defined for
arrangements in the projective plane. The arrangement of H is isomorphic to the
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An arrangement of pseudolines is stretchable if it is affinely isomorphic to

an arrangement of straight lines.* It turns out that all arrangements of 8 or
fewer pseudolines are stretchable, but there exists a nonstretchable arrange-
ment of 9 pseudolines:

The proof of nonstretchability is based on the Pappus theorem in projective
geometry, which states that if 8 straight lines intersect as in the drawing, then
the points p, g, and r are collinear. By modifying this arrangement suitably,
one can obtain a simple nonstretchable arrangement of 9 pseudolines as well.

Next, we show that most of the simple pseudoline arrangements are non-

stretchable. The following construction shows that the number of igomor-
phism classes of simple arrangements of n pseudolines is at least 2("");

gm

g2
g1

D2
D1

hm
Ry
h1

n

We have m = %, and the lines hy,...,hmy and g3, ..., g form a regular grid.
Each of the about 2 pseudolines p; in the middle passes near Q(n) vertices of

-

arrangement of H’ if there exists a homeomorphism ¢ of the projective plane

onto itself such that each pseudoline h € H is mapped to a pseudoline ¢(h) €
H'. For affinely isomorphic arrangements in the affine plane, the corresponding
arrangements in the projective plane are isomorphic, but the isomorphism in the
projective plane also allows for mirror reflection and for “relocating the infinity.”
Combinatorially, the isomorphism in the projective plane can be described using

the (quasi)orderings m1,...,7, as well. Here the m; have to agree only up to
a possible reversal and cyclic shift for each 7, and also the numbering of the
pseudolines by 1,2,...,n is not canonical.

We also remark that two arrangements of lines are isomorphic if and only if
the dual point configurations have the same order type, up to a mirror reflection
of the whole configuration (order types are discussed in Section 9.3).

For isomorphism in the projective plane, one gets an equivalent notion of stretch-
ability.
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this grid, and for each such vertex it has a choice of going below it or above.
This gives 2%("") possibilities in total.

Now we use Theorem 6.2.1 to estimate the number of nonisomorphic sim-
ple arrangements of n straight lines. Let the lines be ¢y,...,£,, where ¢;
has the equation y = a;z + b; and a; > az > --+ > a,. The z-coordinate
of the intersection £; N ¢; is 2;:211 To determine the ordering m; of the in-
tersections along ¢;, it suffices to know the ordering of the z-coordinates of
these intersections, and this can be inferred from the signs of the polynomials
pijk(ai, bs, a5, b5, ag, b) = (b — bj)(ak — a;) — (b; — be)(a; — a;). So the num-
ber of nonisomorphic arrangements of n lines is no larger than the number
of possible sign patterns of the O(n3) polynomials p;x in the 2n variables
a1,b1,...,0n, by, and Theorem 6.2.1 yields the upper bound of 29(n1ogn) For
large n, this is a negligible fraction of the total number of simple pseudoline
arrangements. (Similar considerations apply to nonsimple arrangements as
well.)

The problem of deciding the stretchability of a given pseudoline arrange-
ment has been shown to be algorithmically difficult (at least NP-hard). One
can easily encounter this problem when thinking about line arrangements and
drawing pictures: What we draw by hand are really pseudolines, not lines,
and even with the help of a ruler it may be almost impossible to decide ex-
perimentally whether a given arrangement can really be drawn with straight
lines. But there are computational methods that can decide stretchability in
reasonable time at least for moderate numbers of lines.

Bibliography and remarks. A comprehensive account of real al-
gebraic geometry is Bochnak, Coste, and Roy [BCR98]. Among the
many available introductions to the “classical” algebraic geometry we
mention the lively book Cox, Little, and O’Shea [CLO92].

The original bounds on the number of sign patterns, less precise
than Theorem 6.2.1 but still implying the O(n?) bound for fixed d,
were given independently by Oleinik and Petrovskii [OP49], Milnor
[Mil64], and Thom [Tho65]. Warren [War68] proved that the number
of d-dimensional cells in the arrangement as in Theorem 6.2.1, and
consequently the number of sign patterns consisting of +1’s only, is
at most 2(2D)? Y% 2 (7). The extension to faces of all dimensions,
and to sign patterns including 0’s, was obtained by Pollack and Roy
[PRO3].

Sometimes we have polynomials in many variables, but we are in-
terested only in sign patterns attained at points that satisfy some
additional algebraic conditions. Such a situation is covered by a re-
sult of Basu, Pollack, and Roy [BPR96]: The number of sign patterns
attained by n polynomials of degree at most D on a k-dimensional
algebraic variety V' C R¢, where V can be defined by polynomials of
degree at most D, is at most (7)O(D)%.
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While bounding the number of sign patterns of multivariate poly-
nomials appears complicated, there is a beautiful short proof of an
almost tight bound on the number of zero patterns, due to Rényai,
Babai, and Ganapathy [RBGO1], which we now sketch (in the sim-
plest form, giving a slightly suboptimal result). A vector ¢ € {0,1}" is
a zero pattern of d-variate polynomials p, ..., p, with coefficients in a
field F if there exists an z = 2({) € F? with p;(z) = 0 exactly for the i
with ¢; = 0. We show that if all the p; have degree at most D, then the
number of zero patterns cannot exceed (D 'f;rd). For each zero pattern
¢, let g¢ be the polynomial [],. ¢:0Pi- We have degg; < Dn. Let us
consider the g; as elements of the vector space L of all d-variate poly-
nomials over F' of degree at most Dn. Using the basis of L consisting
of all monomials of degree at most Dn, we obtain dim L < (P"F%). It
remains to verify that the g¢ are linearly independent (assuming that
no p; is identically 0). Suppose that EC acqe = 0 with a¢ € F not all
0. Choose a zero pattern £ with a; # 0 and with the largest possible
number of 0’s, and substitute z(£) into ZC a¢g¢. This yields o = 0,
a contradiction.

Pseudoline arrangements. The founding paper is Levi [Lev26], where,
among others, the nonstretchable arrangement of 9 lines drawn above
was presented. A concise survey was written by Goodman [Goo97].

Pseudoline arrangements, besides being very natural, have also
turned out to be a fruitful generalization of line arrangements. Some
problems concerning line arrangements or point configurations were
first solved only in the more general setting of pseudoline arrange-
ments, and certain algorithms for line arrangements, the so-called
topological sweep methods, use an auxiliary pseudoline to speed up
the computation; see [Go0o97].

Infinite families of pseudolines have been considered as well, and
even topological planes, which are analogues of the projective plane
but made of pseudolines. It is known that every finite configuration
of pseudolines can be extended to a topological plane, and there are
uncountably many distinct topological planes; see Goodman, Pollack,
Wenger, and Zamfirescu [GPWZ94].

Oriented matroids. The possibility of representing each pseudoline
arrangement by a wiring diagram makes it clear that a pseudoline ar-
rangement can also be considered as a purely combinatorial object.
The appropriate combinatorial counterpart of a pseudoline arrange-
ment is called an oriented matroid of rank 3. More generally, similar to
arrangements of pseudolines, one can define arrangements of pseudo-
hyperplanes in R%, and these are combinatorially captured by oriented
matroids of rank d+1. Here the rank is one higher than the space di-
mension, because an oriented matroid of rank d is usually viewed as a
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combinatorial abstraction of a central arrangement of hyperplanes in
R? (with all hyperplanes passing through 0).

There are several different but equivalent definitions of an oriented
matroid. We present a definition in the so-called covector form. An
oriented matroid is a set V* C {—1,0,1}™ that is symmetric (v € V*
implies —v € V*), contains the zero vector, and satisfies the following
two more complicated conditions:

e (Closed under composition) If u,v € V*, then uov € V*, where
(uov); =u; ifu; #0 and (uow); = v; if u; =0.

o (Admits elimination) If u,v € V* and j € S(u,v) = {i: u; = —v; #
0}, then there exists w € V* such that w; = 0 and w; = (u o v); for
all i & S(u,v).

The rank of an oriented matroid V* is the largest r such that there is
an increasing chain v; < v9 < --+ < v, v; € V*, where u < v means
u; = v; for all ¢ and where 0 < 1 and 0 < —1. At first sight, all this
may look quite mysterious, but it becomes much clearer if one thinks
of a basic example, where V* is the set of sign vectors of all faces of a
central arrangement of hyperplanes in R%.

It turns out that every oriented matroid of rank 3 corresponds to
an arrangement of pseudolines. More generally, Lawrence’s represen-
tation theorem asserts that every oriented matroid of rank d comes
from some central arrangement of pseudohyperplanes in R¢, and so
the purely combinatorial notion of oriented matroid corresponds, es-
sentially uniquely, to the topological notion of a (central) arrangement
of pseudohyperplanes.®

Oriented matroids are also naturally obtained from configurations
of points or vectors. In the notation of Section 5.6 (Gale transform), if
@ is a sequence of n vectors in R, then both the sets sgn(LinVal(@))
and sgn(LinDep(@)) are oriented matroids in the sense of the above
definition. The first one has rank r, and the second, rank n—r.

We are not going to say much more about oriented matroids, re-
ferring to Ziegler [Zie94] for a quick introduction and to Bjérner, Las
Vergnas, Sturmfels, White, and Ziegler [BVS*99)] for a comprehensive
account.

Stretchability. The following results illustrate the surprising difficulty
of the stretchability problem for pseudoline arrangements. They are
analogous to the statements about realizability of 4-dimensional con-
vex polytopes mentioned in Section 5.3, and they were actually found
much earlier.

5 The correspondence need not really be one-to-one. For example, the oriented
matroids of two projectively isomorphic pseudoline arrangements agree only up
to reorientation.
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Certain (simple) stretchable arrangements of n pseudolines require
coefficients with 2%(") digits in the equations of the lines, in every
straight-line realization (Goodman, Pollack, and Sturmfels [GPS90}).
Deciding the stretchability of a given pseudoline arrangement is NP-
hard (Shor [Sho91] has a relatively simple proof), and in fact, it is
polynomially equivalent to the problem of solvability of a system of
polynomial inequalities with integer coeficients. This follows from re-
sults of Mnév, published in Russian in 1985 (proofs were only sketched;
see [Mne89)| for an English version). This work went unnoticed in the
West for some time, and so some of the results were rediscovered by
other authors.

Although detailed proofs of such theorems are technically demand-
ing, the principle is rather simple. Given two real numbers, suitably
represented by geometric quantities, one can produce their sum and
their product by classical geometric constructions by ruler. (Since ruler
constructions are invariant under projective transformations, the num-
bers are represented as cross-ratios.) By composing such constructions,
one can express the solvability of p(zy,...,z,) = 0, for a given n-
variate polynomial p with integer coeflicients, by the stretchability of a
suitable arrangement in the projective plane. Dealing with inequalities
and passing to simple arrangements is somewhat more complicated,
but the idea is similar.

Practical algorithms for deciding stretchability have been studied
extensively by Bokowski and Sturmfels [BS89] and by Richter-Gebert
(see, e.g., [RG99]).

Mnév [Mne89] was mainly interested in the realization spaces of ar-
rangements. Let H be a fixed stretchable arrangement. Each straight-
line arrangement H' affinely isomorphic to H can be represented by
a point in R?", with the 2n coordinates specifying the coefficients in
the equations of the lines of H'. Considering all possible H’ for a given
H, we obtain a subset of R?". For some time it was conjectured that
this set, the realization space of H, has to be path-connected, which
would mean that one straight-line realization could be converted to
any other by a continuous motion while retaining the affine isomor-
phism type.® Not only is this false, but the realization space can have
arbitrarily many components. In a suitable sense, it can even have
arbitrary topological type. Whenever A C R™ is a set definable by
a formula involving finitely many polynomial inequalities with inte-
ger coefficients, Boolean connectives, and quantifiers, there is a line
arrangement whose realization space S is homotopy equivalent to A
(Mnév’s main result actually talks about the stronger notion of sta-

5 In fact, these questions have been studied mainly for the isomorphism of arrange-
ments in the projective plane. There one has to be a little careful, since a mirror
reflection can easily make the realization space disconnected, and so the mirror
reflection (or the whole action of the general linear group) is factored out first.
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ble equivalence of S and A; see, e.g., [Goo97] or [BVST99]). Similar
theorems were proved by Richter-Gebert for the realization spaces of
4-dimensional polytopes [RG99], [RG97].

These results for arrangements and polytopes can be regarded as
instances of a vague but probably quite general principle: “Almost
none of the combinatorially imaginable geometric configurations are
geometrically realizable, and it is difficult to decide which ones are.”
Of course, there are exceptions, such as the graphs of 3-dimensional
convex polytopes.

Encoding pseudoline arrangements. The lower bound 290"") for the
number of isomorphism classes of pseudoline arrangements is asymp-
totically tight. Felsner [Fel97] found a nice encoding of such an arrange-
ment by an n x n matrix of 0’s and 1’s, from which the isomorphism
type can be reconstructed: The entry (7, ) of the matrix is 1 iff the jth
leftmost crossing along the pseudoline number i is with a pseudoline
whose number k is larger than 1.

Exercises

1.

2.

Let py(x),...,pn(z) be univariate real polynomials of degree at most D.
Check that the number of sign patterns of the p; is at most 2nD+1. [2]
(Intersection graphs) Let S be a set of n line segments in the plane. The
intersection graph of S is the graph on n vertices, which correspond to
the segments of S, with two vertices connected by an edge if and only if
the corresponding two segments intersect.

(a) Prove that the graph obtained from K5 by subdividing each edge
exactly once is not the intersection graph of segments in the plane (and
not even the intersection graph of any arcwise connected sets in the
plane). [4]

(b) Use Theorem 6.2.1 to prove that most graphs are not intersection
graphs of segments: While the total number of graphs on n given vertices
is 2(3) = on*/ 2+0(n)  oply 20(n1ogn) of them are intersection graphs of
segments (be careful about collinear segments!).

(c) Show that the number of (isomorphism classes of) intersection graphs
of planar arcwise connected sets, and even of planar convex sets, on n
vertices cannot be bounded by 20(*1°67) (The right order of magnitude
does not seem to be known for either of these classes of intersection
graphs.) [¢]

. (Number of combinatorially distinct simplicial convex polytopes) Use

Theorem 6.2.1 to prove that for every dimension d > 3 there exists Cy > 0
such that the number of combinatorial types of simplicial polytopes in
R? with n vertices is at most 2€¢»!°8" (The combinatorial equivalence
means isomorphic face lattices; see Definition 5.3.4.) [£]
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Such a result was proved by Alon [Alo86b] and by Goodman and Pollack
[GPS6).

. (Sign patterns of matrices and rank) Let A be a real n x n matrix. The

sign matriz o(A) is the n X n matrix with entries in {—1,0,+1} given
by the signs of the corresponding entries in A.

(a) Check that A has rank at most g if and only if there exist n x g
matrices U and V with A = UV7T.

(b) Estimate the number of distinct sign matrices of rank g using Theo-
rem 6.2.1, and conclude that there exists an n x n matrix S containing
only entries +1 and —1 such that any real matrix A with ¢(A) = S has
rank at least cn, with a suitable constant ¢ > 0.

The result in (b) is from Alon, Frankl, and Rodl [AFR85] (for another
application see [Mat96b]).

(Extendible pseudosegments) A family of pseudosegments is a finite col-
lection S = {s1,82,...,8,} of curves in the plane such that each s; is
z-monotone and its vertical projection on the z-axis is a closed interval,
every two curves in the family intersect at most once, and whenever they
intersect they cross (tangential contacts are not allowed). Such an S is
called extendible if there is a family L = {¢4,...,£,} of pseudolines such
that s; C4;,i=1,2,...,n.

(a) Find an example of a nonextendible family of 3 pseudosegments.
(b) Define an oriented graph G with vertex set S and with an edge from
s; to s; if s;N's; # 0 and s; is below s; on the left of their intersection.
Check that if S is extendible, then G is acyclic.

(c) Prove that, conversely, if G is acyclic, then S is extendible. Extend
the pseudosegments one by one, maintaining the acyclicity of G.

(d) Let I; be the projection of s; on the z-axis. Show that if for every
i<j,;NnIj=0or I CIjor I; CI;, then G is acyclic, and hence S is
extendible.

(e) Given a family of closed intervals I,...,I, C R, show that each in-
terval in the family can be partitioned into at most O(log n) subintervals
in such a way that the resulting family of subintervals has the property
as in (d). This implies that an arbitrary family of n pseudosegments can
be cut into a family of O(nlogn) extendible pseudosegments.

These notions and results are from Chan [Cha00a).

6.3 Number of Vertices of Level at Most k

In this section and the next one we investigate the maximum number of faces
in certain naturally defined portions of hyperplane arrangements. We con-
sider only simple arrangements, and we omit the (usually routine) perturba-
tion arguments showing that simple arrangements maximize the investigated
quantity.
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Let H be a finite set of hyperplanes in R%, and assume that none of them
is vertical, i.e., parallel to the zg4-axis. The level of a point z € R? is the
number of hyperplanes of H lying strictly below z (the hyperplanes passing
through z, if any, are not counted). This extends the definition for lines from
Section 4.7.

We are interested in the maximum possible number of vertices of level
at most £ in a simple arrangement of n hyperplanes. The following drawing
shows the region of all points of level at most 2 in an arrangement of lines;
we want to count the vertices lying in the region or on its boundary.

The vertices of level 0 are the vertices of the cell lying below all the
hyperplanes, and since this cell is the intersection of at most n half-spaces,
it has at most O(nLd/ 2J) vertices, by the asymptotic upper bound theorem
(Theorem 5.5.2). From this result we derive a bound on the maximum number
of vertices of level at most k. The elegant probabilistic technique used in the
proof is generally applicable and probably more important than the particular
result itself.

6.3.1 Theorem (Clarkson’s theorem on levels). The total number of
vertices of level at most k in an arrangement of n hyperplanes in R is at
most

O(nl¥/2 (k41)14/21y,

with the constant of proportionality depending on d.

We are going to prove the theorem for simple arrangements only. The
general case can be derived from the result for simple arrangements by a
standard perturbation argument. But let us stress that the simplicity of the
arrangement is essential for the forthcoming proof.

For all k£ (0 < k < n—d), the bound is tight in the worst case. To see this
for k > 1, consider a set of £ hyperplanes such that the lower unbounded cell
in their arrangement is a convex polyhedron with Q((%)l4/2}) vertices, and
replace each of the hyperplanes by k very close parallel hyperplanes. Then
each vertex of level 0 in the original arrangement gives rise to (k%) vertices
of level at most k in the new arrangement.

A much more challenging problem is to estimate the maximum possible
number of vertices of level ezactly k. This will be discussed in Chapter 11.

One of the main motivations that led to Clarkson’s theorem on levels was
an algorithmic problem. Given an n-point set P C R¢, we want to construct
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a data structure for fast answering of queries of the following type: For a
query point z € R? and an integer t, report the ¢ points of P that lie nearest
to .

Clarkson’s theorem on levels is needed for bounding the maximum amount
of memory used by a certain efficient algorithm. The connection is not entirely
simple. It uses the lifting transform described in Section 5.7, relating the
algorithmic problem in R? to the complexity of levels in R%t!, and we do
not discuss it here.

Proof of Theorem 6.3.1 for d = 2. First we demonstrate this special
case, for which the calculations are somewhat simpler.

Let H be a set of n lines in general position in the plane. Let p denote a
certain suitable number in the interval (0, 1) whose value will be determined
at the end of the proof. Let us imagine the following random experiment. We
choose a subset R C H at random, by including each line h € H into R with
probability p, the choices being independent for distinct lines h.

Let us consider the arrangement of R, temporarily discarding all the other
lines, and let f(R) denote the number of vertices of level 0 in the arrangement
of R. Since R is random, f is a random variable. We estimate the expectation
of f, denoted by E[f], in two ways.

First, we have f(R) < |R| for any specific set R, and hence E[f] <
E[|R[] = pn.

Now we estimate E[f] differently: We bound it from below using the
number of vertices of the arrangement of H of level at most k. For each
vertex v of the arrangement of H, we define an event A, meaning “v becomes
one of the vertices of level 0 in the arrangement of R.” That is, A, occurs
if v contributes 1 to the value of f. The event A, occurs if and only if the
following two conditions are satisfied:

e Both lines determining the vertex v lie in R.
e None of the lines of H lying below v falls into R.

v
>< }these must be in R

- } these must not be in R

We deduce that Prob[A4,] = p?(1 — p)¥*), where £(v) denotes the level of the
vertex v.
Let V be the set of all vertices of the arrangement of H, and let V<;, CV

be the set of vertices of level at most k, whose cardinality we want to estimate.
We have

E[f] = ) Prob[4,] > ) Prob[A,]

veV vEV<k
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= > pPPA-p)™ > Y p*A-p)* =Vl -p’(1 -p)~.

’UEVS)C ’UGVSk

Altogether we have derived np > E[f] > |V<i| - p*(1 — p)¥, and so

n
Ver| € ———%-
= T p(l-p)k
Let us now choose the number p so as to minimize the right-hand side. A
convenient value is p = %H; it does not yield the exact minimum, but it

k
comes close. We have (1 — #1) >e 1l > % for all £k > 1. This leads to
[Ver| < 3(k+1)n. O

Proof for an arbitrary dimension. The idea of the proof is the same
as above. As for the technical realization, there are at least two possible
routes. The first is to retain the same probability distribution for selecting
the sample R (picking each hyperplane of the given set H independently with
probability p); in this case, most of the proof remains as before, but we need
a lemma showing that E[|R[l4/2]] = O((pn)!%/2)). This is not difficult to
prove, either from a Chernoff-type inequality or by elementary calculations
(see Exercises 6.5.2 and 6.5.3).

The second possibility, which we use here, is to change the probability
distribution. Namely, we define an integer parameter r and choose a random
r-element subset R C H, with all the (:‘) subsets being equally probable.

With this new way of choosing R, we proceed as in the proof for d = 2.
We define f(R) as the number of vertices of level 0 in the arrangement of R
and estimate E[f] in two ways. On the one hand, we have f(R) = O(rl%/2])
for all R, and so

E[f] = O(r¥/%).

The notation V for the set of all vertices of the arrangement of H, V<,
for the vertices of level at most k, and A, for the event “v is a vertex of level
0 in the arrangement of R,” is as in the previous proof. The conditions for
A, are

e All the d hyperplanes defining the vertex v fall into R.
o None of the hyperplanes of H lying below v fall into R.

So if £ = £(v) is the level of v, then

Prob[4,] =

For brevity, we denote this quantity by P(£). We note that it is a decreasing
function of £. Therefore,

E[f] = ) _ Prob[4,] > [V - P(k).
veEV
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Combining with E[f] = O(rl4/2]) derived earlier, we obtain

O(rld/2))

<

(6.2)

An appropriate value for the parameter r is r = [kL_HJ (This is not
surprising, since in the previous proof, the size of R was concentrated around
pn = £37.) Then we have the following estimate:

6.3.2 Lemma. Suppose that 1 < k < 54 — 1, which implies 2d < r < 2.
Then
P(k) > cq(k+1)~¢

for a suitable cq > 0 depending only on d.

We postpone the proof of the lemma a little and finish the proof of The-
orem 6.3.1. We want to substitute the bound from the lemma into (6.2). In
order to meet the assumptions of the lemma, we must restrict the range of k
somewhat. But if, say, k > 7}, then the bound claimed by the theorem is of
order n¢ and thus trivial, and for k = 0 we already know that the theorem
holds. So we may assume 1 < k < 35 — 1, and we have

Vei| < Ol 2k +1)"¢ =0 (ntdm (k + 1)“/21) .

This establishes the theorem. O

Proof of Lemma 6.3.2.

("7<3")

P(k) = (n
(n—d—k)(n—d—k-1)--- (n—k—r+1)
= n(n—1) - (n—r+1) -r(r=1)--- (r—d+1)
_ r(r=1)---(r—d+1) n—-d—k n—d-k-1 n—-k-r+l
" n(n—1)---(n—d+1) n-d  n—d-1  n-r+1
r\d k k k
2 (%) (1_ n—d) (1_n—d—1)'“ <1_ n—r—l—l)

= (%)d(“h_iﬁ) '

rZ(

)

1 . k 2k
%H—l)/nzm (since k < 7, say) and 1 — =5 > 1~ 22
E+1

(a somewhat finer calculation actually gives 1 — £2 here). Since k < 2, we
can use the inequality 1—z > ™27 valid for = € [0, 1], and we arrive at

Now

P(k) > (£)%e /™ > cq(k +1)7<.

Lemma 6.3.2 is proved. O
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Levels in arrangements. Besides vertices, we can consider all faces of level
at most k, where the level of a face is the (common) level of all of its points.
Using Theorem 6.3.1, it is not hard to prove that the number of all faces of
level at most k in an arrangement of n hyperplanes is O(nl%2] (k41)14/21).

In the literature one often speaks about the level k in an arrangement

of hyperplanes, meaning the boundary of the region of all points of level at
most k. This is a polyhedral surface and each vertical line intersects it in
exactly one point. It is a subcomplex of the arrangement; note that it may
also contain faces of level different from k. In Section 4.7 we considered such
levels in arrangements of lines.

Bibliography and remarks. Clarkson’s theorem on levels was first
proved in Clarkson [Cla88a] (see Clarkson and Shor [CS89] for the
journal version). The elegant proof technique has many other applica-
tions, and we will meet it several more times, combined with additional
tricks into sophisticated arguments. The theorem can be formulated
in an abstract framework outlined in the notes to Section 6.5. New
variations on the basic method were noted by Sharir [Sha01] (see Ex-
ercises 4 and 5).

In the planar case, the O(nk) bound on the complexity of levels 0
through & was known before Clarkson’s paper, apparently first proved
by Goodman and Pollack [GP84]. Alon and Gyori [AG86] determined
the exact constant of proportionality (which Clarkson’s proof in the
present form cannot provide). Welzl [WelO1] proved an exact upper
bound in R3; see the notes to Section 11.3 for a little more about his

method. Several other related references can be found, e.g., in Agarwal
and Sharir [AS00a].

Exercises

1.

2.

Show that for n hyperplanes in R? in general position, the total number
of vertices of levels k, k+1,...,n—d is at most O(nl%2l(n—k)[4/21), [
(a) Consider n lines in the plane in general position (their arrangement
is simple). Call a vertex v of their arrangement an eztreme if one of its
defining lines has a positive slope and the other one has a negative slope.
Prove that there are at most O((k+1)?) extremes of level at most k.
Imitate the proof of Clarkson’s theorem on levels.

(b) Show that the bound in (a) cannot be improved in general.

Let K4,..., K, be circular disks in the plane. Show that the number of
intersections of their boundary circles that are contained in at most k
disks is bounded by O(nk). Use the result of Exercise 5.7.10 and assume
general position if convenient.

Let L be a set of n nonvertical lines in the plane in general position.

(a) Let W be an arbitrary subset of vertices of the arrangement of L,
and let Xw be the number of pairs (v,£), where v € W, £ € L, and
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¢ goes (strictly) below v. For every real number p € (0,1), prove that
Xw 2 p W[ -p~?n.

(b) Let W be a set of vertices in the arrangement of L such that no line
of L lies strictly below more than k vertices of W, where k > 1. Use (a)
to prove [W| = O(nvk).

(c) Check that the bound in (b) is tight for all k¥ < Z.

This exercise and the next one are from Sharir [Sha01].

5. Let P be an n-point set in the plane in general position (no 4 points on
a common circle). Let C be a set of circles such that each circle in C
passes through 3 points of P and contains no more than k points of P
in its interior. Prove that |C| < O(nk?/3), by an approach analogous to
that of Exercise 4.

6.4 The Zone Theorem

Let H be a set of n hyperplanes in R%, and let g be a hyperplane that may
or may not lie in H. The zone of g is the set of the faces of the arrangement
of H that can see g. Here we imagine that the hyperplanes of H are opaque,
and so we say that a face F' can see the hyperplane g if there are points
x € F and y € g such that the open segment xy is not intersected by any
hyperplane of H (the face F is considered relatively open). Let us note that
it does not matter which point € F' we choose: Either all of them can see
g or none can. The picture shows the zone in a line arrangement:

The following result bounds the maximum complexity of the zone. In the
proof we will meet another interesting random sampling technique.

6.4.1 Theorem (Zone theorem). The number of faces in the zone of any
hyperplane in an arrangement of n hyperplanes in R?% is O(n%1!), with the
constant of proportionality depending on d.

We prove the result only for simple arrangements; the general case follows,
as usual, by a perturbation argument. Let us also assume that g € H and that
H U {g} is in general position.
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It is clear that the zone has O(n?~!) cells, because each (d—1)-dimen-
sional cell of the (d—1)-dimensional arrangement within g is intersects only
one d-dimensional cell of the zone. On the other hand, this information is
not sufficient to conclude that the total number of vertices of these cells
is O(n®~1): For example, as we know from Chapter 4, n arbitrarily chosen
cells in an arrangement of n lines in the plane can together have as many as
Q(n*/3) vertices.

Proof. We proceed by induction on the dimension d. The base case is d = 2;
it requires a separate treatment and does not follow from the trivial case
d =1 by the inductive argument shown below.

The case d = 2. (For another proof see Exercise 7.1.5.) Let H be a set of n
lines in the plane in general position. We consider the zone of a line g. Since
a convex polygon has the same number of vertices and edges, it suffices to
bound the total number of 1-faces (edges) visible from the line g.

Imagine g drawn horizontally. We count the number of visible edges lying
above g. Among those, at most n intersect the line g, since each line of H
gives rise to at most one such edge. The others are disjoint from g.

Consider an edge uv disjoint from g and visible from a point of g. Let
h € H be the line containing uv, and let a be the intersection of A with g:

.

@ b

9

Let the notation be chosen in such a way that « is closer to a than v, and
let £ € H be the second line (besides h) defining the vertex u. Let b denote
the intersection £ M g. Let us call the edge uv a right edge of the line £ if the
point b lies to the right of a, and a left edge of the line £ if b lies to the left
of a.

We show that for each line ¢ there exists at most one right edge. If it were
not the case, there would exist two edges, uv and xy, where u lies lower than
z, which would both be right edges of 4, as in the above drawing. The edge
zy should see some point of the line g, but the part of g lying to the right of
a is obscured by the line h, and the part left of a is obscured by the line £.
This contradiction shows that the total number of right edges is at most n.

Symmetrically, we see that the number of left edges in the zone is at
most n. The same bounds are obtained for edges of the zone lying below g.
Altogether we have at most O(n) edges in the zone, and the 2-dimensional
case of the zone theorem is proved.
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The case d > 2. Here we make the inductive step from d—1 to d. We assume
that the total number of faces of a zone in R%~! is O(n?~2), and we want to
bound the total number of zone faces in R?.

The first idea is to proceed by induction on n, bounding the maximum
possible number of new faces created by adding a new hyperplane to n—1
given ones. However, it is easy to find examples showing that the number
of faces can increase roughly by n¢~1, and so this straightforward approach
fails.

In the actual proof, we use a clever averaging argument. First, we demon-
strate the method for the slightly simpler case of counting only the facets
(i-e., (d—1)-faces) of the zone.

Let f(n) denote the maximum possible number of (d—1)-faces in the zone
in an arrangement of n hyperplanes in R¢ (the dimension d is not shown in
the notation in order to keep it simple). Let H be an arrangement and g a
base hyperplane such that f(n) is attained for them.

We consider the following random experiment. Color a randomly chosen
hyperplane h € H red and the other hyperplanes of H blue. We investigate
the expected number of blue facets of the zone, where a facet is blue if it lies
in a blue hyperplane.

On the one hand, any facet has probability "T_l of becoming blue, and
hence the expected number of blue facets is 21 f(n).

We bound the expected number of blue facets in a different way. First,
we consider the arrangement of blue hyperplanes only; it has at most f(n—1)
blue facets in the zone by the inductive hypothesis. Next, we add the red
hyperplane, and we look by how much the number of blue facets in the zone
can increase.

A new blue facet can arise by adding the red hyperplane only if the red
hyperplane slices some existing blue facet F' into two parts F; and F3, as is
indicated in the picture:
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This increases the number of blue facets in the zone only if both F} and F; are
visible from g. In such a case we look at the situation within the hyperplane
h; we claim that F'N A is visible from g N h.

Let C be a cell of the zone in the arrangement of the blue hyperplanes
having F' on the boundary. We want to exhibit a segment connecting F N h
to g N h within C. If 1 € F} sees a point y; € g and 3 € F; sees y3 € g,
then the whole interior of the tetrahedron z;zsy;ys is contained in C. The
intersection of this tetrahedron with the hyperplane A contains a segment
witnessing the visibility of g N A from F N h.

If we intersect all the blue hyperplanes and the hyperplane g with the
red hyperplane h, we get a (d—1)-dimensional arrangement, in which F N h
is a facet in the zone of the (d—2)-dimensional hyperplane g N h. By the
inductive hypothesis, this zone has O(n%~?) facets. Hence, adding h increases
the number of blue facets of the zone by O(n?~2), and so the total number
of blue facets after h has been added is never more than f(n—1) + O(n¢~2).

We have derived the following inequality:

n—1

f(n) < f(n—1) + O(n*72).

n

It implies f(n) = O(n9"1), as we will demonstrate later for a slightly more
general recurrence.

The previous considerations can be generalized for (d—k)-faces, where
1 < k < d-2. Let fj(n) denote the maximum possible number of j-faces
in the zone for n hyperplanes in dimension d. Let H be a collection of n
hyperplanes where fy_r(n) is attained.

As before, we color one randomly chosen hyperplane h € H red and the
others blue. A (d—k)-face is blue if its relative interior is disjoint from the red
hyperplane. Then the probability of a fixed (d—k)-face being blue is ”%k, and
the expected number of blue (d—k)-faces in the zone is at most ﬂ—n——k fa—x(n).

On the other hand, we find that by adding the red hyperplane, the num-
ber of blue (d—k)-faces can increase by at most O(n%2), by the inductive
hypothesis and by an argument similar to the case of facets. This yields the

recurrence
n

T—L k fd—k(n) < fd_k(n_l) + O(nd—2)'

We use the substitution ¢(n) = #’?(J—)'ﬁl)’ which transforms our re-

currence to ¢(n) < p(n—1) + O(n?=%=2). We assume k < d—1 (so the con-
sidered faces must not be edges or vertices). Then the last recurrence yields
@(n) = O(n4=*-1) and hence fy_i(n) = O(n?1).

For the case k = d—1 (edges), we would get only the bound fi(n) =
O(n%'logn) by this method. So the number of edges and vertices must be
bounded by a separate argument, and we also have to argue separately for
the planar case.
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We are going to show that the number of vertices of the zone is at most
proportional to the number of the 2-faces of the zone. Every vertex is con-
tained in some 3-face of the zone. Within each such 3-face, the number of
vertices is at most 3 times the number of 2-faces, because the 3-face is a 3-
dimensional convex polyhedron. Since our arrangement is simple, each 2-face
is contained in a bounded number of 3-faces. It follows that the total number
of vertices is at most proportional to fo(n) = O(n?!). The analogous bound
for edges follows immediately from the bound for vertices. |

Zones in other arrangements. The maximum complexity of a zone can be
investigated for objects other than hyperplanes. We can consider two classes
Z and A of geometric objects in R¢ and ask for the maximum complexity of
the zone of a { € Z in the arrangement of n objects ay,as,...,a, € A. This
leads to a wide variety of problems. For some of them, interesting results have
been obtained by extending the technique shown above.

Most notably, if ¢ is a k-flat in R%, 0 < k < d, or more generally, a k-di-
mensional algebraic variety in R? of degree bounded by a constant, then the
zone of { in an arrangement of n hyperplanes has complexity at most

0 (nL(d+k)/2J (log n)ﬂ) 7

where § =1 for d+ k odd and 8 = 0 for d + k even. (The logarithmic factor
seems likely to be superfluous in this bound; perhaps a more sophisticated
proof could eliminate it.) With ¢ being a k-flat, this result can be viewed as
an interpolation between the asymptotic upper bound theorem and the zone
theorem: For k& = 0, with ¢ being a single point, we consider the complexity
of a single cell, while for £ = d—1, we have the zone of a hyperplane. The key
ideas of the proof are outlined in the notes below; for a full proof we refer to
the literature.

A simple trick relates the zone problem to another question, the maxi-
mum complexity of a single cell in an arrangement. For example, what is the
complexity of the zone of a segment ¢ in an arrangement of n line segments?
On the one hand, ¢ can be chosen as a single point, and so the maximum
zone complexity is at least the maximum possible complexity of a cell in an
arrangement of n segments. On the other hand, the complexity of the zone
of ¢ is no more than the maximum cell complexity in an arrangement of 2n
segments, since we can split each segment by making a tiny hole near the
intersection with (:

S

¢ \j

—_ % ) 7 \ -l
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A similar reduction works for the zone of a triangle in an arrangement of
triangles in R? and in many other cases. Results presented in Section 7.6 will
show that under quite general assumptions, the zone complexity in dimension
d is no more than O(n¢=1%¢), for an arbitrarily small (but fixed) £ > 0.

Bibliography and remarks. The two-dimensional zone theorem
was established by Chazelle, Guibas, and Lee [CGLS85], with the proof
shown above, and independently by Edelsbrunner, O’Rourke, and Sei-
del [EOSS86] by a different method. The first correct proof of the gen-
eral d-dimensional case, essentially the one presented here, is due to
Edelsbrunner, Seidel, and Sharir [ESS93]. The main ingredients of the
technique were previously developed by Sharir and his coauthors in
several papers.

Bern, Eppstein, Plassman, and Yao [BEPY91] determined the best
constant in the planar zone theorem: The zone of a line in an arrange-
ment of n lines has at most 5.5n edges. They also showed that the
zone of a convex k-gon has complexity O(n + k?).

The extension of the zone theorem to the zone of a k-dimensional
algebraic variety in a hyperplane arrangement, as mentioned in the
text, was proved by Aronov, Pellegrini, and Sharir [APS93]. They also
obtained the same bound with { being the relative boundary of a
(k+1)-dimensional convex set in R?.

The problem with the zone of a curved surface that did not exist
for the zone of a hyperplane is that a face F' of the zone of { can be
split by a newly inserted hyperplane A into two subfaces F; and F5,
both of them lying in the zone, without A N F' being in the zone of
¢ N h, as is illustrated below:

h

Fl F2

~~

It turns out that each face F' split by h in this way is adjacent to a
facet in h that can be seen from ¢ from both sides; such a facet is called
a popular facet of the zone. In order to set up a suitable recurrence
for the number of faces in the zone, one needs to bound the total
complexity of all popular facets. This is again done by a technique
similar to the proof of the zone theorem in the text. The concept of
popular facet needs to be generalized to a popular j-face, which is a
j-dimensional face F that can be seen from ¢ in all the 247 “sectors”
determined by the d — j hyperplanes defining F'. The key observation
is that if a blue popular j-face is split into two new popular j-faces
by the new red hyperplane, then this can be charged to a popular
(j—1)-face within h, as the following picture illustrates for j = 1:
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This is used to set up recurrences for the numbers of popular j-faces.

Exercises

1.

(Sum of squares of cell complexities)

(a) Let C be the set of all cells of an arrangement of a set H of n hyper-
planes in R4. For d = 2, 3, prove that Ycec fo(C)? = O(n?), where fo(C)
is the number of vertices of the cell C. [2]

(b) Use the technique explained in this section to prove > ¢ fo(C)? =
O(n(logn)l?/21=1) for every fixed d > 3 (or a similar bound with a
larger constant in the exponent of logn if it helps). [5]

The result in (b) is from Aronov, Matousek, and Sharir [AMS94].
Define the (<k)-zone of a hyperplane g in an arrangement of hyperplanes
as the collection of all faces for which some point z of their relative interior
can be connected to some point y € g so that the interior of the segment
xy intersects at most k& hyperplanes.

(a) By the technique of Section 6.3 (Clarkson’s theorem on levels), show
that the number of vertices of the (<k)-zone is O(n?~1k).

(b) Show that the bound in (a) cannot be improved in general. [2]

. In this exercise we aim at bounding K (n,n), the maximum total number

of edges of n distinct cells in an arrangement of n lines in the plane,
using the cutting lemma as in Section 4.5 (this proof is due to Clarkson,
Edelsbrunner, Guibas, Sharir, and Welzl [CEGT90]). Let L be a set of n
lines in general position.

(a) Prove the bound K(n,m) = O(ny/m + m).

(b) Prove K (n,n) = O(n*/?) using the cutting lemma. [

. Consider a set H of n planes in R? in general position and a sphere S

(the surface of a ball).

(a) Show that S intersects at most O(n?) cells of the arrangement of H.
Bl

(b) Using (a) and Exercise 1, prove that the zone of S in the arrangement
of H has at most O(n5/2) vertices. & (This is just an upper bound; the
correct order of magnitude is about n?.)

6.5 The Cutting Lemma Revisited

Here we present the most advanced version of the random sampling tech-
nique. It combines the approach to the weak cutting lemma (Section 4.6)
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with ingredients from the proof of Clarkson’s theorem on levels and addi-
tional ideas.

We are going to re-prove the cutting lemma 4.5.3: For every set H of n
lines in the plane and every r > 1 there exists a %—cutting for H of size O(r?),
i.e., a subdivision of the plane into O(r?) generalized triangles Aj,...,A;
such that the interior of each A; is intersected by at most 7 lines of H. The
proof uses random sampling, and unlike the elementary proof in Section 4.7,
it can be generalized to higher dimensions without much trouble. We first give
a complete proof for the planar case and then we discuss the generalizations.

Throughout this section we assume that H is in general position. A per-
turbation argument mentioned in Section 4.7 can be used to derive the cutting
lemma for an arbitrary H.

The first idea is as in the proof of a weaker cutting lemma by random
sampling in Section 4.6: We pick a random sample S of a suitable size and
triangulate its arrangement.

The subsequent calculations become simpler and more elegant if we choose
S by independent Bernoulli trials. That is, instead of picking s random lines
with repetitions as in Section 4.6, we fix a probability p = £ and we include
each line h € H into S with probability p, the decisions being mutually
independent (this is as in the proof of the planar case of Clarkson’s theorem
on levels). These two ways of random sampling (by s random draws with
repetitions and by independent trials with success probability £) can usually
be thought of as nearly the same; although the actual calculations differ
significantly, their results tend to be similar.

Sampling and triangulation alone do not work. Considerations similar
to those in Section 4.6 show that with probability close to 1, none of the
triangles in the triangulation for the random sample S as above is intersected
by more than C% logn lines of H, for a suitable constant C. Later we will
see that a similar statement is true with C'2 log s instead of C'% logn. But
it is not generally true with C'%, for any C independent of s and n. So the
most direct road to an optimal %—cutting, namely choosing const - r random
lines and triangulating their arrangement, is impassable.

To see this, consider a 1-dimensional situation, where H = {h,...,hn}
is a set of n points in R (or if you prefer, look at the part of a 2-dimensional
arrangement along one of the lines). For simplicity, let us set s = %; then
p= %, and we can imagine that we toss a fair coin n times and we include h;
into S if the ith toss is heads. The picture illustrates the result of 30 tosses,
with black dots indicating heads:

o] lol I lelel Jol lelel Jolel Jol I 1 Jol I I lelelel I l6)

We are interested in the length of the longest consecutive run of tails (empty
circles). For k is fixed, it is very likely that & consecutive tails show up in a
sequence of n tosses for n sufficiently large. Indeed, if we divide the tosses
into blocks of length %k (suppose for simplicity that n is divisible by k),
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IOOOOOOOOOOOOOOOOOOOOOOOOPOOOOO
I l | I l I I L |

then in each block, we have probability 2=% of receiving all tails. The blocks
are mutually independent, and so the probability of not obtaining all tails
in any of the % blocks is (1 — 2-k)n/k_ For k fixed and n — oo this goes
to 0, and a more careful calculation shows that for k = | log,n| we have
exponentially small probability of not receiving any block of k consecutive
tails (Exercise 1). So a sequence of n tosses is very likely to contain about logn
consecutive tails. (Sequences produced by humans that are intended to look
random usually do not have this property; they tend to be “too uniform.”)
Similarly, for a smaller s, if we make a circle black with probability 7, then
the longest run typically has about % log s consecutive empty circles.

Of course, in the one-dimensional situation one can define much more
uniform samples, say by making every Zth circle black. But it is not clear
how one could produce such “more uniform” samples for lines in the plane
or for hyperplanes in R4,

The strategy: a two-level decomposition. Instead of trying to select
better samples we construct a %—cutting for H in two stages. First we take a
sample S with probability p = Z and triangulate the arrangement, obtaining
a collection 7 of triangles. (The expected number of triangles is O(r?), as we
will verify later.) Typically, T is not yet a 1-cutting. Let I(A) denote the set
of lines of H intersecting the interior of a triangle A € T and let na = |I(A)].
We define the ezcess of a triangle A € T as ta =na - ;-

If ta <1, then na < 2 and A is a good citizen: It can be included into
the final %-cutting as is. On the other hand, if tA > 1, then A needs further
treatment: We subdivide it into a collection of finer triangles such that each
of them is intersected by at most Z lines of H. We do it in a seemingly
naive way: We consider the whole arrangement of I(A), temporarily ignoring
A, and we construct a %-cutting for it. Then we intersect the triangles of
this %-cutting with A, which can produce triangles but also quadrilaterals,
pentagons, and hexagons. Each of these convex polygons is further subdivided
into triangles, as is illustrated below:

a %—cutting restrict to A and triangulate

Note that each triangle in the i—cutting is intersected by at most %AA =2
lines of I(A). Therefore, the triangles obtained within A are valid triangles
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of a L-cutting for H. The final 1-cutting for H is constructed by subdividing
each A € T with excess greater than 1 in the indicated manner and taking
all the resulting triangles together.

How do we make the required i—cuttings for the I(A)? We do not yet
have any suitable way of doing this unless we use the cutting lemma itself,
which we do not want, of course. Fortunately, as a by-product of the subse-
quent considerations, we obtain a method for directly constructing slightly
suboptimal cuttings:

6.5.1 Lemma (A suboptimal cutting lemma). For every finite collec-
tion of lines and any u > 1, there exists a %—cutting consisting of at most
K (ulog(u+1))? triangles, where K is a suitable constant.

If we employ this lemma for producing the %—cuttings, we can estimate

the number of triangles in the resulting %—cutting in terms of the excesses of
the triangles in 7 The total number of triangles is bounded by

> max {1,4K (ta log(ta +1))*} . (6.3)
AeT

The key insight for the proof of the cutting lemma is that although we
typically do have triangles A € T with excess as large as about logr, they
are very few. More precisely, we show that under suitable assumptions, the
expected number of triangles in 7 with excess ¢ or larger decreases exponen-
tially as a function of ¢. This will take care of both estimating (6.3) by O(r?)
and establishing Lemma 6.5.1.

Good and bad triangulations. Our collection 7 of triangles is obtained
by triangulating the cells in the arrangement of the random sample S. Now
is the time to specify how exactly the cells are triangulated, since not every
triangulation works. To see this, consider a set H of n lines, each of them
touching the unit circle, and let S be a random sample, again for simplicity
with probability p = % We have learned that such a sample is very likely to
leave a gap of about logn unselected lines (as we go along the unit circle).
If we maliciously triangulate the central cell in the arrangement of S by the
diagonals from the vertex near such a large gap,

/
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all these about % triangles have excess about logn; this is way too large for
our purposes.

The triangulation thus cannot be quite arbitrary. For the subsequent
proof, it has to satisfy simple axioms. In the planar case, it is actually tech-
nically easier not to triangulate but to construct the vertical decomposition
of the arrangement of S. We erect vertical segments upwards and downwards
from each vertex in the arrangement of S and extend them until they meet
another line (or all the way to infinity):

=

N

So far we have been speaking of triangles, and now we have trapezoids, but
the difference is immaterial, since we can always split each trapezoid into
two triangles if we wish. Let 7(S) denote the set of (generalized) trapezoids
in the vertical decomposition of S. As before, I(A) is the set of lines of H
intersecting the interior of a trapezoid A.

6.5.2 Proposition (Trapezoids with large excess are rare). Let H be
a fixed set of n lines in general position, let p = =, where 1 <r < 3, let S be
a random sample drawn from H by independent Bernoulli trials with success
probability p, and let ¢ > 0 be a real parameter. Let T(S)>: denote the set
of trapezoids in A € T (S) with excess at least t, i.e., with |I(A)| > t%. Then
the expected number of trapezoids in T (S)» is bounded as follows:

E(7(S)z:l) < C-27%7
for a suitable absolute constant C.

First let us see how this result can be applied.

Proof of the suboptimal cutting lemma 6.5.1. To obtain a %-cutting
for H, we set r = Aulog(u+1) for a sufficiently large constant A and choose
a sample S as in Proposition 6.5.2.

By that proposition with ¢ = 0, we have E[|T(S)|] < Br? for a suit-
able constant B. By the same proposition with ¢ = Alog(u+1), we have
E[|T(S)>¢]] < 3 if A is sufficiently large. By linearity of expectation, we ob-
tain
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1 2
A T+ T ()| < 2
So there exists a sample S with both |7(S)| < 2Br? and |T(S)>¢| = 0. This

means that we have a 1-cutting into O(r2) = O((ulog(u+1))?) trapezoids.
O

E

For an alternative proof of Lemma 6.5.1 see Exercise 10.3.4.

Proof of the cutting lemma (Lemma 4.5.3). Most of the proof has
already been described. To produce a %-cutting, we pick a random sample S
with probability p = =, we let 7 = T(S5) be its vertical decomposition, and
we refine each trapezoid A € 7 with excess ta > 1 using an auxiliary i-
cutting. The size of the resulting 1-cutting is bounded by (6.3). So it suffices
to estimate the expected value of that expression using Proposition 6.5.2:

E{ Z max{1,4K(tAlog(tA+1))2}]

AET(S)

SE[ Z max{1,4Kt;§}] (as log(ta+1) < ta)
AET(S)

sE[|T(S)[+i > 4Kt4A]
i=0

AET(S)
2i<tp <2i+1

< E[IT(S)]] + ZE“T(S)Izzi] L O(246+1)

i=0

(e

<O(?) +) C-27%r2. 0(21¢+D)
=0

= O(r?).

The cutting lemma is proved. a

Note that it was not important that the suboptimal cutting lemma is near-
optimal: Any bound subezponential in u for the size of a %—cutting would do.
In particular, for any fixed ¢ > 1, the expected cth-degree average of the
excess is only a constant.

For the proof of Proposition 6.5.2, we need several definitions and some
simple properties of the vertical decomposition. Let H be a fixed set of lines in
general position, and let Reg = |Jgc g T(S) be the set of all trapezoids that
can ever appear in the vertical decomposition for some S C H (including
S = {). For a trapezoid A € Reg, let D(A) be the set of the lines of H
incident to at least one vertex of A. By the general-position assumption, we
have |[D(A)| < 4 for all A. The various possible cases, up to symmetry, are
drawn below; the picture shows the lines of D(A) with A marked in gray:
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a=r

The set D(A) is called the defining set of A. Note that the same defining set
can belong to several trapezoids.

Now we list the properties required for the proof; some of them are obvious
or have already been noted.

(C0) We have |D(A)| < 4 for all A € Reg. Moreover, any set Sy C H is the
defining set for at most a constant number of A € Reg (certainly no more
than the maximum of |7(Sp)| for |So| < 4).

(C1) For any A € T(S), we have D(A) C S (the defining set must be present)
and SN I(A) =0 (no intersecting line may be present).

(C2) For any A € Reg and any S C H such that D(A) C S and I(A)NS =0,
we have A € T(S5).

(C3) For every S C H, we have |T(S)] = O(]S|? + 1). To see this, think of
adding the vertical segments to the arrangement of S one by one. Each
of them splits an existing region in two.

The most interesting condition is (C2), which says that the vertical de-
composition is defined “locally.” It implies, in particular, that A is one of the
trapezoids in the vertical decomposition of its defining set. More generally, it
says that A € Reg is present in 7(.S) whenever it is not excluded for simple
local reasons (which can be checked by looking only at A). Checking (C2)
in our situation is easy, and we leave it to the reader. Also note that it is
(C2) that is generally violated for the mischievous triangulation considered
earlier.

Proof of Proposition 6.5.2. First we prove that if S C H is a random
sample drawn with probability p = =, 0 <7 < n, then

E[|7T(S)] = O(? +1). (6.4)

This takes care of the case t < 1 in the proposition. By (C3), we have |[T(5)| =
O(|S|2 + 1) for every fixed S, and so it suffices to show that E[|S|?] =
O(r? 4+ 1). Now, |S| is the sum of independent random variables, each of
them attaining value 1 with probability p and value 0 with probability 1 — p,
and it is easy to check that E[|S|?] < r? +r (Exercise 2(a)).

Next, we assume t > 1. Let S C H be a random sample drawn with
probability p. We observe that the conditions (C1) and (C2) allow us to
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express the probability p(A) that a certain trapezoid A € Reg appears in the
vertical decomposition 7(S): Since A appears if and only if all lines of D(A)
are selected into S and none of I(A) is selected, we have

p(A) = p!P@® (1 — p) A

(An analogous formula appeared in the proof of the planar Clarkson’s the-
orem on levels, and one can say that the technique of that proof is devel-
oped one step further in the present proof.) If we write Reg., = {A €
Reg: |I(A)] > t2} for the set of all potential trapezoids with excess at least
t, the expected number of trapezoids in 7(S)>¢ can be written as

E[T(S)xll= > p(A) (6.5)

A€EReg>,

It seems difficult to estimate this sum directly; the trick is to compare it with
a similar sum obtained for the expected number of trapezoids for another
sample.

We define another probability p = —, and we let S be a sample drawn
from H by Bernoulli trials with success probability . On the one hand,

we have E[[T(S')[] = O(r?/t?* + 1) by (6.4). On the other hand, setting
p(A) = pIPAI(1 — p)AN we have, in analogy to (6.5),

E[TE)] = 3 sz Y #a)

A€Reg AEReg>,
= ¥ @) B r )
A€Reg>,

where

R= min{pEA; Ae Reg>t}

Now R can be bounded from below. For every A € Reg, we have |[I(A)| >
tZ and |D(A)| < 4, and so

ﬁ(A) P ID(A)] 1-p [I(8)] (11— tn/r
Al =2 >4 —2 .
p(A) (p> (1 —p) B (1 —p>

We use 1 —p < e™P (this holds for all real p) and 1 —p > e 2P (this is true for
all p € [0, 1], and we have p < p < 1). Therefore R > ¢t~*e*~2. Substituting
into (6.6), we finally derive

BIT(S)x] < 7 B[TE)] < et 0( L 41) 002702

for a sufficiently large constant C' (the proposition assumes r > 1). Proposi-
tion 6.5.2 is proved. O

The following can be proved by the same technique:
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6.5.3 Theorem (Cutting lemma for arbitrary dimension). Let d > 1
be a fixed integer, let H be a set of n hyperplanes in R%, and let r be a
parameter, 1 < r < n. Then there exists a %-cutting for H of size O(r?); that
is, a subdivision of R? into O(r?) generalized simplices such that the interior
of each simplex is intersected by at most & hyperplanes of H.

The only new part of the proof is the construction of a suitable trian-
gulation scheme that plays the role of 7(S). A vertical decomposition does
not work. More precisely, it is not known whether the vertical decomposition
of an arrangement of n hyperplanes in R? always has at most O(n?) cells
(prisms); this would be needed as the analogue of condition (C3). Instead
one can use the bottom-vertez triangulation, which we define next.

First we specify the bottom-vertex triangulation of a k-dimensional con-
vex polytope P C R%, 1 < k < d, by induction on k. For k = 1, P is a line
segment, and the triangulation consists of P itself. For k > 1, we let v be the
vertex of P with the smallest last coordinate (the “bottom vertex”); ties can
be broken by lexicographic ordering of the coordinate vectors. We triangu-
late all proper faces of P inductively, and we add the simplices obtained by
erecting the cone with apex v over all simplices in the triangulations of the
faces not containing v.

It is not difficult to check that this yields a triangulation of P (even a simpli-
cial complex, although this is not needed in the present proof), and that if P
is a simple polytope, then the total number of simplices in this triangulation
is at most proportional to the number of vertices of P (with the constant of
proportionality depending on d); see Exercise 4.

All the bounded cells of the arrangement of S are triangulated in this way.
Some care is needed for the unbounded cells, and several ways are available.
One of the simplest is to intersect the arrangement with a sufficiently large
box containing all the vertices and construct the %—cutting only inside that
box. This is sufficient for most applications of %—cuttings. Alternatively (and
almost equivalently), we can consider the whole arrangement in the projective
d-space instead of R%. We omit a detailed discussion of this aspect.

In this way we obtain a triangulation 7 (.S) for every subset S of the given
set of hyperplanes. The analogue of (C3) is |7(S)| = O(|S|%+1), which follows
(assuming H in general position) because the number of simplices in each cell
is proportional to the number of its vertices, and the total number of vertices

is O(|S|9).
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The set I(A) are all hyperplanes intersecting the interior of a simplex
A, and D(A) consists of all the hyperplanes incident to at least one vertex
of A. We again need to assume that our hyperplanes are in general posi-
tion. Then, obviously, |D(A)| < d(d+1), and a more careful argument shows
that |D(A)] < d—(d;'—g). The important thing is that an analogue of (CO)
holds, namely, that both |D(A)] and the number of A with a given D(A) are
bounded by constants.

The condition (C1) holds trivially. The “locality” condition (C2) does
need some work, although it is not too difficult, and we refer to Chazelle and
Friedman [CF90] for a detailed argument.

With (C0)-(C3) in place, the whole proof proceeds exactly as in the planar
case. To get the analogue of (6.4), namely E[[7(S)|] = O(r?+1), we need
the fact that E[|S|%] = O(r%) (this is what we avoided in the proof of the
higher-dimensional Clarkson’s theorem on levels by passing to another way
of sampling); see Exercise 2(b) or 3.

Further generalizations. An analogue of Proposition 6.5.2 can be derived
from conditions (C0)—(C3) in a general abstract framework. It provides op-
timal %—cuttings not only for arrangements of hyperplanes but also in other
situations, whenever one can define a suitable decomposition scheme satisfy-
ing (C0)-(C3) and bound the maximum number of cells in the decomposition
(the latter is a challenging open problem for arrangements of bounded-degree
algebraic surfaces). The significance of Proposition 6.5.2 reaches beyond the
construction of cuttings; its variations have been used extensively, mainly in
the analysis of geometric algorithms. We are going to encounter a combina-
torial application in Chapter 11.

Bibliography and remarks. The proof of the cutting lemma as in
this section (with a different way of sampling) is due to Chazelle and
Friedman [CF90]. Analogues of Proposition 6.5.2, or more precisely the
consequence stating that the expectation of the cth-degree average of
the excess is bounded by a constant, were first proved and applied
by Clarkson [Cla88a] (see Clarkson and Shor [CS89] for the journal
version). Since then, they became one of the indispensable tools in the
analysis of randomized geometric algorithms, as is illustrated by the
book by Mulmuley [Mul93al, for example, as well as by many newer
papers.

The bottom-vertex triangulation (also called the canonical trian-
gulation in some papers) was defined in Clarkson [Cla88b].

Proposition 6.5.2 can be formulated and proved in an abstract
framework, where H and Reg are some finite sets and 7:2H — 2Res,
I: Reg — 2¥, and D: Reg — 2" are mappings satisfying (C0) (with
some constants), (C1), (C2), and an analogue of (C3) that bounds the
expected size of T(S) for a random S C H by a suitable function of
r, typically by O(r*) for some real constant £ > 1. The conclusion
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is E[|T(S)>:]] = O(27trk). Very similar abstract frameworks are dis-
cussed in Mulmuley [Mul93a] and in De Berg, Van Kreveld, Overmars,
and Schwarzkopf [dBvKOS97].

The axiom (C2) can be weakened to the following:
(C2) If A € T(S) and S’ C S satisfies D(A) C ', then A € T(5').
That is, A cannot be destroyed by deleting elements of S unless we
delete an element of D(A).

A typical situation where (C2') holds although (C2) fails is that
in which H is a set of lines in the plane and T(S) are the trapezoids
in the vertical decomposition of the cell in the arrangement of S that
contains some fixed point, say 0. Then A can be made to disappear
by adding a line to S even if that line does not intersect A, as is
illustrated below:

This weaker axiom was first used instead of (C2) by Chazelle, Edels-
brunner, Guibas, Sharir, and Snoeyink [CEG193]. For a proof of a
counterpart of Proposition 6.5.2 under (C2') see Agarwal, Matousek,
and Schwarzkopf [AMS98].

Yet another proof of the cutting lemma in arbitrary dimension was
invented by Chazelle [Cha93a]. An outline of the argument can also
be found in Chazelle’s book [Cha00Oc] or in the chapter by Matousek
in [SUO0].

Both the proofs of the higher-dimensional cutting lemma depend
crucially on the fact that the arrangement of n hyperplanes in R¢, d
fixed, can be triangulated using O(n?) simplices. As was explained in
Section 6.2, the arrangement of n bounded-degree algebraic surfaces
in R% has O(n?) faces in total, but the faces can be arbitrarily compli-
cated. A challenging open problem is whether each face can be further
decomposed into “simple” pieces (each of them defined by a constant-
bounded number of bounded-degree algebraic inequalities) such that
the total number of pieces for the whole arrangement is O(n?) or not
much larger. This is easy for d = 2 (the vertical decomposition will
do), but dimension 3 is already quite challenging. Chazelle, Edels-
brunner, Guibas, and Sharir [CEGS89] found a general argument that
provides an O(n??~2) bound in dimension d using a suitable vertical
decomposition. By proving a near-optimal bound in the 3-dimensional
case and using it as a basis of the induction, they obtained the bound
of O(n?=383(n)), where (3 is a very slowly growing function (much
smaller than log* n). Recently Koltun [Kol01] established a near-tight
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bound in the 4-dimensional situation, which pushed the general bound
to O(n?d=4+¢) for every fixed d > 4.

This decomposition problem is the main obstacle to proving an
optimal or near-optimal cutting lemma for arrangements of algebraic
surfaces. For some special cases, say for an arrangement of spheres in
R4, optimal decompositions are known and an optimal cutting lemma
can be obtained. In general, if one can prove a bound of O(n®) for
the number of pieces in the decomposition, then the techniques of
Chapter 10 yield %—cuttings of size O(r®log®r), and if, moreover, the
locality condition (C2) can be guaranteed, then the method of the
present section leads to %—cuttings of size O(r?®).

Exercises

1. Estimate the largest k = k(n) such that in a row of n tosses of a fair coin
we obtain & consecutive tails with probability at least % In particular,
using the trick with blocks in the text, check that for k = | logy n], the
probability of not getting all tails in any of the blocks is exponentially
small (as a function of n).

2. Let X = X7 + X5+ -+ + X,,, where the X, are independent random
variables, each attaining the value 1 with probability p and the value 0
with probability 1 — p.

(a) Calculate E[X?]. 2]

(b) Prove that for every integer d > 1 there exists cq such that E[X?] <
(np+cq)®. (You can use a Chernoff-type inequality, or prove by induction
that E[(X + a)?] < (np+d + a)? for all nonnegative integers n, d, and
a.)

(c) Use (b) to prove that E[X®] < (np + ¢,)® also holds for nonintegral
a>1.

3. Let X = X; + X5+ ---+ X, be as in the previous exercise. Show that
E[(})] =p%(3) (where d > 0 is an integer) and conclude that E[X9] <
ca(np)? for np > d and a suitable ¢z > 0.

4. Let P be a d-dimensional simple convex polytope. Prove that the bottom-
vertex triangulation of P has at most Cyfo(P) simplices, where Cy; de-
pends only on d and fo(P) denotes the number of vertices of P. [
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Lower Envelopes

This is a continuation of the chapter on arrangements. We again study the
number of vertices in a certain part of the arrangement: the lower envelope.
Already for segments in the plane, this problem has an unexpectedly subtle
and difficult answer. The closely related combinatorial notion of Davenport-
Schinzel sequences has proved to be a useful general tool, since the surprising
phenomena encountered in the analysis of the lower envelope of segments are
by no means rare in combinatorics and discrete geometry.

The chapter has two rather independent parts. After a common introduc-
tion in Section 7.1, lower envelopes in the plane are discussed in Sections 7.2
through 7.4 using Davenport—Schinzel sequences. Sections 7.5 and 7.6 gently
introduce the reader to geometric methods for analyzing higher-dimensional
lower envelopes, finishing with a quick overview of known results in Sec-
tion 7.7.

7.1 Segments and Davenport—Schinzel Sequences

The following question is extremely natural: What is the mazimum possible
combinatorial complexity of a single cell in an arrangement of n segments?
(The arrangement of segments was defined in Section 6.2.)

The complexity of a cell can be measured as the number of vertices and
edges on its boundary. It is immediate that the number of edges is at most
proportional to the number of vertices plus 2n, the total number of endpoints
of the segments, and so it suffices to count the vertices.

Here we mainly consider a slightly simpler question: the maximum com-
plexity of the lower envelope of n segments. Informally, the lower envelope of
an arrangement is the part that can be seen by an observer sitting at (0, —o0)
and looking upward. In the picture below, the lower envelope of 4 segments
is drawn thick:



166 Chapter 7: Lower Envelopes

If we think of the segments as graphs of (partially defined) functions, the
lower envelope is the graph of the pointwise minimum. It consists of pieces
of the segments, and we are interested in the maximum possible number of
these pieces (in the drawing, we have 7 pieces). Let us denote this maximum
by o(n).

Davenport—Schinzel sequences. A tight upper bound for o(n) has been
obtained via a combinatorial abstraction of lower envelopes, the so-called
Davenport—Schinzel sequences. These are closely related to segments, but
the most natural way of introducing them is starting from curves. Let us
consider a finite set of curves in the plane, such as in the following picture:

We suppose that each curve is a graph of a continuous function R — R; in
other words, each vertical line intersects it exactly once. Most significantly,
we assume that every two of the curves intersect in at most s points for some
constant s. This condition holds, for example, if the curves are the graphs of
polynomials of degree at most s.

Let us number the curves 1 through n, and let us write down the sequence
of the numbers of the curves along the lower envelope from left to right:

I T T T

We obtain a sequence ajaqas...ag with the following properties:

(i) For all i, a; € {1,2,...,n}.
(ii) No two adjacent terms coincide; i.e., a; # @iy1-
(i) There is no (not necessarily contiguous) subsequence of the form

.a...b...a...b... ... a...b...,
| ! ! L L J

s + 2 letters c'z' éhd b

where a # b. In other words, there are no indices i; < ig < i3 < +-- < is42
with a;, # aiy, @i, =04, =a;, =+, and a;, = a;, = ;5 = -
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Only (iii) needs a little thought: It suffices to note that between an occurrence
of a curve a and an occurrence of a curve b on the lower envelope, a and b
have to intersect.

Any finite sequence satisfying (i)—(iii) is called a Davenport-Schinzel se-
quence of order s over the symbols 1,2,...,n. It is not important that the
terms of the sequence are the numbers 1,2,...,n; often it is convenient to
use some other set of n distinct symbols.

Let us remark that every Davenport—-Schinzel sequence of order s over n
symbols corresponds to the lower envelope of a suitable set of n curves with at
most s intersections for each pair of curves (Exercise 1). On the other hand,
very little is known about the realizability of Davenport—Schinzel sequences
by graphs of polynomials of degree s, say.

We will mostly consider Davenport—-Schinzel sequences of order 3. This is
the simplest nontrivial case and also the one closely related to lower envelopes
of segments. Every two segments intersect at most once, and so it might
seem that their lower envelope gives rise to a Davenport—Schinzel sequence
of order 1, but this is not the case! The segments are graphs of partially defined
functions, while the discussion above concerns graphs of functions defined on
all of R. We can convert each segment into a graph of an everywhere-defined
function by appending very steep rays to both endpoints:

T >

All the left rays are parallel, and all the right ones are parallel. Then every two
of these curves have at most 3 intersections, and so if the considered segments
are numbered 1 through n and we write the sequence of their numbers along
the lower envelope, we get a Davenport—Schinzel sequence of order 3 (no
ababa).

Let As(n) denote the maximum possible length of a Davenport—Schinzel
sequence of order s over n symbols. Some work is needed to see that \s(n) is
finite for all s and n; the reader is invited to try this. The bound A\;(n) = n is
trivial, and A3(n) = 2n—1 is a simple exercise. Determining the asymptotics
of A3(n) is a hard problem; it was posed in 1965 and solved in the mid-1980s.
We will describe the solution later, but here we start more modestly: with a
reasonable upper bound on Az(n).

7.1.1 Proposition. We have o(n) < A3(n) < 2nlnn + 3n.

Proof. Let w be a Davenport—Schinzel sequence of order 3 over n symbols.
If the length of w is £, then there is a symbol a occurring at most % times
in w. Let us remove all occurrences of such a from w. The resulting sequence
can contain some pairs of adjacent equal symbols. But we claim that there
can be at most 2 such pairs, coming from the first and last occurrences of a.
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Indeed, if some a which is neither the first nor the last ¢ in w were surrounded
by some b from both sides, we would have the situation ...a...bab...a.
with the forbidden pattern ababa. So by deleting all the a and at most 2
more symbols, we obtain a Davenport—Schinzel sequence of order 3 over n—1
symbols.

We arrive at the recurrence

Az(n) <

which can be rewritten to
Az(n) < As(n—1) + 2

&00+2+A(n—n,

n n—1 n—1

(we saw such a recurrence in the proof of the zone theorem). Together with
A3(1) =1 this yields

)\3 (n) 1 1 1
<14+2(14+=-+= —
> 215 +g+

and so A3(n) < 2nlnn + 3n as claimed. i

Bibliography and remarks. A detailed account of the history of
Davenport—Schinzel sequences and of the analysis of lower envelopes,
with references up until 1995, can be found in the book of Sharir
and Agarwal [SA95]. Somewhat more recent results are included in in
their surveys [ASO0b] and [AS00a]. We sketch this development and
mention some newer results in the notes to Section 7.3.

Exercises

1. Let w be a Davenport—Schinzel sequence of order s over the symbols

1,2,...,n. Construct a family of planar curves hi,hs,...,h,, each of

them intersecting every vertical line exactly once and each two intersect-

ing in at most s points, such that the sequence of the numbers of the

curves along the lower envelope is exactly w. [2]

Prove that A2(n) = 2n—1 (the forbidden pattern is abab). (2]

Prove that for every n and s, As(n) < 1+ (s+1)(3).

4. Show that the lower envelope of n rays in the plane has O(n) complexity.
(<]

5. (Planar zone theorem via Davenport—Schinzel sequences) Prove the zone
theorem (Theorem 6.4.1) for d = 2 using the fact that Az(n) = O(n).
Consider only the part above the line g, and assign one symbol to each
side of each line. [4]

6. Let g1,92,...,9m C R? be graphs of piecewise linear functions R —
R that together consist of n segments and rays. Prove that the lower
envelope of g1, g2, ...,9m has complexity O(Z A3(2m)); in particular, if
m = O(1), then the complexity is linear. [2]

LN
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7. Let P, Ps,..., Py be convex polygons (not necessarily disjoint!) in the
plane with n vertices in total such that no vertex is common to two or
more P; and the vertices form a point set in general position. Prove that
the number of lines that intersect all the P; and are tangent to at least
two of them is at most O(A\3(n)).

8. (Dynamic lower envelope of lines) Let ¢4, £s, . .. , £, be lines in the plane in
general position (in particular, none of them is vertical). At each moment
t of time, only a certain subset L; of the lines is present: ¢; is inserted
at time s; and it is removed at time t; > s;. We are interested in the
maximum possible total number f(n) of vertices of the arrangement of
the £; that appear as vertices of the lower envelope of L, for at least one
teR.

(a) Show that f(n) = Q(o(n)), where o(n) is the maximum complexity
of the lower envelope of n segments.

(b) Prove that f(n) = O(nlogn). (Familiarity with data structures like
segment trees or interval trees may be helpful.) [E]

These results are from Tamir [Tam88|, and improving the lower bound
or the upper bound is a nice open problem.

7.2 Segments: Superlinear Complexity of the Lower
Envelope

In Proposition 7.1.1 we have shown that the lower envelope of n segments
has complexity at most O(nlogn), but it turns out that the true complexity
is still lower. With this information, the next reasonable guess would be that
perhaps the complexity is linear in n. The truth is much subtler, though: On
the one hand, the complexity behaves like a linear function for all practical
purposes, but on the other hand, it cannot be bounded by any linear function:
It outgrows the function n — Cn for every fixed C. We present an ingenious
construction witnessing this.

7.2.1 Theorem. The function o(n), the maximum combinatorial complex-
ity of the lower envelope of n segments in the plane, is superlinear. That is,
for every C there exists an ng such that o(ng) > Cng. Consequently, Az(n),
the maximum length of a Davenport—Schinzel sequence of order 3, is super-
linear, too.

Proof. For every integers k,m > 1 we construct a set Si(m) of segments
in the plane. Let ng(m) = [Sx(m)| be the number of segments and let ex(m)
denote the number of arrangement vertices and segment endpoints on the
lower envelope of Si(m). We prove that ex(m) > 1k - ng(m). In particular,
for m = 1 and k — oo, this shows that the complexity of the lower envelope
is nonlinear in the number of segments.
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If we really need only the case m = 1, then what is the parameter m
good for? The answer is that we proceed by double induction, on both &
and m, and in order to specify Sk(1), for example, we need Si_1(2). Results
of mathematical logic, which are beyond the scope of this book, show that
double induction is in some sense unavoidable: The “usual” induction on a
single variable is too crude to distinguish o(n) from a linear function.

The segments in Si(m) are usually not in general position, but they are
aggregated in fans by m segments. A fan of m segments is illustrated below
for m = 4:

All the segments of a fan have a common left endpoint and positive slopes, and
the length of the segments increases with the slope. Other than forming the
fans, the segments are in general position in an obvious sense. For example,
no endpoint of a segment lies inside another segment, the endpoints do not
coincide unless the segments are in a common fan, and so on.

Let fi(m) denote the number of fans forming Si(m); we have ng(m) =
m - fr(m).

First we describe the construction of Si(m) roughly, and later we make
precise some finer aspects. As was already mentioned, we proceed by induc-
tion on k and m. One of the invariants of the construction is that the left
endpoints of all the fans of Si(m) always show up on the lower envelope.

First we specify the boundary cases with kK = 1 or m = 1. For k = 1,
S1(m) is simply a single fan with m segments. For m = 1, Si(1) is obtained
from S;_1(2) by the following transformation of each fan (each fan has 2
segments):

The lower segment in each fan is translated by the same tiny amount to the
left.

Now we describe the construction of Si(m) for general k, m > 2. First we
construct Si(m—1) inductively. We shrink this Sx(m—1) both vertically and
horizontally by a suitable affine transform; the vertical shrinking is much
more intensive than the horizontal one, so that all segments become very
short and almost horizontal. Let S’ be the transformed Sy (m—1). We will use
many translated copies of S’ as “microscopic” ingredients in the construction
of Sk(m).

The “master plan” of the construction is obtained from Si_;(M), where
M = fr(m—1) is the number of fans in §’. Namely, we first shrink Si_; (M)
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vertically so that all segments become nearly horizontal, and then we apply
the affine transform (z,y) — (z,z + y) so that the slopes of all the segments
are just a little over 1. Let S* denote the resulting set.

For each fan F in the master construction S*, we make a copy Sg of
the microscopic construction S’ and place it so that its leftmost endpoint
coincides with the left endpoint of F. Let the segments of F' be s1,...,8u:,
numbered by increasing slopes, and let £1,..., £y be the left endpoints of
the fans in Sy, numbered from left to right. The fan F' is gigantic compared
to Sp. Now we take F apart: We translate each s; so that its left endpoint
goes to £;. The following drawing shows this schematically, since we have no
chance to make a realistic drawing of Sx(m—1). Only a very small part of F’
near its left endpoint is shown.

S84 8382 S1 S2
A8 P
F F
S4
S

14
Sg
0y by f3 £y

This construction yields Si(m). It correctly produces fans of size m, by ap-
pending one top (and long) segment to each fan in every Sp. If S’ was taken
sufficiently tiny, then all the vertices of the lower envelope of S* are pre-
served, as well as those in each S§. Crucially, we need to make sure that the
above transformation of each fan F' in S* yields M —1 new vertices on the
envelope, as is indicated below:

The new vertices lie on the right of S but, in the scale of the master con-
struction S*, very close to the former left endpoint of F', and so they indeed
appear on the lower envelope.

This is where we need to make the whole construction more precise,
namely, to say more about the structure of the fans in Si(m). Let us call
a fan r-escalating if the ratio of the slopes of every two successive segments
in the fan is at least r. It is not difficult to check that for any given r > 1,
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the construction of Sg(m) described above can be arranged so that all fans
in the resulting set are r-escalating.

Then, in order to guarantee that the M —1 new vertices per fan arise in
the general inductive step described above, we make sure that the fans in the
master construction S* are affine transforms of r-escalating fans for a suitable
very large r. More precisely, let  be a given number and let r = r(k, Q) be
sufficiently large and § = §(k, Q) > 0 sufficiently small. Let F' arise from an
r-escalating fan by the affine transformation described above (which makes
all slopes a little bigger than 1), and assume that the shortest segment has
length 1, say. Suppose that we translate the left endpoint of s;, the segment
with the ith smallest slope in F', by 6; + d2 + - - - + §; almost horizontally to
the right, where § < §; < Q6. Then it is not difficult to see, or calculate, that
the lower envelope of the translated segments of F' looks combinatorially like
that in the last picture and has M —1 new vertices. The reader who is not
satisfied with this informal argument can find real and detailed calculations
in the book [SA95].

We want to prove that the complexity of the lower envelope of Si(m) is
at least %km times the number of fans; in our notation,

ex(m) > Lkm - fi(m).

This is simple to do by induction, although the numbers involved are fright-
eningly large. For k = 1, we have f;(m) = 1 and e;(m) = m+1, so we are fine.
For m = 1, we obtain fx(1) = 2fx—1(2) and ex(1) = ex_1(2) + 2fx—1(2) >
3(E=1) -2+ fr_1(2) + 2f-1(2) = (k+1) - fe—1(2) > 3k - fr(D).

In the construction of Si(m) for k,m > 2, each of the fr_;(M) fans of
the master construction S* produces M = fi(m—1) fans, and so

fe(m) = fe-1(M) - M.

For the envelope complexity we get a contribution of ex_i(M) from S*,
ex(m—1) from each copy of S/, and M —1 new vertices for each copy of §’.
Putting this together and using the inductive assumption to eliminate the
function e, we have

ex(m) > ex-1(M) + fe-1(M)[ex(m = 1) + M 1]
> foor (M) - [%(k ~ )M + lk(m—1)M + M — 1]
> fe1(M) - [%kM + Lk(m - 1)M]
= Lkm- M- fe_y(M) = 3km.- fi(m).
Theorem 7.2.1 is proved. O

Note how the properties of the construction Si(m) contradict the intuition
gained from small pictures: Most of the segments appear many times on
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the lower envelope, and between two successive segment endpoints on the
envelope there is typically a concave arc with quite a large number of vertices.

Bibliography and remarks. An example of n segments with super-
linear complexity of the lower envelope was first obtained by Wiernik
and Sharir [WS88], based on an abstract combinatorial construction
of Davenport—Schinzel sequences of order 3 due to Hart and Sharir
[HS86]. The simpler construction shown in this section was found by
Shor (in an unpublished manuscript; a detailed presentation is given
in [SA95]).

Exercises

1. Construct Davenport—Schinzel sequences of order 3 of superlinear length
directly. That is, rephrase the construction explained in this section in
terms of Davenport—Schinzel sequences instead of segments.

7.3 More on Davenport—Schinzel Sequences

Here we come back to the asymptotics of the Davenport—Schinzel sequences.
We have already proved that Az(n)/n is unbounded. It even turns out that
the construction in the proof of Theorem 7.2.1 yields an asymptotically tight
lower bound for Ag(n), which is of order na(n). Of course, we should explain
what a(n) is.

In order to define the extremely slowly growing function «a, we first intro-

duce a hierarchy of very fast growing functions A;, As,... . We put
Al(n) = 2n7
Ag(n) = Ag_10Ag_10---0Ak_1(1) (n-fold composition), k = 2,3,....

Only the first few of these functions can be described in usual terms: We have
2

As(n) = 2™ and Az(n) = 22 with n twos in the exponential tower. The
Ackermann function’ A(n) is defined by diagonalizing this hierarchy:

A(n) = A, (n).
And « is the inverse function to A:
a(n) = min{k > 1: A(k) > n}.

Since A(4) is a tower of 2’s of height 2'6, encountering a number n with
a(n) > 4 in any physical sense is extremely unlikely.

! Several versions of the Ackermann function can be found in the literature, dif-
fering in minor details but with similar properties and orders of magnitude.
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The Ackermann function was invented as an example of a function grow-
ing faster than any primitive recursive function. For people familiar with
some of the usual programming languages, the following semiformal expla-
nation can be given: No function as large as A(n) can be evaluated by a
program containing only FOR loops, where the number of repetitions of each
loop in the program has been computed before the loop begins. For a long
time, it was thought that A(n) was a curiosity irrelevant to “natural” math-
ematical problems. Then theoretical computer scientists discovered it in the
analysis of an extremely simple algorithm that manipulates rooted trees, and
subsequently it was found in the backyard of elementary geometry, namely
in the asymptotics of the Davenport—Schinzel sequences.

As was already remarked above, a not too difficult analysis of the con-
struction in Theorem 7.2.1 shows that A\3(n) = Q(na(n)). This is the correct
order of magnitude, and we will (almost) present the matching upper bound
in the next section. Even the constants in the asymptotics of A3(n) are known
with surprising precision. Namely, we have

1 na(n) — 2n < A3(n) < 2na(n) + O ( na(n)) ,

and so the gap in the main term is only a factor of 4, in spite of the complexity
of the whole problem!

Higher-order Davenport—Schinzel sequences and their generaliza-
tions. The asymptotics of the functions As(n) for fixed s > 3, which corre-
spond to forbidden patterns ababa ... with s+2 letters, is known quite well,
although not entirely precisely. In particular, Ag(n) is of the (strange) order
n-2%M™  and for a general fixed s, we have

n - 2P+(@(m) <\ (n) < . 20:(@(m),

where p,(z) is a polynomial of degree [i;—:’J (with a positive leading coeffi-
cient) and ¢s(z) is a polynomial of the same degree, for s odd multiplied by
log z. The proofs are similar in spirit to those shown for s = 3 but tech-
nically much more complicated. On the other hand, proving something like
As(n) = O(nlog™ n) for every fixed s is not very difficult with the tricks from
the proof of Proposition 7.4.2 below (see Exercise 7.4.1).

The Davenport—Schinzel sequences have the simple alternating forbidden
pattern ababa ... . More generally, one can consider sequences with an arbi-
trary fixed forbidden pattern v, such as abecdabedabed, where a, b, ¢, d must be
distinct symbols. Of course, here it is not sufficient to require that every two
successive symbols in the sequence be distinct, since then the whole sequence
could be 121212.. . of arbitrary length. To get a meaningful problem, one can
assume that if the forbidden pattern v has k distinct letters (kK = 4 in our
example), then each k consecutive letters in the considered sequence avoiding
v must be distinct. Let Ex(v,n) denote the maximum possible length of such
a sequence over n symbols. It is known that for every fixed v, we have
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Ex(v,n) < O (n : za(nv)

for a suitable exponent ¢ = ¢(v). In particular, the length of such sequences
is nearly linear in n. Moreover, many classes of patterns v are known with
Ex(v,n) = O(n), although a complete characterization of such patterns is
still elusive. For example, for patterns v consisting only of two letters a and
b, Ex(v,n) is linear in n if and only if v contains no subsequence ababa (not
necessarily contiguous). These results have already found nice applications
in combinatorial geometry and in enumerative combinatorics.

Bibliography and remarks. Davenport and Schinzel [DS65] de-
fined the sequences now associated with their names in 1965, moti-
vated by a geometric problem from control theory leading to lower
envelopes of a collection of planar curves. They established some sim-
ple upper bounds on As(n). The next major progress was made by
Szemerédi [Sze74], who proved that A\s;(n) < Csnlog® n for a suitable
Cs, where log* n is the inverse of the tower function As(n). Over ten
more years passed until the breakthrough of Hart and Sharir [HS86],
who showed that Az(n) is of order na(n). A recollection of Sharir
about their discovery, after several months of trying to prove a lin-
ear upper bound and then learning about Szemerédi’s paper, deserves
to be reproduced (probably imprecisely but with Micha Sharir’s kind
consent): “We decided that if Szemerédi didn’t manage to prove that
As(n) is linear then it is probably not linear. We were aware of only
one result with a nonlinear lower bound not exceeding O(n log* n), and
this was Tarjan’s bound of ©(na(n)) for path compressions. In des-
peration, we tried to relate it to our problem, and a miracle happened:
The construction Tarjan used for his lower bound could be massaged
a little so as to yield a similar lower bound for Az(n).”

The path compression alluded to is an operation on a rooted tree.
Let T be a tree with root r and let p be a leaf-to-root path of length
at least 2 in T. The compression of p makes all the vertices on p,
except for r, sons of r, while all the other father-to-son relations in T
remain unchanged. Tarjan [Tar75] proved, as a part of an analysis of a
simple algorithm for the so-called UNION-FIND problem, that if T is
a suitably balanced rooted tree with n nodes, then the total length of
all paths in any sequence of successive path compressions performed
on T is no more than O(na(n)), and this is asymptotically tight in
the worst case. Hart and Sharir put Davenport—Schinzel sequences of
order 3 into correspondence with generalized path compressions (where
only some nodes on the considered path become sons of the root, while
the others retain the same father) and analyzed them in the spirit of
Tarjan’s proofs. Later the proofs were simplified and rephrased by
Sharir to work directly with Davenport-Schinzel sequences.
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The constant % in the lower bound on A3(n) is by Wiernik and
Sharir [WS88], and the 2 in the upper bound is due to Klazar
[K1a99] (he gives a self-contained proof somewhat different from that
in [SA95]).

The most precise known bounds for A;(n) with s > 4 were obtained
by Agarwal, Sharir, and Shor [ASS89], as a slight improvement over
earlier results of Sharir.

Davenport—Schinzel sequences are encountered in many geomet-
ric and nongeometric situations. Even the straightforward bound
A2(n) = 2n—1 is often useful for simplifying proofs, and the asymp-
totics of the higher-order sequences allow one to prove bounds involv-
ing the function a(n) without too much work, although such bounds
are difficult to derive from scratch. Numerous applications, mostly ge-
ometric, are listed in [SA95].

Single cell. Pollack, Sharir, and Sifrony [PSS88] proved that the com-
plexity of a single cell in an arrangement of n segments in the plane is
at most O(na(n)), by a reduction to Davenport—Schinzel sequences of
order 3 (see Exercise 1). A similar argument shows that a single cell
in an arrangement of n curves, with every two curves intersecting at
most s times, has complexity O(As42(n)) (see [SA95]).

Generalized Davenport-Schinzel sequences were first considered by
Adamec, Klazar, and Valtr [AKV92]. The near-linear upper bound
Ex(v,n) = O(n - 2%™°) mentioned in the text is from Klazar [K1a92].
The most general results about sequences u with Ex(u,n) = O(n)
were obtained by Klazar and Valtr [KV94]. A recent survey, includ-
ing applications of the generalized Davenport—Schinzel sequences, was
written by Valtr [Val99a).

We mention two applications. The first one concerns Ramsey-type
questions for geometric graphs (already considered in the notes to Sec-
tion 4.3). We consider an n-vertex graph G drawn in the plane whose
edges are straight segments, and we ask, what is the maximum possible
number of edges of G so that the drawing does not contain a certain
geometric configuration? Here we are interested in the following two
types of configurations: k pairwise crossing edges

3 pairwise crossing edges

and k pairwise parallel edges, where two edges are called parallel if
they do not cross and their four vertices are in convex position:
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A graph with no two crossing edges is planar and thus has O(n) ver-
tices. It seems to be generally believed that forbidding k& pairwise cross-
ing edges forces O(n) edges for every fixed k. This has been proved
for k = 3 by Agarwal, Aronov, Pach, Pollack, and Sharir [AAP*97],
and for all k > 4, the best known bound is O(nlogn) due to Valtr
(see [Val99al). For k forbidden pairwise parallel edges, he derived an
O(n) bound for every fixed k using generalized Davenport—Schinzel
sequences, and the O(n logn) bound for k pairwise crossing edges fol-
lows by a neat simple reduction. In this connection, let us mention
a nice open question: What is the smallest n = n(k) such that any
straight-edge drawing of the complete graph K, always contains k
pairwise crossing edges? The best known bound is O(k?) [AEG194],
but perhaps the truth is O(k) or close to it.

The second application of generalized Davenport—Schinzel sequen-
ces concerns a conjecture of Stanley and Wilf. Let ¢ be a fixed per-
mutation of {1,2,...,k}. We say that a permutation 7 of {1,2,...,n}
contains o if there are indices i; < i3 < --- < 4 such that o(u) < o(v)
if and only if m(iy) < 7(iy), 1 < u < v < k. Let N(o,n) de-
note the number of permutations of {1,2,...,n} that do not con-
tain o. The Stanley-Wilf conjecture states that for every &k and o
there exists C such that N(o,n) < C™ for all n. Using generalized
Davenport—Schinzel sequences, Alon and Friedgut [AF00] proved that
log N(o,n) < nfB(n) for every fixed o, where 3(n) denotes a very
slowly growing function, and established the Stanley—Wilf conjecture
for a wide class of ¢ (previously, much fewer cases had been known).
Klazar [K1a00] observed that the Stanley—Wilf conjecture is implied by
a conjecture of Fiiredi and Hajnal [FH92] about the maximum number
of 1’s in an nxn matrix of O’s and 1’s that does not contain a kxk
submatrix having 1’s in positions specified by a given fixed kxk per-
mutation matrix. Fiiredi and Hajnal conjectured that at most O(n)
1’s are possible. The analogous questions for other types of forbidden
patterns of 1’s in 0/1 matrices are also very interesting and very far
from being understood; this is another direction of generalizing the
Davenport—Schinzel sequences.

Exercises

1. Let C be a cell in an arrangement of n segments in the plane (assume
general position if convenient).
(a) Number the segments 1 through n and write down the sequence of
the segment numbers along the boundary of C, starting from an arbi-
trarily chosen vertex of the boundary (decide what to do if the boundary
has several connected components!). Check that there is no ababab sub-

sequence, and hence that the combinatorial complexity of C is no more
than O(\4(n)).
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(b) Find an example where an ababa subsequence does appear in the
sequence constructed in (a). &
(¢) Improve the argument by splitting the segments suitably, and show
that the boundary of C has complexity O(na(n)).

2. We say that an nxn matrix A with entries 0 and 1 is good if it contains

no ( i ; i ; >; that is, if there are no indices 7; < i3 and j; < j2 <

J3 < Ja With as,j; = @ipjp = Giyjy = Ginje = 1.

(a) Prove that a good A has at most A;(n) + O(n) ones for a suitable
constant s.

(b) Show that one can take s = 3 in (a). [4]

7.4 Towards the Tight Upper Bound for Segments

As we saw in Proposition 7.1.1, it is not very difficult to prove that the
maximum length of a Davenport—Schinzel sequence of order 3 over n symbols
satisfies A3(n) = O(nlogn). Getting anywhere significantly below this bound
seems much harder, and the tight bound requires double induction. But there
is only one obvious parameter in the problem, namely the number n, and
introducing the second variable for the induction is one of the keys to the
proof.

Let w = aiaz...ay be a sequence. A nonrepetitive segment in w is a
contiguous subsequence u = a;a;41 - . - a4+ consisting of k distinct symbols.
A sequence w is m-decomposable if it can be partitioned into at most m
nonrepetitive segments (the partition need not be unique). Here is the main
definition for the inductive proof: Let 1)(m, n) denote the maximum possible
length of an m-decomposable Davenport—Schinzel sequence of order 3 over n
symbols. First we relate ¥(m,n) to As(n).

7.4.1 Lemma. Every Davenport-Schinzel sequence of order 3 over n sym-
bols is 2n-decomposable, and consequently,

As(n) < ¥Y(2n,n).

Proof. Let w be the given Davenport—Schinzel sequence. We define a linear
ordering = on the symbols occurring in w: We set a < b if the first occurrence
of the symbol a in w precedes the first occurrence of the symbol b. We par-
tition w into mazximal strictly decreasing segments according to the ordering
<. Here is an example of such a partitioning (the sequence is chosen so that
the usual ordering of the digits coincides with <): 1]2|32|421|5|6543. Clearly,
each strictly decreasing segment is a nonrepetitive segment as well, and so it
suffices to show that the number of the maximal strictly decreasing segments
is at most 2n (the tight bound is actually 2n—1).

Let u; and u;41 be two consecutive maximal strictly decreasing segments,
let a be the last symbol of u;, let 7 be its position in w, and let b be the first
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symbol of u;y; (at the (i4+1)st position). We claim that the ith position is
the last occurrence of a or the (i+1)st position is the first occurrence of b.
This will imply that we have at most 2n segments u;, because each of the n
symbols has (at most) one first and one last occurrence.

Supposing that the claim is not valid, we find the forbidden subsequence
ababa. We have a < b, for otherwise the (i+1)st position could be appended
to u;, contradicting the maximality. The b at position ¢+1 is not the first b,
and so there is some b before the ith position. There must be another a even
before that b, for otherwise we would have b < a. Finally, there is an a after
the position i+1, and altogether we have the desired ababa. m|

Next, we derive a powerful recurrence for ¢ (m,n). It is perhaps best
to understand the proof first, and the complicated-looking statement then
becomes quite natural.

7.4.2 Proposition. Let m,n > 1 and p < m be integers, and let m =

my + mg + -+ + my be a partition of m into p nonnegative addends. Then
there is a partition n = ny +ng + - - + ny, +n* such that

p
¢(m, n) _<_ dm + 4n* + ¢(p’ 7’1,*) + Zw(mka nk)'
k=1

Proof. Let w be an m-decomposable Davenport—Schinzel sequence of order 3
over n symbols attaining ¥(m,n). Let w = wjuz...un, be a partition of w
into nonrepetitive segments. Let w; = ujuz...un,, consist of the first m;
nonrepetitive segments, wo = Um,+1 - - - Um, +m, Of the next my segments,
and so on until w,. We call wy,ws,...,wy, the parts of w.

We divide the symbols in w into two classes: A symbol a is local if it
occurs in (at most) one of the parts wg, and it is nonlocal if it appears in at
least two distinct parts. We let n* be the number of distinct nonlocal symbols
and ny the number of distinct local symbols occurring in wy.

If we delete all the nonlocal symbols from wy, we obtain an mg-decompos-
able sequence over ny symbols with no ababa. However, this sequence can
still contain consecutive repetitions of some symbols, which is forbidden for
a Davenport—Schinzel sequence. So we delete all symbols in each repetition
but the first one; for example, 122232244 becomes 12324. We note that con-
secutive repetitions can occur only at the boundaries of the nonrepetitive
segments u;, and so at most my—1 local symbols have been deleted from wy.
The remaining sequence is already a Davenport—Schinzel sequence, and so
the total number of positions of w occupied by the local symbols is at most

P P
Z[mk -1+ Y(mg,n)] <m+ Zz/)(mk,nk).

k=1 k=1

Next, we need to deal with the nonlocal symbols. Let us say that a non-
local symbol a is a middle symbol in a part wy if it occurs both before wy
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and after wy; otherwise, it is a nonmiddle symbol in wy. We estimate the
contributions of middle and nonmiddle symbols separately.

First we consider each part wy in turn, and we delete all local symbols and
all nonmiddle symbols from it. Then we look at the sequence that remains
from w after these deletions, and we delete all symbols but one from each
contiguous repetition. As in the case of the local symbols, we have deleted
at most m middle symbols. Clearly, the resulting sequence is a Davenport—
Schinzel sequence of order 3 over n* symbols, and we claim that it is p-
decomposable (this is perhaps the most surprising part of the proof). Indeed,
if we consider what remained from some wy, we see that sequence cannot
contain a subsequence bab, because some a’s precede and follow wj and we
would get the forbidden ababa. Therefore, the surviving symbols of wy form
a nonrepetitive segment. Hence the total contribution of the middle symbols
to the length of w is at most m + ¥(p, n*).

The nonmiddle symbols in a given wy can conveniently be divided into
starting and ending symbols (with the obvious meaning). We concentrate on
the total contribution of the starting symbols; the case of the ending symbols
is symmetric. Let n}, be the number of distinct starting symbols in wg; we have

-1 71} < n*, since a symbol is starting in at most one part. Let us erase
from wy, all but the starting symbols, and then we also remove all contiguous
repetitions in each wyg, as in the two previous cases. The remaining starting
symbols contain no subsequence abab, since we know that there is some a
following wy. Thus, what is left of wy is a Davenport—Schinzel sequence of
order 2 over ny symbols, and as such it has length at most 2nj,—1. Therefore,
the total number of starting symbols in all of w is no more than

P
Z(mk—1+2nz-—1) <m+2n*.
k=1

Summing up the contributions of local symbols, middle symbols, starting
symbols, and ending symbols, we arrive at the bound claimed in the propo-
sition. Here is a graphic summary of the proof:

local: m for repetitions
0t 1 (mk, )

symbols

. m for repetitions
of w middle:

+¢¥(p,n*) (no aba in wy)

nonlocal m for repetitions
starting: +3Y_, Ao(n})

non-middle (no abab in wy)

ending: same as starting
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How to prove good bounds from the recurrence. The recurrence just
proved can be used to show that ¥(m,n) = O((m+n)a(m)), and Lemma 7.4.1
then yields the desired conclusion Az(n) = O(na(n)). We do not give the full
calculation; we only indicate how the recurrence can be used to prove better
and better bounds starting from the obvious estimate ¥(m,n) < mn.

First we prove that ¥(m,n) < 4mlog, m + 6n, for m a power of 2. From
our recurrence with p =2 and m; =my = —’2’—‘, we obtain

Pp(m,n) < dm+4n" +9$(2,n") + (%, 1) + (G, n2).

Proceeding by induction on log, m and using ¥(2,n) = 2n, we estimate the
last expression by 4m +4n* +2n* + 2m(logy, m — 1) + 6n1 + 2m(logy m — 1) +
6ng = 4mlog, m + 6n as required.

Next, we assume that m = As(r) (the tower function) for an integer r
and prove ¥(m,n) < 8rm + 10n by induction on r. This time we choose
p= BET;LE and my = % = log, m = As(r—1). For estimating ¥(p, n*) we use
the bound derived earlier. This gives

. P
Y(m,n) < dm+ 4n* +4plog,p+ 6n* + Zz/)(mk,nk)
k=1
< dm +4n* +4m +6n* + 8(r — 1)m + 10(n — n*) = 8rm + 10n.

So, by now we already know that A3(n) = O(nlog* n), where log" n is the
inverse to the tower function Az(n). This bound is as good as linear for
practical purposes.

In general, one proves that for m = Ag(r),

¥(m,n) < (4k — 4)rm + (4k — 2)n,

by double induction on & and r. The inductive assumption for k—1 is always
used to bound the term ¥ (p,n*). We omit the rest of the calculation.

Bibliography and remarks. In this section we draw mostly from
[SA95], with some changes in terminology.

Exercises

1. For integers s > t > 1, let 9!(m,n) denote the maximum length of a
Davenport—-Schinzel sequence of order s (no subsequence abab... with
s+2 letters) over n symbols that can be partitioned into m contiguous
segments, each of them a Davenport—Schinzel sequence of order {. In
particular, ¥s(m,n) = 1!(m,n) is the maximum length of a Davenport—
Schinzel sequence of order s over n symbols that consists of m nonrepet-
itive segments.

(a) Prove that As(n) < ¢S~ Y(n,n). 2
(b) Prove that
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m

Ppi(m,n) <m+ max{z A(ni): > ni < ghs(m, m)}
=1

i=1

(c) Let w be a sequence witnessing 9s(m,n) and let m = my; + mg +
-+ -4+ my be some partition of m. Divide w into p parts as in the proof of
Proposition 7.4.2, the kth part consisting of m; nonrepetitive segments.
With the terminology and notation of that proof, check that the local
symbols contribute at most m+ > 4_, ¥s(my, nk) to the length of w, the
middle symbols at most m + 12~%(p,n*), and the starting symbols no
more than m + ¥s_1(m,n*).

(d) Prove by induction that 1(n,m) < C, - (m + n)log® 2(m+1) and
As(n) < Clnlog® 2(n+1), for all s > 2 and suitable C, and C/, depending
only on s (set p =2 in (c)).

7.5 Up to Higher Dimension: Triangles in Space

As we have seen, lower envelopes in the plane can be handled by means of
a simple combinatorial abstraction, the Davenport-Schinzel sequences. Un-
fortunately, so far, no reasonable combinatorial model has been found for
higher-dimensional lower envelopes. The known upper bounds are usually
much cruder than those in the plane, but their proofs are quite complex and
technical. We start with almost the simplest possible case: triangles in R3.
Here is an example of the lower envelope of triangles viewed from below:

It is actually the vertical projection of the lower envelope on a horizontal plane
lying below all the triangles. The projection consists of polygons, both convex
and nonconvex, and the combinatorial complexity of the lower envelope is the
total number of these polygons plus the number of their edges and vertices.
Simple arguments, say using the Euler relation for planar graphs, show that
if we do not care about constant factors, it suffices to consider the vertices of
the polygons.

It turns out that the worst-case complexity of the lower envelope is of
order n?a(n). Here we prove a simpler, suboptimal bound:



7.5 Up to Higher Dimension: Triangles in Space 183

7.5.1 Proposition. The combinatorial complexity of the lower envelope of
n triangles in R® is at most O(no(n)logn) = O(n2a(n)logn), where o(n)
stands for the maximum complexity of the lower envelope of n segments in
the plane.

It is convenient, although not really essential, to work with triangles in
general position. As usual, a perturbation argument shows that this is where
the maximum complexity of the lower envelope is attained. The precise gen-
eral position requirements can be found by inspecting the forthcoming proof,
and we leave this to the reader.

Walls and boundary vertices. Let H be a set of n triangles in R? in
general position. We need to bound the total number of vertices in the pro-
jection of the lower envelope. The vertices are of two types: those that lie on
the vertical projection of an edge of some of the triangles (boundary vertices),
and those obtained from intersections of 3 triangles (inner vertices). In the
above picture there are many boundary vertices but only two inner vertices.
Yet the boundary vertices are rather easy to deal with, while the inner ver-
tices present the real challenge.

We claim that the total number of boundary vertices is at most O(no(n)).
To see this, let a be an edge of a triangle h € H and let 7, be the “vertical
wall” through a, i.e., the union of all vertical lines that intersect a. Each
triangle of H intersects m, in a (possibly empty) segment. The following
drawing shows the triangle h, the wall 7,, and the segments within it:

Ta

Essentially, the boundary vertices lying on the vertical projection of a cor-
respond to breakpoints of the lower envelope of these segments within .
Only the segment a needs special treatment, since on the one hand, its inter-
sections with other segments can give rise to boundary vertices, but on the
other hand, it does not obscure things lying above it. To take care of this,
we can consider two lower envelopes, one for the arrangement including o
and another without a. So each edge a contributes at most 20(n) boundary
vertices, and the total number of boundary vertices is O(na(n)).

Levels. Each inner vertex of the projected lower envelope corresponds to a
vertex of the arrangement of H lying on the lower envelope, i.e., of level 0
(recall that according to our definition of arrangement, the vertices are inter-
sections of 3 triangles). The level of a vertex v is defined in the usual way: It
is the number of triangles of H that intersect the open ray emanating from
v vertically downwards. Let fi(H) denote the number of vertices of level k,
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k=0,1,.... Further, let fi(n) be the maximum of fx(H) over all sets H of
n triangles (in general position). So our goal is to estimate fo(n).

The first part of the proof of Proposition 7.5.1 employs a probabilistic
argument, very similar to the one in the proof of the zone theorem (Theo-
rem 6.4.1), to relate fo(H) and f1(H) to fo(n—1).

7.5.2 Lemma. For every set H of n triangles in general position, we have

"3 folH) < foln=1) — © fu(H).

Proof. We pick one triangle h € H at random and estimate E[fo(H \ {h})],
the expected number of vertices of the lower envelope after removing h. Every
vertex of the lower envelope of H is determined by 3 triangles, and so its
chances of surviving the removal of h are 2=2. For a vertex v of level 1, the
probability of its appearing on the lower envelope is %, since we must remove
the single triangle lying below v. Therefore,

Blfo(H \ (kD) = "> folH) + — fu(H).

The lemma follows by using fo(H \ {h}) < fo(n—1). O

n

Before proceeding, let us inspect the inequality in the lemma just proved.
Let H be a set of n triangles with fo(H) = fo(n). If we ignored the term
1 f,(H), we would obtain the recurrence 2=3 fo(n) < fo(n—1). This yields
only the trivial estimate fo(n) = O(n?), which is not surprising, since we
have used practically no geometric information about the triangles. In order
to do better, we now want to show that fi(H) is almost as big as fo(H),
in which case the term % f1(H) decreases the right-hand side significantly.
Namely, we prove that

fi(H) = fo(H) — O(no(n)). (7.1)
Substituting this into the inequality in Lemma 7.5.2, we arrive at
n

—2 fy(n) < fo(n—1) + O(o(n).

n

We practiced this kind of recurrences in Section 6.4: The substitution ¢(n) =

—nf(‘;(—fi quickly yields fo(n) = O(no(n)logn). So in order to prove Proposi-
tion 7.5.1, it remains to derive (7.1), and this is the geometric heart of the

proof.

Making someone pay for the level-0 vertices. We are going to relate
the number of level-0 vertices to the number of level-1 vertices by a local
charging scheme: From each vertex v of level 0, we walk around a little and
find suitable vertices of level 1 to pay for v, as follows.

The level-0 vertex v is incident to 6 edges, 3 of them having level 0 and 3
level 1:
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upward direction

lower el I\'l'iu[}l'

The picture shows only a small square piece from each of the triangles incident
to v. The lower envelope is on the bottom, and the edges of level 1 emanating
from v are marked by arrows. Let e be one of the level-1 edges going from v
away from the lower envelope. We follow it until one of the following events
occurs:

(i) We reach the intersection v’ of e with a vertical wall 7, erected from an
edge a of some triangle. This v’ pays 1 unit to v.

(ii) We reach the intersection v’ of e with another triangle; i.e., v’ is a vertex
of the arrangement of H. This v’ pays % of a unit to v.

This is done for all 3 level-1 edges emanating from v and for all vertices v of
level 0. Clearly, every v receives at least 1 unit in total. It remains to discuss
what kind of vertices the v’ are and to estimate the total charge paid by
them.

Since there is no other vertex on e between v and v’, a particular v’ can
be reached from at most 2 distinct v in case (i) and from at most 3 distinct
v in case (ii). So a v’ is charged at most 2 according to case (i) or at most 1
according to case (ii) (because of the general position of H, these cases are
never combined, since no intersection of 3 triangles lies in any of the vertical
walls 7).

Next, we observe that in case (i), v’ has level at most 2, and in case (ii), it
has level exactly 1. This is best seen by considering the situation within the
vertical plane containing the edge e. As we move along e, just after leaving
v we are at level 1, with exactly one triangle h below, as is illustrated next:

e R
/
v v
h
case (i) case (i)

The level does not change unless we enter a vertical wall 7, or another triangle
k' € H. If we first enter some 7,, then case (i) occurs with v/ = e N 7., and
the level cannot change by more than 1 by entering 7,. If we first reach a
triangle b/, we have case (ii) with v' = e N A/, and v has level 1.

Each v’ reached in case (i) is a vertex in the arrangement of segments
within one of the walls 7., and it has level at most 2 there. It is easy to show



186 Chapter 7: Lower Envelopes

by the technique of the proof of Clarkson’s theorem on levels (Theorem 6.3.1)
that the number of vertices of level at most 2 in an arrangement of n segments
is O(o(n)) (Exercise 2). Since we have 3n walls m,, the total amount paid
according to case (i) is O(no(n)).

As for case (ii), all the v/ are at level 1, and each pays at most 1, so the
total charge is at most fi(H).

Therefore, fo(H) < fi(H) + O(no(n)), which establishes (7.1) and con-
cludes the proof of Proposition 7.5.1. D

Bibliography and remarks. The sharp bound of O(n?a(n)) for
the lower envelope of n triangles in R? was first proved by Pach and
Sharir [PS89] using a divide-and-conquer argument. A tight bound of
O(n%'a(n)) for (d—1)-dimensional simplices in R? was established a
little later by Edelsbrunner [Ede89]. Tagansky [Tag96] found a consid-
erably simpler argument and also proved some new results. We used
his method in the proof of Proposition 7.5.1, but since we omitted
a subtler analysis of the charging scheme, we obtained a suboptimal
bound. To improve the bound to O(n2a(n)), the charging scheme is
modified a little: The v’ reached in case (i) pays § instead of 1, and the
v’ reached in case (ii) pays # if it was reached from k < 3 distinct v.
Then it can be shown, with some work, that every vertex of the lower
envelope receives a charge of at least % (and not only 1); see [Tag96].
Hence f1(H) > 3 fo(H) — O(no(n)), and the resulting recurrence be-
comes n;rf’/éfo(n) < fo(n—1)+O(o(n)). It implies fo(n) = O(no(n));
proving this is somewhat complicated, since the simple substitution
trick does not work here.

Exercises

1. Given a construction of a set of n segments in the plane with lower
envelope of complexity o(n), show that the lower envelope of n triangles
in R? can have complexity Q(no(n)). 2]

2. Show that the number of vertices of level at most k in the arrangement of
n segments (in general position) in the plane is at most O(kza(LﬁjJ)).
The proof of the general case of Clarkson’s theorem on levels (Theo-
rem 6.3.1) applies almost verbatim.

7.6 Curves in the Plane

In the proof for triangles shown in the previous section, if we leave a vertex on
the lower envelope along an edge of level 1, we cannot come back to the lower
envelope before one of the events (i) or (ii) occurs. Once we start considering
lower envelopes of curved surfaces, such as graphs of polynomials of degree
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s for some fixed s, this is no longer true: The edge can immediately go back
to another vertex on the lower envelope. Then we would be trying to charge
one vertex of the lower envelope to another. This can be done, but one must
define an “order” for each vertex, and charge envelope vertices of order ¢ only
to vertices of order smaller than ¢ or to vertices of significantly higher levels.

We show this for the case of curves in the plane. This example is artifi-
cial, since using Davenport—Schinzel sequences leads to much sharper bounds.
But we can thus demonstrate the ideas of the higher-dimensional proof, while
avoiding many technicalities. We remark that this proof is not really an up-
grade of the one for triangles: Here we aim at a much cruder bound, and so
some of the subtleties in the proof for triangles can be neglected.

We consider n planar curves as discussed in Section 7.1: They are graphs
of continuous functions R — R, and every two intersect at most s times.
Moreover, we assume for convenience that the curves cross at each intersec-
tion and no 3 curves have a common point.

7.6.1 Proposition. The maximum possible number of vertices on the lower
envelope of a set H of n curves as above is at most O(n'*¢) for every fixed
€ > 0. That is, for every s and every € > 0 there exists C' such that the bound
is at most Cn'*¢ for all n.

Proof. Let v be a vertex of the arrangement of H. We say that v has order ¢
if it is the 7th leftmost intersection of the two curves defining it. So the order
is an integer between 1 and s.

Let fg ,)C(H ) denote the number of vertices of order ¢ and level at most k in

the arrangement of H. Let fg ,)6 (n) be the maximum of this quantity over all

n-element sets H of curves as in the proposition. Further, we write f<x(H) =
P S ,)Q(H ) for the total number of vertices of level at most k. For k = 0
we write just f instead of f<o and similarly for f @,

Let v be a vertex of order 7 on the lower envelope. We define a charging
scheme; that is, we describe who is going to pay for v. We start walking from
v to the left along the curve h passing through v and not being on the lower
envelope on the left of v. If k; vertices are encountered, without returning
to the lower envelope or escaping to —oo, then we charge each of these k;
vertices k% units. Here ky, ko, ..., ks are integer parameters whose values will
be fixed later, but one can think of them as very large constants.

If we end up at —oo before encountering k; vertices, we charge 1 to the
curve h itself. Finally, if we are back at the lower envelope without having
passed at least k; vertices, then, crucially, we must have crossed the second
curve b’ defining the vertex v again, at a vertex v’ of order 7—1, and this v’
pays 1 for v. A picture illustrates these three cases of charging:

ki _ /
Tl e S
h v h v h

v



188 Chapter 7: Lower Envelopes

We see that v can charge a curve or a vertex of a smaller order significantly,
or it can charge many vertices of arbitrary orders, but each of them just a
little.

We do this charging for all vertices v of order ¢ on the lower envelope.
A given vertex v’ of the arrangement can be charged only if it has level
at most k;, and it can be charged at most twice: The vertices of the lower
envelope that might possibly charge v’ can be found by following the two
curves passing through v’ to the right. So if v' has order different from i—1,
then it pays at most k%_, and if it has order i—1, then it can be charged 1
extra. Finally, each curve pays at most 1. Since at least 1 unit was paid for
each vertex of order 7 on the lower envelope, we obtain

FOm) <nt 2 faun) + 550 () (7.2)

Next, we want to convert this into a recurrence involving only f and f®.
To this end, we estimate fg ,)c by following the proof of Clarkson’s theorem
on levels almost literally (as for the case of segments in Exercise 7.5.2). We

obtain ) '
D) =o(KrO(12)).

By substituting this bound (and its analogue for f<j) into the right-hand
side of (7.2), we arrive at the system of inequalities

fOm) <n+C- (RFIRD+RFODARD), =125 (7.9)

where C is a suitable constant and where we put f(© = 0. We also have
F<fO 4 g f6,

It remains to derive the bound f(n) = O(n!*®) from this recurrence,
which is not really difficult but still somewhat interesting. It is essential that
I Lkl,J) appears only with the coefficient k; on the right-hand side, in contrast
to fG~1(|£]), which has coefficient k7.

Let € > 0 be small but fixed. Let us see what happens if we try to prove
the bounds f®(n) < A;n'*te and f(n) < An!* by induction on n using
(7.3), where the A; are suitable (large) constants and A = Y7, A;. The
term n on the right-hand side of (7.3) is small compared to n!*¢, and so we
ignore it for the moment. We also neglect the floor functions. By substituting
the inductive hypothesis f()(|£]) < A;(£)'** into the right-hand side of
(7.3), we obtain roughly ' '

NIt (C Ak + CAi_1kl %) < 0!t (C Ak + CAi_1k;).

For the induction to work, A; must be larger than the expression in paren-
theses. To make A; bigger than the second term in parentheses, we can set
A; = 3Ck;A;_1, say (the constant 3 is chosen to leave enough room for the
other terms). Then A; = AlCi_lkzkg -+ k;, with C; = 3C. These A; grow
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fast, and so A = A,. Then the requirement that A; be larger than the first
term in parentheses yields, after a little simplification,
ks > C5 " kipikigo - ks.

Therefore, the k; should decrease very fast with i. We can set ks = Cll /e
and k; = (C5™“"lk;y1kiya---ks)Y/5. Now setting A;, which is still a free
parameter, sufficiently (enormously) large, we can make sure that the desired
bounds f((n) < A;n'*¢ hold at least up to n = ki, so that we can really
use the recurrence (7.3) in the induction with the k; defined above. These
considerations indicaté that the induction works; to be completely sure, one
should perform it once more in detail. But we leave this to the reader’s
diligence and declare Proposition 7.6.1 proved. O

Bibliography and remarks. The method shown in this section
first appeared in Halperin and Sharir [HS94], who considered lower
envelopes of curved objects in R3.

7.7 Algebraic Surface Patches

Here we state, without proofs, general bounds on the complexity of higher-
dimensional lower envelopes. We also discuss a far-reaching generalization: an
analogous bound for the complexity of a cell in a d-dimensional arrangement.

Roughly speaking, the lower envelope of any n “well-behaved” pieces of
(d—1)-dimensional surfaces in R? has complexity close to n¢~!. While for
planar curves it is simple to say what “well-behaved” means, the situation
is more problematic in higher dimensions. The known proofs are geometric,
and listing as axioms all the geometric properties of “well-behaved pieces of
surfaces” actually used in them seems too cumbersome to be useful. Thus, the
most general known results, and even conjectures, are formulated for families
of algebraic surface patches, although it is clear that the proofs apply in more
general settings.

First we recall the definition of a semialgebraic set. This is a set in
R? definable by a Boolean combination of polynomial inequalities. More
formally, a set A C R is called semialgebraic if there are polynomials
P1,P2,---,0r € Rlz1,...,24] (ie., polynomials in d variables with real coef-
ficients) and a Boolean formula ®(X;, X2,...,X,) (such as X;&(X2 V X3)),
where X1,..., X, are variables attaining values “true” or “false”, such that

A= {ac € R%: @(pl(x) >0,p2(x) > 0,...,pr(x) > O)}

Note that the formula ® may involve negations, and so the sets {z €
R4 pi(z) > 0} and {z € R% p;(z) = 0} are semialgebraic, for example.
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One might want to allow for quantifiers, that is, to admit sets like
{(z1,22) € R?% Jy; Yya p(z1,%2,91,y2) > 0} for a 4-variate polynomial p.
As is useful to know, but not very easy to prove (and we do not attempt it
here), each such set is semialgebraic, too: According to a famous theorem of
Tarski, it can be defined by a quantifier-free formula.

Let D be the maximum of the degrees of the polynomials p1,...,p, ap-
pearing in the definition of a semialgebraic set A. Let us call the number
max(d,r, D) the description complexity? of A. The results about lower en-
velopes concern semialgebraic sets whose description complexity is bounded
by a constant.

An algebraic surface patch is a special case of a semialgebraic set: It
can be defined as the intersection of the zero set of some polynomial ¢ €
R[z1,...,z4] with a closed semialgebraic set B. Intuitively, g(z) = 0 defines
a “surface” in R?, and B cuts off a closed patch from that surface. Note
that B can be all of R%, and so the forthcoming results apply, among others,
to graphs of polynomials or, more generally, to surfaces defined by a single
polynomial equation.

Let us remark that in the papers dealing with algebraic surface patches,
the definition is often more restrictive, and certainly the proofs make several
extra assumptions. Most significantly, they usually suppose that the patches
are smooth and they intersect transversally; that is, near each point com-
mon to the relative interior of k patches, these k patches look locally like &
hyperplanes in general position, 1 < k < d. These conditions follow from a
suitable general position assumption, namely, that the coefficients of all the
polynomials appearing in the descriptions of all the patches are algebraically
independent numbers. This can be achieved by a perturbation, but a rigor-
ous argument, showing that a sufficiently small perturbation cannot decrease
the complexity of the lower envelope too much, is not entirely easy.

The algebraic surface patches are also typically required to be z4-mono-
tone (every vertical line intersects them only once). This can be guaranteed
by partitioning each of the original patches into smaller pieces, slicing them
along the locus of points with vertical tangent hyperplanes (and eliminating
the vertical pieces).

After these preliminaries, we can state the main theorem.

7.7.1 Theorem. For every integers b and d > 2 and every € > 0, there
exists C = C(d,b,e) such that the following holds. Whenever v1,¥2,...,Vn
are algebraic surface patches in R?, each of description complexity at most
b, the lower envelope of the arrangement of v1,~s,...,7, has combinatorial
complexity at most Cnd~1te,

% This terminology is not standard.
3 Real numbers a1, a2, ...,am are algebraically independent if there is no nonzero
polynomial p with integer coefficients such that p(a1,asz,...,am) = 0.
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How is the combinatorial complexity of the lower envelope defined in this
general case, by the way? For each ;, we define M; C R%! as the region
where ~; is on the bottom of the arrangement; formally, M; consists of all
(z1,Z2,...,24-1) € R41 such that the lowest intersection of the vertical line
{(z1,z2,...,24-1,t): t € R} with U?:l 7; lies in 7;. The arrangement of the
M; is often called the minimization diagram of the ~;, and the number of its
faces is the complexity of the lower envelope.

The proof of Theorem 7.7.1 is quite similar to the one shown in the pre-
ceding section. Each lower-envelope vertex is charged either to a vertex of
lower order (the intersection of the same d patches but lying more to the
left), or to some k; vertices, or to a vertex within the vertical wall erected
from the boundary of some patch (all the charged vertices lying at level at
most k;). The number of vertices of the last type is estimated by using the
(d—1)-dimensional case of Theorem 7.7.1 (so the whole proof goes by induc-
tion on the dimension). To this end, one needs to show that the situation
within the (d—1)-dimensional vertical wall, which in general is curved, can
be mapped to a situation with algebraic surface patches in R%~!. Here the
fact that we are dealing with semialgebraic sets is used most heavily.

Theorem 7.7.1 is a powerful result and it provides nontrivial upper bounds
on the complexity of various geometric configurations. Sometimes the bound
can be improved by a problem-specific proof, but the general lower-envelope
result often quickly yields roughly the correct order of magnitude. For exam-
ples see Exercise 1 and [SA95] or [AS00a].

Single cell. Bounding the maximum complexity of a single cell in an ar-
rangement is usually considerably more demanding than the lower envelope
question, mainly because a cell can have a complicated topology: It can have
holes, tunnels, and so on (cells in hyperplane arrangements, no more com-
plicated than the lower envelope, are an honorable exception). The following
theorem provides a bound analogous to that of Theorem 7.7.1. It was proved
by similar methods but with several new ideas, especially for the topological
complexity of the cell.

7.7.2 Theorem. For every integers b and d > 2 and every € > 0, there
exist Cy = Co(d,b) and C = C(d, b,€) such that the following holds. Let K
be a cell in the arrangement of n algebraic surface patches in R? in general
position, each of description complexity at most b. Then the combinatorial
complexity of K (the number of faces in its closure) is at most Cn®~1*¢ and
its topological complexity (the sum of the Betti numbers) is no more than
Co’l’ld_l.

The general position assumption can probably be removed, but I am aware
of no explicit reference, except for the special case d = 3.

Bibliography and remarks. For a thorough discussion of semialge-
braic sets and quantifier elimination we refer to books on real algebraic
geometry, such as Bochnak, Coste, and Roy [BCR98].
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An old conjecture of Sharir asserts that the combinatorial com-
plexity of the lower envelope in the situation of Theorem 7.7.1 is at
most O(n?=2)4(n)) for a suitable s depending on the description com-
plexity of the patches. The best known lower bound is Q(n¢ la(n)),
which applies even for simplices.

The decisive advance towards proving Theorem 7.7.1 was made by
Halperin and Sharir [HS94], who established the 3-dimensional case.
The general case was proved, as a culmination of a long development,
by Sharir [Sha94]. A discussion of the general position assumption
and the perturbation argument can also be found there. Interestingly,
it is not proved that the maximum complexity is attained in general
position; rather, it is argued that the expected complexity after an
appropriate random perturbation is always at least a fixed fraction of
the original complexity minus O(n¢=1*¢),

Some applications lead to the following variation of the lower en-
velope problem: We have two collections F and G of algebraic surface
patches in R%, we project the lower envelopes of both F and G into
R?-1, and we are interested in the complexity of the superimposed
projections (where, for d = 3, a vertex of the superimposed projec-
tions can arise, for example, as the intersection of an edge coming
from F with an edge obtained from G). In R3, it is known that this
complexity is O(n?*¢), where n = |F| + |G| (Agarwal, Sharir, and
Schwarzkopf [ASS96]); this is similar to the bound for the lower en-
velopes themselves. The problem remains open in dimensions 4 and

higher.
The combinatorial complexity of a Voronoi diagram can also be
viewed as a lower-envelope problem. Namely, let sq, so,..., 5, be ob-

jects in R? (points, lines, segments, polytopes), and let p be a metric
on RY. Each s; defines the function f;: R% — R by fi(z) = p(z, s;),
and the Voronoi diagram of the s; is exactly the minimization diagram
of the graphs of the f; (i.e., the projection of their lower envelope). If
the f; are algebraic of bounded degree (or can be converted to such
functions by a monotone transform of the range), the general lower
envelope bound implies that the complexity of the Voronoi diagram
in R? is no more than O(n¢*¢). This result is nontrivial, but it is
widely believed that it should be possible to improve it by a factor of
n (and even more in some special cases). Several nice partial results
are known, mostly obtained by methods similar to those for lower
envelopes. Most notably, Chew, Kedem, Sharir, Tagansky, and Welzl
[CKS*98] proved that if the s; are lines in R3 and the metric p is
given by a norm whose unit ball is a convex polytope with a constant-
bounded number of vertices (this includes the ¢; and £, metrics, but
not the Euclidean metric), then the Voronoi diagram has complexity
O(n%a(n)logn). On the other hand, Aronov [Aro00] constructed, for
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every p € [1,00], a set of n (d—2)-flats in R? whose Voronoi diagram
under the £, metric has complexity Q(n?~!) (Exercise 5.7.3).

Single cell. For a single cell in the arrangement of n simplices
in R?, Aronov and Sharir [AS94] obtained the complexity bound
O(n?~'logn). Halperin and Sharir [HS95] managed to prove Theo-
rem 7.7.2 in dimension 3. The effort was crowned by Basu [Bas98§],
who showed by an argument inspired by Morse theory that the topo-
logical complexity of a single cell in R¢, assuming general position, is
O(n%"1); the Halperin—Sharir technique then implies the O(n?~1*)
bound on the combinatorial complexity.

The research of Sharir and his colleagues in this problem (and
many other problems discussed in this chapter) has been motivated
by questions about automatic motion planning for a robot. For exam-
ple, let us consider a square-shaped robot in the plane moving among
n pairwise disjoint segment obstacles. The placement of the robot can
be specified by three coordinates: the position (z,y) of the center and
the angle a of rotation. Each obstacle excludes some placements of
the robot. With suitable choice of coordinates, say (z,y,tan§), the
region of excluded placements is bounded by a few algebraic surface
patches. Hence all possible placements of the robot reachable from a
given position by a continuous obstacle-avoiding movement correspond
to a single cell in the arrangement of O(n) algebraic surface patches in
R3. Consequently, the set of reachable placements has combinatorial
complexity at most O(n?*¢). Similar reduction works for more gen-
eral shapes of the robot and of the obstacles (the robot may even have
movable parts), as long as the robot and each of the obstacles can be
described by a bounded number of algebraic surface patches. Unfor-
tunately, even in quite simple settings, the combinatorial complexity
of the reachable region can be very large. For example, a cube robot
in R has 6 degrees of freedom, and so its placements correspond to
points in RS. Exact motion planning algorithms thus become rather
impractical, and faster approximate algorithms are typically used.

The complezity of unions. This is another type of problem that often
occurs in the analysis of geometric algorithms. Let A;, As,..., A, be
sets in the plane, each of them bounded by a closed Jordan curve, and
suppose that the boundaries of every A; and A; intersect in at most
s points. For s = 2, the A; are called pseudodisks, and the primary
example is circular disks.

e y: A A
w PN . e
pseudodisks L,_ 2\ not pseudodisks c;#__L_HP}
AN ReAT AT
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For this case Kedem, Livne, Pach, and Sharir [KLPS86| proved that
the complexity of |JI_; A; is O(n), where the complexity is measured
as the sum of the complexities of the “exterior” cells of the arrange-
ment, i.e., the cells that are not contained in any of the A;.

For s > 4, long and skinny sets can form a grid pattern and have
union complexity about n?, but linear or near-linear bounds were
proved under additional assumptions. One type of such additional
assumption is metric, namely, that the objects are “fat.” A rather
complicated proof of Efrat and Sharir [ES00] shows that if each A;
is convex, the ratio of the circumradius and inradius is bounded by
some constant K, and every two boundaries intersect at most s times,
then the union complexity is at most O(n'*¢) for any € > 0, with the
constant of proportionality depending on s, K,&. Earlier, Matousek,
Pach, Sharir, Sifrony, and Welzl [MPS*94] gave a simpler and more
precise bound of O(nloglogn) for fat triangles. Pach, Safruti, and
Sharir [PSS01] showed that the union of n fat wedges in R? (intersec-
tions of two half-spaces with angle at least some ag > 0), as well as the
union of n cubes in R3, has complexity O(n?*¢). Various extensions of
these results to nonconvex objects or to higher dimensions seem easy
to conjecture but quite hard to prove.

Several results are known where one assumes that the A; have
special shapes or bounded complexity. Aronov, Sharir, and Tagansky
[AST97] proved that the complexity of the union of k& convex polygons
in the plane with n vertices in total is O(k%+na(k)) and that the union
of k convex polytopes in R3 with n vertices in total has complexity
O(k® + knlog k). Boissonnat, Sharir, Tagansky, and Yvinec [BSTY98]
showed that the union of n axis-parallel cubes in R% has O(n[%/21)
complexity, and O(nl%/2]) complexity if the cubes all have the same
size; both these bounds are tight.

Agarwal and Sharir [AS00c] proved that the union of n infinite
cylinders of equal radius in R? has complexity O(n?*¢) (here Q(n?)
is a lower bound), and more generally, if A,,..., A, are pairwise dis-
joint triangles in R® and B is a ball, then | J;(4; + B) has complexity
O(n?*¢), where A; + B = {a + b: a € A;,b € B} is the Minkowski
sum. The proof relies on the result mentioned above about two super-
imposed lower envelopes.

Exercises

1. Let py,...,p, be points in the plane. At time ¢ = 0, each p; starts moving
along a straight line with a fixed velocity v;. Use Theorem 7.7.1 to prove
that the convex hull of the n moving points changes its combinatorial
structure at most O(n?*¢) times during the time interval [0, c0).

The tight bound is O(n?); it was proved, together with many other related
results, by Agarwal, Guibas, Herschberger, and Veach [AGHVO01].
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Intersection Patterns of
Convex Sets

In Chapter 1 we covered three simple but basic theorems in the theory of
convexity: Helly’s, Radon’s, and Carathéodory’s. For each of them we present
one closely related but more difficult theorem in the current chapter. These
more advanced relatives are selected, among the vast number of variations
on the Helly-Radon—Carathéodory theme, because of their wide applicability
and also because of nice techniques and tricks appearing in their proofs.

The development started in this chapter continues in Chapters 9 and 10.
One of the culminations of this route is the (p, ¢)-theorem of Alon and Kleit-
man, which we will prove in Section 10.5. The proof ingeniously combines
many of the tools covered in these three chapters and illustrates their power.

Readers who do not like higher dimensions may want to consider dimen-
sions 2 and 3 only. Even with this restriction, the results are still interesting
and nontrivial.

8.1 The Fractional Helly Theorem

Helly’s theorem says that if every at most d+1 sets of a finite family of
convex sets in R? intersect, then all the sets of the family intersect. What
if not necessarily all, but a large fraction of (d+1)-tuples of sets, intersect?
The following theorem states that then a large fraction of the sets must have
a point in common.

8.1.1 Theorem (Fractional Helly theorem). For every dimensiond > 1
and every a > 0 there exists a § = (§(d,a) > 0 with the following property.
Let Fi, ..., F, be convex sets in R, n > d+1, and suppose that for at least
a(,3,) of the (d+1)-point index sets I C {1,2,...,n}, we have [);c; F; # 0.
Then there exists a point contained in at least On sets among the F;.
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Although simple, this is a key result, and many of the subsequent devel-
opments rely on it.

The best possible value of 8 is 8 = 1 —(1—a)'/ ¢+, We prove the weaker
estimate § > di—l-l'

Proof. For a subset I C {1,2,...,n}, let us write F for the intersection
ﬂiEI F;.

First we observe that it is enough to prove the theorem for the F; closed
and bounded (and even convex polytopes). Indeed, given some arbitrary
Fi,...,Fy, we choose a point p; € F; for every (d+1)-tuple I with Fr # 0
and we define F] = conv{p;: F; # 0,1 € I}, which is a polytope contained in
F;. If the theorem holds for these F, then it also holds for the original F;.
In the rest of the proof we thus assume that the F;, and hence also all the
nonempty F, are compact.

Let <jexdenote the lexicographic ordering of the points of R® by their
coordinate vectors. It is easy to show that any compact subset of R? has a
unique lexicographically minimum point (Exercise 1). We need the following
consequence of Helly’s theorem.

8.1.2 Lemma. Let I C {1,2,...,n} be an index set with F1 # 0, and let v
be the (unique) lexicographically minimum point of Fr. Then there exists an
at most d-element subset J C I such that v is the lexicographically minimum
point of Fy as well.

In other words, the minimum of the intersection F7 is always enforced by
some at most d “constraints” Fj, as is illustrated in the following drawing
(note that the two constraints determining the minimum are not determined
uniquely in the picture):

Proof. Let C = {z € R%: z <je; v}. It is easy to check that C is
convex. Since v is the lexicographic minimum of Fj, we have CNF =
0. So the family of convex sets consisting of C plus the sets F; with
1 € I has an empty intersection. By Helly’s theorem there are at most
d+1 sets in this family whose intersection is empty as well. The set
C must be one of them, since all the others contain v. The remaining
at most d sets yield the desired index set J. m]

Let us remark that instead of taking the lexicographically minimum point,
one can consider a point minimizing a generic linear function. That formula-
tion is perhaps more intuitive, but it appears slightly more complicated for
rigorous presentation.
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We can now finish the proof of the fractional Helly theorem. For each of
the o df_l) index sets I of cardinality d+1 with F; # 0, we fix a d-element
set J = J(I) C I such that F); has the same lexicographic minimum as Fj.

The theorem follows by double counting. Since the number of distinct
d-tuples J is at most (7}), one of them, call it Jo, appears as J(I) for at least
a(y71)/ () = %% distinct 1. Each such I has the form Jo U {i} for some

i € {1,2,...,n}. The lexicographic minimum of F}, is contained in at least
d+a %;—‘11 > a 747 sets among the F;. Hence we may set =35 O

Bibliography and remarks. The fractional Helly theorem is due
to Katchalski and Liu [KL79]. The quantitatively sharp version with
B =1—(1—a)'/(@+1) was proved by Kalai [Kal84] (and the main result
needed for it was proved independently by Eckhoff [Eck85], too). Ac-
tually, there is an exact result: If the maximum size of an intersecting
subfamily in a family of n convex sets in R? is m, then the smallest
possible number of intersecting (d+1)-tuples is attained for the family
consisting of n — m + d hyperplanes in general position and m — d
copies of R?. But there are many other essentially different examples
attaining the same bound.

These assertions are consequences of considerably more general re-
sults about the possible intersection patterns of convex sets in R,
For explaining some of them it is convenient to use the language of
simplicial complexes. Let F = {Fy, F»,...,F,} be a family of con-
vex sets in R?. The nerve N(F) of F is the simplicial complex with
vertex set {1,2,...,n} whose simplices are all I C {1,2,...,n} such
that (;c; F; # 0. A simplicial complex obtainable as N'(F) for some
family of convex sets in R® is called d-representable. A characteri-
zation of d-representable simplicial complexes for a given d is most
likely out of reach. There are several useful necessary conditions for
d-representability. One certainly worth mentioning is d-collapsibility,
which means that a given simplicial complex X can be reduced to the
void complex by a sequence of elementary d-collapsings, where an ele-
mentary d-collapsing consists in deleting a face S € K of dimension at
most d—1 that lies in a unique maximal face of K and all the faces of K
containing S. The proof of the d-collapsibility of every d-representable
complex (Wegner [Weg75]) uses an idea quite similar to the proof of
the fractional Helly theorem.

While no characterization of d-representable complexes is known,
the possible f-vectors of such complexes (where f; is the number of
i-dimensional simplices, which correspond to (i+1)-wise intersections
here) are fully characterized by a conjecture of Eckhoff, which was
proved by Kalai [Kal84], [Kal86] by an impressive combination of sev-
eral methods. The same characterization applies to d-collapsible com-
plexes as well (and even to the more general d-Leray complezes; these
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are the complexes where the homology of dimension d and larger van-
ishes for all induced subcomplexes). We do not formulate it but men-
tion one of its consequences, the upper bound theorem for families of
convez sets: If f.(M(F)) = 0 for a family F of n convex sets in R% and

some 7, d < r < n, then fir(N(F)) < Z?:o (k:il) ("_;+d); equality

holds, e.g., in the case mentioned above (several copies of R¢ and hy-
perplanes in general position).

Exercises

1.

2.

Show that any compact set in R® has a unique point with the lexico-
graphically smallest coordinate vector.

Prove the following colored Helly theorem: Let Cy,...,Cqy1 be finite fam-
ilies of convex sets in R such that for any choice of sets C; € Cy, ...,
Ca+1 € Cq4y1, the intersection Cy N --- N Cyyq is nonempty. Then for
some i, all the sets of C; have a nonempty intersection. Apply a method
similar to the proof of the fractional Helly theorem; i.e., consider the lex-
icographic minima of the intersections of suitable collections of the sets.
The result is due to Lovasz ([Lov74]; also see [B4r82]).

Let Fy, Fy, ..., F, be convex sets in R%. Prove that there exist convex
polytopes Py, P, ..., P, such that dim((),c; F;) = dim(,¢; P;) for ev-
ery I C {1,2,...,n} (where dim(@) = —1). [2]

8.2 The Colorful Carathéodory Theorem

Carathéodory’s theorem asserts that if a point z is in the convex hull of a set
X C RY, then it is in the convex hull of some at most d+1 points of X. Here

we

present a “colored version” of this statement. In the plane, it shows the

following: Given a red triangle, a blue triangle, and a white triangle, each of
them containing the origin, there is a vertex r of the red triangle, a vertex b of

the

blue triangle, and a vertex w of the white triangle such that the tricolored

triangle rbw also contains the origin. (In the following pictures, the colors of
points are distinguished by different shapes of the point markers.)

The d-dimensional statement follows.
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8.2.1 Theorem (Colorful Carathéodory theorem). Consider d+1 fi-
nite point sets Mji,...,Mgy, in R® such that the convex hull of each
M; contains the point 0 (the origin). Then there exists a (d+1)-point set
SCMU---UMgy, with |M;NS| =1 for each i and such that 0 € conv(S).
(If we imagine that the points of M; have “color” i, then we look for a “rain-
bow” (d+1)-point S with 0 € conv(S), where “rainbow” = “containing all
colors.”)

Proof. Call the convex hull of a (d+1)-point rainbow set a rainbow simplex.
We proceed by contradiction: We suppose that no rainbow simplex contains 0,
and we choose a (d+1)-point rainbow set S such that the distance of conv(S)
to 0 is the smallest possible. Let z be the point of conv(S) closest to 0.
Consider the hyperplane h containing x and perpendicular to the segment
Oz, as in the picture:

conv(.s)
T

my H“ _
0+ 'k

Then all of S lies in the closed half-space h~ bounded by h and not contain-
ing 0. We have conv(S) N h = conv(S N k), and by Carathéodory’s theorem,
there exists an at most d-point subset T' C S N h such that = € conv(T).

Let ¢ be a color not occurring in T' (i.e., M; NT = @). If all the points
of M; lay in the half-space h~, then 0 would not be in conv(M;), which we
assume. Thus, there exists a point y € M; lying in the complement of h™
(strictly, i.e., y € h).

Let us form a new rainbow set S’ from S by replacing the (unique) point
of M; NS by y. We have T' C &', and so = € conv(S’). Hence the segment
zy is contained in conv(S’), and we see that conv(S’) lies closer to 0 than
conv(S), a contradiction. The colorful Carathéodory theorem is proved. 0O

This proof suggests an algorithm for finding the rainbow simplex as in
the theorem. Namely, start with an arbitrary rainbow simplex, and if it does
not contain 0, switch one vertex as in the proof. It is not known whether the
number of steps of this algorithm can be bounded by a polynomial function
of the dimension and of the total number of points in the M;. It would be
very interesting to construct configurations where the number of steps is very
large or to prove that it cannot be too large.

Bibliography and remarks. The colorful Carathéodory theorem
is due to Bardny [B4r82]. Its algorithmic aspects were investigated by
Béarany and Onn [BO97].
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Exercises

1. Let S and T be (d+1)-point sets in R%, each containing 0 in the convex
hull. Prove that there exists a finite sequence Sy = $,51,82,..., 8, =T
of (d+1)-point sets with S; C SUT and 0 € conv(S;) for all i, such
that S;4, is obtained from S; by deleting one point and adding another.
Assume general position of S U T if convenient. Warning: better do not
try to find a (d+1)-term sequence. (5]

8.3 Tverberg’s Theorem

Radon’s lemma states that any set of d+2 points in R? has two disjoint
subsets whose convex hulls intersect. Tverberg’s theorem is a generalization of
this statement, where we want not only two disjoint subsets with intersecting
convex hulls but r of them.

It is not too difficult to show that if we have very many points, then such r
subsets can be found. For easier formulations, let T'(d,r) denote the smallest
integer T such that for any set A of T points in R? there exist pairwise
disjoint subsets A;, Az,..., A, C A with ();_, conv(4;) # 0. Radon’s lemma
asserts that T'(d, 2) = d+2.

It is not hard to see that T'(d,r172) < T(d,r1)T(d,r2) (Exercise 1). To-
gether with Radon’s lemma this observation shows that T'(d,r) is finite for
all r, but it does not give a very good bound.

Here is another, more sophisticated, argument, leading to the (still subop-
timal) bound T'(d,r) < n = (r—1)(d+1)? + 1. Let A be an n-point set in R¢
and let us set s =n — (r—1)(d+1). A simple counting shows that every d+1
subsets of A of size s all have a point of A in common. Therefore, by Helly’s
theorem, the convex hulls of all s-tuples have a common point z (typically
not in A anymore). By Carathédory’s theorem, z is contained in the convex
hull of some (d+1)-point set A; C A. Since A\ A; has at least s points, x
is still contained in conv(A \ A;), and thus also in the convex hull of some
(d+1)-point A2 C A\ Aq, etc. We can continue in this manner and select the
desired r disjoint sets Ay, ..., A, all of them containing z in their convex
hulls.

It is not difficult to see that T'(d, ) cannot be smaller than (r—1)(d+1)+1
(Exercise 2). Tverberg’s theorem asserts that this smallest conceivable value
is always sufficient.

8.3.1 Theorem (Tverberg’s theorem). Let d and r be given natural
numbers. For any set A C R? of at least (d+1)(r—1) + 1 points there exist r
pairwise disjoint subsets Ay, As, ..., A, C A such that (),_, conv(4;) # 0.

The sets A;, Az, ..., A, as in the theorem are called a Twverberg partition
of A (we may assume that they form a partition of A), and a point in the
intersection of their convex hulls is called a Tverberg point. The following
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illustration shows what such partitions can look like for d = 2 and r = 3;
both the drawings use the same 7-point set A:

A
*— v — i 9
(Are these all Tverberg partitions for this set, or are there more?)

As in the colorful Carathéodory theorem, a very interesting open problem
is the existence of an efficient algorithm for finding a Tverberg partition of
a given set. There is a polynomial-time algorithm if the dimension is fixed,
but some NP-hardness results for closely related problems indicate that if
the dimension is a part of input then the problem might be algorithmically
difficult.

Several proofs of Tverberg’s theorem are known. The one demonstrated
below is maybe not the simplest, but it shows an interesting “lifting” tech-

nique. We deduce the theorem by applying the colorful Carathéodory theorem
to a suitable point configuration in a higher-dimensional space.

Proof of Tverberg’s theorem. We begin with a reformulation of Tver-
berg’s theorem that is technically easier to handle. For a set X C R¢, the
convex cone generated by X is defined as the set of all linear combinations of
points of X with nonnegative coefficients; that is, we set

n
cone(X) = {Zaixi: T1,...,Zn € X, a1,...,an ER, a; > 0}.
1=1

Geometrically, cone(X) is the union of all rays starting at the origin and
passing through a point of conv(X). The following statement is equivalent to
Tverberg’s theorem:

8.3.2 Proposition (Tverberg’s theorem: cone version). Let A be a set
of (d+1)(r—1) + 1 points in R**! such that 0 € conv(A). Then there exist r
pairwise disjoint subsets Ay, As, ..., A, C A such that ();_, cone(4;) # {0}.

Let us verify that this proposition implies Tverberg’s theorem. Embed
R? into R%*! as the hyperplane z441 = 1 (as in Section 1.1). A set A C
R? thus becomes a subset of R4t1; moreover, its convex hull lies in the
z4+1 = 1 hyperplane, and thus it does not contain 0. By Proposition 8.3.2, the
set A can be partitioned into groups Ay, ..., A, with (),_, cone(4;) # {0}.
The intersection of these cones thus contains a ray originating at 0. It is
easily checked that such a ray intersects the hyperplane 2441 = 1 and that
the intersection point is a Tverberg point for A. Hence it suffices to prove
Proposition 8.3.2.
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Proof of Proposition 8.3.2. Let us put N = (d+1)(r—1); thus, A has N+1

points. First we define linear maps ¢;: R+ 5 RN, j=1,2,...,7. We group
the coordinates in the image space R”" into r—1 blocks by d+1 coordinates
each. For j = 1,2,...,r—1, ¢;(z) is the vector having the coordinates of x
in the jth block and zeros in the other blocks; symbolically,
p;(z)=(0]0]---[0|z|0]---]0).
N ———
(G-1)x

The last mapping, ¢,, has —z in each block: ¢.(z) = (—z| ~z|---| — z).

These maps have the following property: For any r vectors uy,...,u, €
Rd+1,

Z(pj(uj) =0 holds if and only if vy =up =--- = u,. (8.1)

Jj=1

Indeed, this can be easily seen by expressing
Z%‘(uj) = (u1 — U |ug —up |- [Up_1 —up).
Jj=1

Next, let A = {a1,...,an+1} C R¥! be a set with 0 ¢ conv(A). We con-
sider the set M = ¢1(A)Upa(A)U---Up,(A) in RY consisting of r copies of
A. The first r—1 copies are placed into mutually orthogonal coordinate sub-
spaces of R". The last copy of each a; sums up to 0 with the other r—1 copies
of a;. Then we color the points of M by N+1 colors; all copies of the same
a; get the color i. In other words, we set M; = {p1(a;), p2(ai),- .., or(ai)}
As we have noted, the points in each M; sum up to 0, which means that
0 € conv(M;), and thus the assumptions of the colorful Carathéodory theo-
rem hold for M;,..., My41.

Let § € M be a rainbow set (containing one point of each M;) with
0 € conv(S). For each i, let f(¢) be the index of the point of M; contained
in S; that is, we have S = {pa)(a1), Pr(2)(a2), ..., ¢sn+1)(an+1)}. Then
0 € conv(S) means that

N+1
> aipp(ai) =0
i=1
for some nonnegative real numbers a1, ..., an,; summing to 1. Let I ; be the

set of indices 7 with f(i) = j, and set A; = {a;: ¢ € I;}. The above sum can
be rearranged:

N+1 r T
Y aips(a) =Y. > api(ai) = > ( > aiai>
=1 j=14€ly j=1 i€l

(the last equality follows from the linearity of each ;). Write u; = Yic I; %%
This is a linear combination of points of A; with nonnegative coefficients, and
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hence u; € cone(A;). Above we have derived Z;zl @;(u;) = 0, and so by
(8.1) we get u3 = uy = --- = u,. Hence the common value of all the Uj
belongs to (;_, cone(4;).

It remains to check that u; # 0. Since we assume 0 ¢ conv(A), the only
nonnegative linear combination of points of A equal to 0 is the trivial one,
with all coefficients 0. On the other hand, since not all the «; are 0, at least
one u; is expressed as a nontrivial linear combination of points of A. This
proves Proposition 8.3.2 and Tverberg’s theorem as well. O

The colored Tverberg theorem. If we have 9 points in the plane, 3 of
them red, 3 blue, and 3 white, it turns out that we can always partition them
into 3 triples in such a way that each triple has one red, one blue, and one
white point, and the 3 triangles determined by the triples have a nonempty
intersection.

The colored Tverberg theorem is a generalization of this statement for ar-
bitrary d and r. We will need it in Section 9.2, for a result about many
simplices with a common point. In that application, the colored version is
essential (and Tverberg’s theorem alone is not sufficient).

8.3.3 Theorem (Colored Tverberg theorem). For any integersr,d > 2
there exists an integer t such that given any t(d+1)-point set Y C R® par-
titioned into d+1 color classes Y1,...,Y341 with t points each, there ex-
ist r pairwise disjoint sets Ai,...,A, such that each A; contains exactly
one point of each Y;, j = 1,2,...,d+1 (that is, the A; are rainbow), and
M-, conv(Ay) # 0.

Let Teo1(d, ) denote the smallest ¢ for which the conclusion of the theorem
holds. Tt is known that T,(2,7) = r for all r. It is possible that Teoi{d,7) =7
for all d and 7, but only weaker bounds have been proved. The strongest
known result guarantees that T,o(d, ) < 2r—1 whenever r is a prime power.

Recall that in Tverberg’s theorem, if we need only the existence of T'(d, r),
rather than the precise value, several simple arguments are available. In con-
trast, for the colored version, even if we want only the existence of Teo(d, 7),
there is essentially only one type of proof, which is not easy and which uses
topological methods. Since such methods are not considered in this book, we
have to omit a proof of the colored Tverberg theorem.

Bibliography and remarks. Tverberg’s theorem was conjectured
by Birch and proved by Tverberg (really!) [Tve66]. His original proof is
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technically complicated, but the idea is simple: Start with some point
configuration for which the theorem is valid and convert it to a given
configuration by moving one point at a time. During the movement,
the current partition may stop working at some point, and it must be
shown that it can be replaced by another suitable partition by a local
change.

Later on, Tverberg found a simpler proof [Tve81]. For the proof
presented in the text above, the main idea is due to Sarkaria [Sar92],
and our presentation is based on a simplification by Onn (see [BO97]).
Another proof, also due to T'verberg and inspired by the proof of the
colorful Carathéodory theorem, was published in a paper by Tverberg
and Vredica [TV93]. Here is an outline.

Let @ = (A, Ag,..., A;) be a partition of (d+1)(r—1)+1 given
points into r disjoint nonempty subsets. Consider a ball intersect-
ing all the sets conv(4;), j = 1,2,...,r, whose radius p = p() is
the smallest possible. By a suitable general position assumption, it
can be assured that the smallest ball is always unique for any par-
tition. (Alternatively, among all balls of the smallest possible radius,
one can take the one with the lexicographically smallest center, which
again guarantees uniqueness.) If p(7) = 0, then 7 is a Tverberg parti-
tion. Supposing that p(7) > 0, it can be shown that 7 can be locally
changed (by reassigning one point from one class to another) to an-
other partition 7’ with p(7’) < p(r). Another proof, based on a similar
idea, was found by Roudneff [Rou0la]. Instead of p(), he considers
w(m) = mingere w(m, z), where w(m,z) = Y.._, dist(z, conv(4;))%.
He actually proves a “cone version” of Tverberg’s theorem (but dif-
ferent from our cone version and stronger).

Several extensions of Tverberg’s theorem are known or conjectured.
Here we mention only two conjectures related to the dimension of the
set of Tverberg points. For X C R4, let T,.(X) denote the set of all
Tverberg points for r-partitions of A (the points of T.(X) are usually
called r-divisible). Reay [Rea68] conjectured that if X is in general
position and has k& more points than is generally necessary for the
existence of a Tverberg r-partition, i.e., |X| = (d+1)(r—1) + 1 + k&,
then dim 7,.(X) > k. This holds under various strong general position
assumptions, and special ‘cases for small k& have also been established
(see Roudneff [Rou0la], [Rou01b]). Kalai asked the following sophis-
ticated question in 1974: Does qu")ill dim7-(X) > 0 hold for every
finite X C R%? Here dim = —1, and so the nonexistence of Tverberg
r-partitions for large r must be compensated by sufficiently large di-
mensions of T.(X) for small r. Together with other interesting aspects
of Tverberg’s theorem, this is briefly discussed in Kalai’s lively sur-
vey [Kal01]. There he also notes that edge 3-colorability of a 3-regular
graph can be reformulated as the existence of a Tverberg 3-partition
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of a suitable high-dimensional point set. This implies that deciding
whether T3(X) = 0 for a (2d+3)-point X C R? is NP-complete.

It is interesting to note that Tverberg’s theorem implies the center-
point theorem (Theorem 1.4.2). More generally, if z is an r-divisible
point of a finite X C RY, then each closed half-space containing x
contains at least r points of X (at least one from each of the r parts);
in particular, if |X| = n and r = [ 171, we get that every r-divisible
point is a centerpoint. On the other hand, as an example of Avis
[Avi93] in R3 shows, a point z such that each closed half-space h con-
taining x satisfies |h N X| > r need not be r-divisible in general; these
two properties are equivalent only in the plane.

A conjecture of Sierksma asserts that the number of Tverberg par-
titions for a set of (r—1)(d+1)+1 points in R? in general position is at

least ((r—1)!)%. A lower bound of (r—ll)! (g)(r_l)(dﬂ)ﬂ, provided that

r > 3 is a prime number, was proved by Vuéi¢ and Zivaljevié¢ [VZ93]
by an ingenious topological argument.

The colored Tverberg theorem was conjectured by Barany, Fiiredi,
and Lovész [BFL90], who also proved the planar case. The general
case was established by Zivaljevié¢ and Vreéica [ZV92]; simplified proofs
were given later by Bjorner, Lovész, Zivaljevié, and Vreéica [BLZV94]
and by Matousek [Mat96a] (using a method of Sarkaria). As was men-
tioned in the text, all these proofs are topological. They show that
Teoi(d,r) < 2r—1 for r a prime. Recently, this was extended to all
prime powers 7 by Zivaljevié .[Ziv98] (a similar approach in a different
problem was used earlier by Ozaydin, by Sarkaria, and by Volovikov).
Bérany and Larman [BL92] proved that T'(2,7) = r for all r.

We outline a beautiful topological proof, due to Lovédsz (reproduced
in [BL92]), showing that Tco(d, 2) = 2 for all d. Let X be the surface of
the (d+1)-dimensional crosspolytope. We recall that the crosspolytope
is the convex hull of V = {e;, —e;, €2, —e€2,...,€4+1, —€d+1}, Where
€1,€2,...,e44+1 is the standard orthonormal basis in R%*t1. Note that
X consists of 2411 simplices of dimension d, each of them the convex
hull of d+1 points of V. Let Y; = {u;,v;} C R4, i =1,2,...,d+1, be
the given two-point color classes. Define the mapping f:V — R? by
setting f(e;) = w;, f(—e;) = v;. This mapping has a unique extension
f: X — R%such that f is affine on each of the d-dimensional simplices
mentioned above. This f is a continuous mapping of X — R¢. Since
X is homeomorphic to the d-dimensional sphere S¢, the Borsuk-Ulam
theorem guarantees that there is an € X such that f(z) = f(—x). If
V1 C V is the vertex set of a d-dimensional simplex containing z, then
Vin(=V1) =0, —z € conv(—V}), and as is easy to check, S; = f(V7)
and Sy = f(—Vi1) are vertex sets of intersecting rainbow simplices
(f(z) = f(—z) is a common point).
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Exercises

1.

2.

Prove (directly, without using Tverberg’s theorem) that for any integers
d, 71,72 > 2, we have T'(d, r1r2) < T(d,r1)T(d,72). [2]

For each 7 > 2 and d > 2, find (d+1)(r—1) points in R? with no Tverberg
r-partition.

. Prove that Tverberg’s theorem implies Proposition 8.3.2. Why is the

assumption 0 ¢ conv(A) necessary in Proposition 8.3.27 [1]

(a) Derive the following Radon-type theorem (use Radon’s lemma): For
every d > 1 there exists £ = £(d) such that every £ points in R® in general
position can be partitioned into two disjoint subsets A, B such that not
only conv(A) N conv(B) # @, but this property is preserved by deleting
any single point; that is, conv(A\ {a}) Nconv(B) # 0 for each a € A and
conv(A) Nconv(B \ {b}) # 0 for each b € B.

(b) Show that £(2) > 7.

Remark. The best known value of 4(d) is 2d+3; this was established by
Larman [Lar72], and his proof is difficult. The original question is, What
is the largest n = n(k) such that every n points in R* in general position
can be brought to a convex position by some projective transform? Both
formulations are related via the Gale transform.

. Show that for any d,r > 1 there is an (N+1)-point set in R? in general

position, N = (d+1)(r—1), having no more than ((r—1)!)¢ Tverberg
partitions.
Why does Tverberg’s theorem imply the centerpoint theorem (Theo-
rem 1.4.2)7
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Geometric Selection
Theorems

As in Chapter 3, the common theme of this chapter is geometric Ramsey
theory. Given n points, or other geometric objects, where n is large, we want
to select a not too small subset forming a configuration that is “regular” in
some sense.

As was the case for the Erd6s—Szekeres theorem, it is not difficult to prove
the existence of a “regular” configuration via Ramsey’s theorem in some of
the subsequent results, but the size of that configuration is very small. The
proofs we are going to present give much better bounds. In many cases we
obtain “positive-fraction theorems”: The regular configuration has size at
least cn, where n is the number of the given objects and c is a positive
constant independent of n.

In the proofs we encounter important purely combinatorial results: a weak
version of the Szemerédi regularity lemma and a theorem of Erdds and Si-
monovits on the number of complete k-partite subhypergraphs in dense k-
uniform hypergraphs. We also apply tools from Chapter 8, such as Tverberg’s
theorem.

9.1 A Point in Many Simplices: The First Selection
Lemma

Consider n points in the plane in general position, and draw all the (g‘)
triangles with vertices at the given points. Then there exists a point of the
plane common to at least %(g) of these triangles. Here % is the optimal
constant; the proof below, which establishes a similar statement in arbitrary

dimension, gives a considerably smaller constant.
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For easier formulations we introduce the following terminology: If X ¢ R¢
is a finite set, an X -simplez is the convex hull of some (d-+1)-tuple of points
of X. We make the convention that X-simplices are in bijective correspon-
dence with their vertex sets. This means that two X-simplices determined by
two distinct (d+1)-point subsets of X are considered different even if they
coincide as subsets of R%. Thus, the X-simplices form a multiset in general.
This concerns only sets X in degenerate positions; if X is in general position,
then distinct (d+1)-point sets have distinct convex hulls.

9.1.1 Theorem (First selection lemma). Let X be an n-point set in R%.
Then there exists a point a € R? (not necessarily belonging to X ) contained
in at least c4(,7,) X-simplices, where cq > 0 is a constant depending only
on the dimension d.

The best possible value of ¢4 is not known, except for the planar case. The
first proof below shows that for n very large, we may take cg =~ (d-!—l)_(d“).

The first proof: from Tverberg and colorful Carathéodory. We may
suppose that n is sufficiently large (n > ng for a given constant ng), for
otherwise, we can set ¢4 to be sufficiently small and choose a point contained
in a single X-simplex.

Put r = [n/(d + 1)]. By Tverberg’s theorem (Theorem 8.3.1), there exist
r pairwise disjoint sets M,..., M, C X whose convex hulls all have a point
in common; call this point a. (A typical M; has d+1 points, but some of them
may be smaller.)

We want show that the point a is contained in many X-simplices (so far we
have const - n and we need const - nd+1).

Let J = {jo,.-.,7a} € {1,2,...,7} be a set of d+1 indices. We apply the
colorful Carathéodory’s theorem (Theorem 8.2.1) for the (d+1) “color” sets
M;,, ..., M;,, which all contain @ in their convex hull. This yields a rainbow
X-simplex S; containing a and having one vertex from each of the Mj,, as
illustrated below:

If J' # J are two (d+1)-tuples of indices, then S; # Sj.. Hence the
number of X-simplices containing the point a is at least
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( r ) _ ([n/(d—l—lﬂ) S 1 n(n — (d+1))--- (n — d(d+1))
d+1) = d+1 = (d+1)d+! (d+1)! '

For n sufficiently large, say n > 2d(d+1), this is at least (d+1)~(¢+D274( " ).
O

The second proof: from fractional Helly. Let F denote the family of
all X-simplices. Put N = |F| = (7). We want to apply the fractional Helly
theorem (Theorem 8.1.1) to F. Call a (d+1)-tuple of sets of F good if its
d+1 sets have a common point. To prove the first selection lemma, it suffices
to show that there are at least o dﬁ\r,l) good (d+1)-tuples for some a > 0
independent of n, since then the fractional Helly theorem provides a point
common to at least BN members of F.

Set t = (d+1)? and consider a t-point set Y C X. Using Tverberg’s
theorem, we find that Y can be partitioned into d+1 pairwise disjoint
sets, of size d+1 each, whose convex hulls have a common point. (Tver-
berg’s theorem does not guarantee that the parts have size d+1, but if they
don’t, we can move points from the larger parts to the smaller ones, us-
ing Carathéodory’s theorem.) Therefore, each t-point ¥ C X provides at
least one good (d+1)-tuple of members of F. Moreover, the members of this
good (d+1)-tuple are pairwise vertex-disjoint, and therefore the (d+1)-tuple
uniquely determines Y. It follows that the number of good (d+1)-tuples is at
least (7) = Q(nld+D?) > a(dﬂ\:l). ]

In the first proof we have used Tverberg’s theorem for a large point set,
while in the second proof we applied it only to configurations of bounded size.
For the latter application, if we do not care about the constant of propor-
tionality in the first selection lemma, a weaker version of Tverberg’s theorem
suffices, namely the finiteness of T'(d,d+1), which can be proved by quite
simple arguments, as we have seen.

The relation of Tverberg’s theorem to the first selection lemma in the
second proof somewhat resembles the derivation of macroscopic properties
in physics (pressure, temperature, etc.) from microscopic properties (laws of
motion of molecules, say). From the information about small (microscopic)
configurations we obtained a global (macroscopic) result, saying that a sig-
nificant portion of the X-simplices have a common point.

A point in the interior of many X-simplices. In applications of the
first selection lemma (or its relatives) we often need to know that there is a
point contained in the interior of many of the X-simplices. To assert anything
like that, we have to assume some kind of nondegenerate position of X. The
following lemma helps in most cases.

9.1.2 Lemma. Let X C R? be a set of n > d+1 points in general position,
meaning that no d+1 points of X lie on a common hyperplane, and let H be
the set of the (Z) hyperplanes determined by the points of X. Then no point
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a € R? is contained in more than dn®~! hyperplanes of H. Consequently, at
most O(n?) X-simplices have a on their boundary.

Proof. For each d-tuple S whose hyperplane contains a, we choose an
inclusion-minimal set K(S) C S whose affine hull contains a. We claim that
if |[K(S1)| = |K(S2)| = k, then either K(S1) = K(S2) or K(S1) and K(S2)
share at most k—2 points.

Indeed, if K(S1) = {z1,...,Zk—1,2} and K(S2) = {z1,...,%k—1,Yk},
Tk # Yk, then the affine hulls of K(S;) and K(S5;) are distinct, for otherwise,
we would have k+1 points in a common (k—1)-flat, contradicting the general
position of X. But then the affine hulls intersect in the (k—2)-flat generated
by x1,...,2k—1 and containing a, and K(S;) and K(S2) are not inclusion-
minimal.

Therefore, the first k—1 points of K(S) determine the last one uniquely,
and the number of distinct sets of the form K(S) of cardinality k is at most
n¥~1. The number of hyperplanes determined by X and containing a given
k-point set K C X is at most n%~*, and the lemma follows by summing
over k. m|

Bibliography and remarks. The planar version of the first selec-
tion lemma, with the best possible constant %, was proved by Boros
and Fiiredi [BF84]. A generalization to an arbitrary dimension, with
the first of the two proofs given above, was found by Bédrany [B4r82].
The idea of the proof of Lemma 9.1.2 was communicated to me by
Janos Pach.

Boros and Fiiredi [BF84] actually showed that any centerpoint of
X works; that is, it is contained in at least 2(3) X-triangles. Wag-
ner and Welzl (private communication) observed that a centerpoint
works in every fixed dimension, being common to at least ca(,};)
X-simplices. This follows from known results on the face numbers of
convex polytopes using the Gale transform, and it provides yet another
proof of the first selection lemma, yielding a slightly better value of
the constant ¢y than that provided by Béardny’s proof. Moreover, for
a centrally symmetric point set X this method implies that the origin
is contained in the largest possible number of X-simplices.

As for lower bounds, it is known that no n-point X C R? in gen-
eral position has a point common to more than 57 (,%;) X-simplices
[Bar82]. It seems that suitable sets might provide stronger lower
bounds, but no results in this direction are known.

9.2 The Second Selection Lemma

In this section we continue using the term X-simplex in the sense of Sec-
tion 9.1; that is, an X-simplex is the convex hull of a (d+1)-point subset
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of X. In that section we saw that if X is a set in R¢ and we consider all the
X-simplices, then at least a fixed fraction of them have a point in common.

What if we do not have all, but many X-simplices, some a-fraction of all?
It turns out that still many of them must have a point in common, as stated
in the second selection lemma below.

9.2.1 Theorem (Second selection lemma). Let X be an n-point set
in R* and let F be a family of a(,},) X-simplices, where a € (0,1] is a
parameter. Then there exists a point contained in at least

8d n
. (d n 1)

X-simplices of F, where ¢ = ¢(d) > 0 and s4 are constants.

This result is already interesting for « fixed. But for the application that
motivated the discovery of the second selection lemma, namely, trying to
bound the number of k-sets (see Chapter 11), the dependence of the bound
on « is important, and it would be nice to determine the best possible values
of the exponent sg.

For d = 1 it is not too difficult to obtain an asymptotically sharp bound
(see Exercise 1). For d = 2 the best known bound (probably still not
sharp) is as follows: If |[F| = n3~%, then there is a point contained in at
least Q(n®~3/log® n) X-triangles of F. In the parameterization as in The-
orem 9.2.1, this means that sy can be taken arbitrarily close to 3, provided
that « is sufficiently small, say o < n~¢ for some & > 0. For higher dimen-
sions, the best known proof gives sq ~ (4d+1)3+1,

Hypergraphs. It is convenient to formulate some of the subsequent con-
siderations in the language of hypergraphs. Hypergraphs are a generalization
of graphs where edges can have more than 2 points (from another point of
view, a hypergraph is synonymous with a set system). A hypergraph is a pair
H = (V,E), where V is the vertex set and E C 2V is a system of subsets of
V, the edge set. A k-uniform hypergraph has all edges of size k (so a graph is
a 2-uniform hypergraph). A k-partite hypergraph is one where the vertex set
can be partitioned into k subsets V1, Vs, ..., Vi, the classes, so that each edge
contains at most one point from each V;. The notions of subhypergraph and
isomorphism are defined analogously to these for graphs. A subhypergraph
is obtained by deleting some vertices and some edges (all edges containing
the deleted vertices, but possibly more). An isomorphism is a bijection of the
vertex sets that maps edges to edges in both directions (a renaming of the
vertices).

Proof of the second selection lemma. The proof is somewhat similar
to the second proof of the first selection lemma (Theorem 9.1.1). We again
use the fractional Helly theorem. We need to show that many (d+1)-tuples
of X-simplices of F are good (have nonempty intersections).
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We can view F as a (d+1)-uniform hypergraph. That is, we regard X as
the vertex set and each X-simplex corresponds to an edge, i.e., a subset of X
of size d+1. This hypergraph captures the “combinatorial type” of the family
F, and a specific placement of the points of X in R? then gives a concrete
“geometric realization” of F.

First, let us concentrate on the simpler task of exhibiting at least one good
(d+1)-tuple; even this seems quite nontrivial. Why cannot we proceed as in
the second proof of the first selection lemma? Let us give a concrete example
with d = 2. Following that proof, we would consider 9 points in R2, and
Tverberg’s theorem would provide a partition into triples with intersecting
convex hulls:

a b

But it can easily happen that one of these triples, say {a, b, ¢}, is not an edge
of our hypergraph. Tverberg’s theorem gives us no additional information on
which triples appear in the partition, and so this argument would guarantee
a good triple only if all the triples on the considered 9 points were contained
in F. Unfortunately, a 3-uniform hypergraph on n vertices can contain more
than half of all possible (g) triples without containing all triples on some 9
points (even on 4 points). This is a “higher-dimensional” version of the fact
that the complete bipartite graph on 3 + 4 vertices has about %nz edges
without containing a triangle.

Hypergraphs with many edges need not contain complete hypergraphs,
but they have to contain complete multipartite hypergraphs. For example, a
graph on n vertices with significantly more than n3/2 edges contains Ks,
the complete bipartite graph on 2 + 2 vertices (see Section 4.5). Concerning
hypergraphs, let K9+1(t) denote the complete (d+1)-partite (d+1)-uniform
hypergraph with ¢ vertices in each of its d+1 vertex classes. The illustration
shows a K3(4); only three edges are drawn as a sample, although of course,
all triples connecting vertices at different levels are present.

If ¢t is a constant and we have a (d+1)-uniform hypergraph on n vertices
with sufficiently many edges, then it has to contain a copy of Kt1(t) as a
subhypergraph. We do not formulate this result precisely, since we will need
a stronger one later.
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In geometric language, given a family F of sufficiently many X-simplices,
we can color some t points of X red, some other ¢ points blue,..., t points
by color (d+1) in such a way that all the rainbow X-simplices on the (d+1)¢
colored points are present in F. And in such a situation, if ¢ is a sufficiently
large constant, the colored Tverberg theorem (Theorem 8.3.3) with r = d+1
claims that we can find a (d+1)-tuple of vertex-disjoint rainbow X -simplices
whose convex hulls intersect, and so there is a good (d+1)-tuple! In fact, these
are the considerations that led to the formulation of the colored Tverberg
theorem.

For the fractional Helly theorem, we need not only one but many good
(d+1)-tuples. We use an appropriate stronger hypergraph result, saying that
if a hypergraph has enough edges, then it contains many copies of K9+1(t):

9.2.2 Theorem (The Erd8s—-Simonovits theorem). Let d and t be pos-
itive integers. Let H be a (d+1)-uniform hypergraph on n vertices and with
a(dil) edges, where a > Cn~1/t"
Then H contains at least

for a certain sufficiently large constant C.

catd+1n(d+1)t

copies of K4+1(t), where c = c(d,t) > 0 is a constant.

For completeness, a proof is given at the end of this section.

Note that in particular, the theorem implies that a (d+1)-uniform hy-
pergraph having at least a constant fraction of all possible edges contains at
least a constant fraction of all possible copies of K4+1(¢).

We can now finish the proof of the second selection lemma by double
counting. The given family F, viewed as a (d+1)-uniform hypergraph, has
a(,},) edges, and thus it contains at least cat™ n(@+Dt copies of K9H1(t)
by Theorem 9.2.2. As was explained above, each such copy contributes at
least one good (d+1)-tuple of vertex-disjoint X-simplices of F. On the other
hand, d+1 vertex-disjoint X-simplices have together (d+1)2 vertices, and
hence their vertex set can be extended to a vertex set of some K9+1(¢) (which
has t(d+1) vertices) in at most nt(@¢+1)=(@+1)* = p(t=d-1)(d+1) ways This is
the maximum number of copies of K9*1(t) that can give rise to the same
good (d+1)-tuple. Hence there are at least cat’* n(d*1)* good (d-+1)-tuples
of X-simplices of F. By the fractional Helly theorem, at least c’at"’ nd+1
X-simplices of F share a common point, with ¢ = ¢/(d) > 0. This proves the
second selection lemma, with the exponent sy < (4d+1)4+1, O

Proof of the Erdés—Simonovits theorem (Theorem 9.2.2). By induc-
tion on k, we are going to show that a k-uniform hypergraph on n vertices
and with m edges contains at least fx(m,m) copies of K*(t), where

tlc
fe(n,m) = cpnt® (%) — Cpntk—1) |
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with ¢ > 0 and Cj, suitable constants depending on k and also on ¢t (¢ is
not shown in the notation, since it remains fixed). This claim with k¥ = d+1
implies the Erdés—Simonovits theorem.

For k = 1, the claim holds.

So let k > 1 and let H be k-uniform with vertex set V, |V| = n, and edge
set E, |E| = m. For a vertex v € V, define a (k—1)-uniform hypergraph H,,
on V, whose edges are all edges of H that contain v, but with v deleted; that
is, Hy, = (V,{e\ {v}: e € E,v € e}). Further, let H' be the (k—1)-uniform
hypergraph whose edge set is the union of the edge sets of all the H,.

Let K denote the set of all copies of the complete (k—1)-partite hyper-
graph K*~1(¢) in H'. The key notion in the proof is that of an extending
vertez for a copy K € K: A vertex v € V is extending for a K € K if K is
contained in H,, or in other words, if for each edge e of K, eU{v} is an edge
in H. The picture below shows a K?(2) and an extending vertex for it (in a
3-regular hypergraph).

B

The idea is to count the number of all pairs (K, v), where K € K and v is an
extending vertex of K, in two ways.

On the one hand, if a fixed copy K € K has gk extending vertices, then
it contributes (%) distinct copies of K*(t) in . We note that one copy of
K*(t) comes from at most O(1) distinct K € K in this way, and therefore it
suffices to bound i (*%) from below.

On the other hand, for a fixed vertex v, the hypergraph H, contains at
least fr—1(n,m,) copies K € K by the inductive assumption, where m,, is
the number of edges of H,,. Hence

Y a2 Y feer(n,my).
KekK veV

Using Z'UEVmU = km, the convexity of fr_; in the second variable, and
Jensen’s inequality (see page xvi), we obtain

> ax >nfeoi(n,km/n). (9.1)
Kek

To conclude the proof, we define a convex function extending the binomial
coefficient (%) to the domain R:

(z) = 0 forx <t-—1,
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We want to bound Y ;o 9(gx) from below, and we have the bound (9.1) for
> ke k- Using the bound |K| < n**~1 (clear, since K*~1(t) has t(k—1)
vertices) and Jensen’s inequality, we derive that the number of copies of K*(t)

in H is at least for(n k)
t(k—1) nfeg—1\n,gkm/n

A calculation finishes the induction step; we omit the details. O

Bibliography and remarks. The second selection lemma was
conjectured, and proved in the planar case, by Barany, Fiiredi, and
Lovéasz [BFL90]. The missing part for higher dimensions was the col-
ored Tverberg theorem (discussed in Section 8.3). A proof for the
planar case by a different technique, with considerably better quanti-
tative bounds than can be obtained by the method shown above, was
given by Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, and Wenger
[ACE*91] (the bounds were mentioned in the text). The full proof of
the second selection lemma, for arbitrary dimension appears in Alon,
Bérany, Firedi, and Kleitman [ABFK92).

Several other “selection lemmas,” sometimes involving geometric
objects other than simplices, were proved by Chazelle, Edelsbrunner,
Guibas, Herschberger, Seidel, and Sharir [CEG™94].

Theorem 9.2.2 is from Erd6s and Simonovits [ES83].

Exercises

1. (a) Prove a one-dimensional selection lemma: Given an n-point set X C
R and a family F of a(g) X-intervals, there exists a point common
to Q(a?(})) intervals of F. What is the best value of the constant of
proportionality you can get?

(b) Show that this result is sharp (up to the value of the multiplicative
constant) in the full range of a. [2]

2. (a) Show that the exponent s; in the second selection lemma in the plane

cannot be smaller than 2. [2]

(b) Show that s3 > 2. [2] Can you also show that sy > 27

(c) Show that the proof method via the fractional Helly theorem cannot
give a better value of s than 3 in Theorem 9.2.1. That is, construct an
n-point set and a(g) triangles on it in such a way that no more than
O(a®n?) triples of these triangles have a point in common. [2]

9.3 Order Types and the Same-Type Lemma

The order type of a set. There are infinitely many 4-point sets in the
plane in general position, but there are only two “combinatorially distinct”
types of such sets:
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and
° [ ]
° . °

What is an appropriate equivalence relation that would capture the intuitive
notion of two finite point sets in R? being “combinatorially the same”? We
have already encountered one suitable notion of combinatorial isomorphism
in Section 5.6. Here we describe an equivalent but perhaps more intuitive
approach based on the order type of a configuration. First we explain this
notion for planar configurations in general position, where it is quite simple.
Let p = (p1,p2,...,Pn) and ¢ = (q1,92,--.,qn) be two sequences of points
in R2, both in general position (no 2 points coincide and no 3 are collinear).
Then p and g have the same order type if for any indices i < j < k we turn
in the same direction (right or left) when going from p; to pi via p; and when
going from g¢; to g via g;:

. g
i g e q’j/f
N ’7 oD, T
pi ; Pj e
[/} D;

We say that both the triples (p;, p;, px) and (g;,gj, gx) have the same orien-
tation.

If the point sequences p and q are in R%, we require that every (d+1)-
element subsequence of p have the same orientation as the corresponding
subsequence of g. The notion of orientation is best explained for d-tuples of
vectors in R%. If vy, ..., vq are vectors in RY, there is a unique linear mapping
sending the vector e; of the standard basis of R® to v;, 4 = 1,2,...,d. The
matrix A of this mapping has the vectors vi,...,v4 as the columns. The
orientation of (v1,...,vq) is defined as the sign of det(A); so it can be +1
(positive orientation), —1 (negative orientation), or 0 (the vectors are linearly
dependent and lie in a (d—1)-dimensional linear subspace). For a (d-+1)-tuple
of points (p1,p2,...,Pa+1), we define the orientation to be the orientation of
the d vectors pz — p1,P3 — p1,- - -, Pat+1 — p1. Geometrically, the orientation of
a 4-tuple (p1, p2,p3,pa) tells us on which side of the plane p;paps; the point
P4 lies (if p1, p2, ps, pa are affinely independent).

Returning to the order type, let p = (p1,p2,...,pn) be a point sequence
in R%. The order type of p (also called the chirotope of p) is defined as the
mapping assigning to each (d+1)-tuple (i1,42,...,i4+1) of indices, 1 < i; <
ig < +++ < ig41 < m, the orientation of the (d+1)-tuple (pi;, iy, - - -, Digy,)-
Thus, the order type of p can be described by a sequence of +1’s, —1’s, and
0’s with (,},) terms.

The order type makes good sense only for point sequences in R¢ con-
taining some d+1 affinely independent points. Then one can read off various
properties of the sequence from its order type, such as general position, con-
vex position, and so on; see Exercise 1.
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In this section we prove a powerful Ramsey-type result concerning order
types, called the same-type lemma.

Same-type transversals. Let (Y3,Y3,...,Y,,) be an m-tuple of finite sets
in RY. By a transversal of this m-tuple we mean any m-tuple (y1, ¥z, ..., Ym)
such that y; € Y; for all i. We say that (Y1,Ys,...,Ynn) has same-type
transversals if all of its transversals have the same order type. Here is an
example of 4 planar sets with same-type transversals:

Y3

Yy

Y, Y;

If (X1,Xz,...,Xm) are very large finite sets such that X U---UX,,
is in general position,! we can find not too small subsets Y7 C Xi,...,
Ym C X, such that (Y3,...,Y,,) has same-type transversals. To see this,
color each transversal of (X1, X»,..., Xy, ) by its order type. Since the num-
ber of possible order types of an m-point set in general position cannot ex-

ceed r = 2(£1), we have a coloring of the edges of the complete m-partite
hypergraph on (X1,...,Xy) by r colors. By the Erdés—-Simonovits theorem
(Theorem 9.2.2), there are sets Y; C X;, not too small, such that all edges
induced by Y1 U- - -UY,, have the same color, i.e., (Y1,...,Y,,) has same-type
transversals.

As is the case for many other geometric applications of Ramsey-type theo-
rems, this result can be quantitatively improved tremendously by a geometric
argument: For m and d fixed, the size of the sets Y; can be made a constant
fraction of | X;|.

9.3.1 Theorem (Same-type lemma). For any integers d,m > 1, there
exists ¢ = ¢(d, m) > 0 such that the following holds. Let X7, Xs,..., X be
finite sets in R® such that X;U---UX,, is in general position. Then there are
Y; C Xi,..., Yy C X,, such that the m-tuple (Y1,Y>,...,Yy,) has same-type
transversals and |Y;| > c|X;| for all i = 1,2,...,m.

Proof. First we observe that it is sufficient to prove the same-type lemma
for m = d+1. For larger m, we begin with (X3, X5, ..., X,,,) as the current m-
tuple of sets. Then we go through all (d+1)-tuples (i1, @3, . . ., t4+1) of indices,
and if (Z1,...,Zn) is the current m-tuple of sets, we apply the same-type
lemma to the (d+1)-tuple (Z;,,..., Z;,.,). These sets are replaced by smaller

Td+1

! This is a shorthand for saying that X; N X; =@ foralli # jand X; U---U Xy,
is in general position.
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sets (Z;,,...,Z;,,,) such that this (d+1)-tuple has same-type transversals.
After this step is executed for all (d+1)-tuples of indices, the resulting current
m-tuple of sets has same-type transversals.

This method gives the rather small lower bound
e(d,m) > e(d,d+1)(").

To handle the crucial case m = d+1, we will use the following criterion
for a (d+1)-tuple of sets having same-type transversals.

9.3.2 Lemma. Let C,Cs,...,Cqy1 € R? be convex sets. The following two
conditions are equivalent:

(i) There is no hyperplane simultaneously intersecting all of C1,Cs, ..., Cgy1.
(ii) For each nonempty index set I C {1,2,...,d+1}, the sets | J;c; Ci and
Ujg ; C; can be strictly separated by a hyperplane.

Moreover, if X1, Xa,...,Xar1 C R? are finite sets such that the sets C; =
conv(X;) have property (i) (and (ii)), then (X1,...,Xa+1) has same-type
transversals.

In particular, planar convex sets C1, Cz, C3 have no line transversal if and

only if each of them can be separated by a line from the other two. The proof
of this neat result is left to Exercise 3. We will not need the assertion that
(i) implies (ii).
Same-type lemma for d+1 sets. To prove the same-type lemma for the
case m = d+1, it now suffices to choose the sets Y; C X; in such a way
that their convex hulls are separated in the sense of (ii) in Lemma 9.3.2.
This can be done by an iterative application of the ham-sandwich theorem
(Theorem 1.4.3).

Suppose that for some nonempty index set I C {1,2,...,d + 1}, the sets
conv(U;¢; Xi) and conv({J,4; X;) cannot be separated by a hyperplane. For
notational convenience, we assume that d+1 € I. Let h be a hyperplane
simultaneously bisecting X3, Xs,..., X4, whose existence is guaranteed by
the ham-sandwich theorem. Let - be a closed half-space bounded by h and
containing at least half of the points of X4 ;. For all ¢ € I, including i = d+1,
we discard the points of X; not lying in v, and for j & I we throw away the
points of X that lie in the interior of v (note that points on h are never
discarded); see Figure 9.1.

We claim that union of the resulting sets with indices in I is now strictly
separated from the union of the remaining sets. If h contains no points of the
sets, then it is a separating hyperplane. Otherwise, let the points contained
in h be ai,...,a;; we have t < d by the general position assumption. For
each aj, choose a point a}- very near to a;. If a; lies in some X; with ¢ € I,
then a’; is chosen in the complement of v, and otherwise, it is chosen in the

j
interior of . We let b’ be a hyperplane passing through af,...,a; and lying
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initial sets I -{ii}

<. h
I ={1,3} result

Figure 9.1. Proof of the same-type lemma for d = 2, m = 3.

very close to h. Then b’ is the desired separating hyperplane, provided that
the ag- are sufficiently close to the corresponding a;, as in the picture below:

Thus, we have “killed” the index set I, at the price of halving the sizes
of the current sets; more precisely, the size of a set X; is reduced from |X;|
to [|X;]/2] (or larger). We can continue with the other index sets in the
same manner. After no more than 2¢-! halvings, we obtain sets satisfying
the separation condition and thus having same-type transversals. The same-
type lemma is proved. The lower bound for ¢(d, d+1) is doubly exponential,
roughly 2-2°. O

A simple application. We recall that by the Erd6s—Szekeres theorem, for
any natural number k there is a natural number n = n(k) such that any
n-point set in the plane in general position contains a subset of k& points
in convex position (forming the vertices of a convex k-gon). The same-type
lemma immediately gives the following result:
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9.3.3 Theorem (Positive-fraction Erdés—Szekeres theorem). For ev-
ery integer k > 4 there is a constant cx > 0 such that every sufficiently large
finite set X C R? in general position contains k disjoint subsets Y1, ..., Y,
of size at least cx|X| each, such that each transversal of (Yy,...,Y%) is in
convex position.

Proof. Let n = n(k) be the number as in the Erdés—Szekeres theorem. We
partition X into n sets Xi,..., X, of almost equal sizes, and we apply the
same-type lemma to them, obtaining sets Yi,...,Y,, Y; C X;, with same-
type transversals. Let (y1,...,yn) be a transversal of (Y1,...,Y,). By the
Erdés—Szekeres theorem, there are iy < 49 < --- < i such that y;,,..., v,
are in convex position. Then Y;,,...,Y;, are as required in the theorem. O

Bibliography and remarks. For more information on order types,
the reader can consult the survey by Goodman and Pollack [GP93].
The same-type lemma is from Bérdny and Valtr [BV98], and a very
similar idea was used by Pach [Pac98]. Barany and Valtr proved the
positive-fraction Erd6s—Szekeres theorem (the case k = 4 was estab-
lished earlier by Nielsen), and they gave several more applications of
the same-type lemma, such as a positive-fraction Radon lemma and a
positive-fraction Tverberg theorem.

Another, simple proof of the positive-fraction Erdés-Szekeres the-
orem was found by Pach and Solymosi [PS98b]; see Exercise 4 for an
outline.

The equivalence of (i) and (ii) in Lemma 9.3.2 is from Goodman,
Pollack, and Wenger [GPW96].

A nice strengthening of the same-type lemma was proved by Pér
[P6r02): Instead of just selecting a Y; from each X;, the X; can be
completely partitioned into such Y;. That is, for every d and m there

exists n = n(d, m) such that whenever X1, X, ..., X,, C R? are finite
sets with |X;| = |X3| = .- = | X;»| and with L'JXi in general position,
there are partitions X; = Y;;UY;oU---UY;,, 1 =1,2,...,m, such that
for each j = 1,2,...,n, the sets Y1;,Y2;,...,Yn; have the same size
and same-type transversals. Schematically:
J= 1 2 3 ... n

L T T T TTIX:

L [ [T T1X,

C T T T TT1Xs

L T T T TTIXs

(the sets in each column have same-type transversals). For the proof,
one first observes that it suffices to prove the existence of n(d,d+1);
the larger m follow as in the proof of the same-type lemma, by re-
fining the partitions for every (d+1)-tuple of the indices i. The key
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step is showing n(d,d+1) < 2n(d—1,d+1). The X; are projected on
a generic hyperplane h and the appropriate partitions are found for
the projections by induction. Let X C h be the projection of X, let
Y{,..., Y}, be one of the “columns” in the partitions of the X (we
omit the index j for simpler notation), let k = |Y/|, and let ¥; C X be
the preimage of Y;. As far as separation by hyperplanes is concerned,
the Y, behave like d+1 points in general position in R41, and so there
is only one inseparable (Radon) partition (see Exercise 1.3.9), i.e., an
Ic{1,2,...,d+1} (unique up to complementation) such that { J,.; ¥;
cannot be separated from Uig ; Y/. By an argument resembling proofs
of the ham-sandwich theorem, it can be shown that there is a half-
space v in R and a number k; such that |yNY;| = k; for s € I and
[yNY;| =k—k;y fori € I. Letting Z; = Y;Nyfori € T and Z; = Y; \y
for i ¢ I and T; = Y; \ Z;, one obtains that (Z3,...,Z441) satisfy
condition (ii) in Lemma 9.3.2, and so they have same-type transver-
sals, and similarly for the T;. A 2-dimensional picture illustrates the
construction:

} ‘l._' /I
Z T |
_ il T
I Z I ={1,3)
% ¥ &

The problem of estimating n(d,m) (the proof produces a doubly ex-
ponential bound) is interesting even for d = 1, and there Pér showed,
by ingenious arguments, that n(1,m) = ©(m?).

Exercises

1. Let p = (p1,p2,...,Pn) be a sequence of points in R¢ containing d+1
affinely independent points. Explain how we can decide the following
questions, knowing the order type of p and nothing else about it:

(a) Is it true that for every k points among the p;, k = 2,3,...,d+1, the
affine hull has the maximum dimension k—17

(b) Does pg+2 lie in conv({p1,...,pa+1})?

(c) Are the points p,...,p, convex independent (i.e., is each of them a
vertex of their convex hull)?

2. Let p = (p1,P2,--.,Pn) be a sequence of points in R? whose affine hull
is the whole of R¢. Explain how we can determine the order type of p,
up to a global change of all signs, from the knowledge of sgn(AffVal(p))
(the signs of affine functions on the p;; see Section 5.6). [2]
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(Conversely, sgn(AffVal(p)) can be reconstructed from the order type,
but the proof is more complicated; see, e.g., [BVS199].)

(a) Prove that in the setting of Lemma 9.3.2, if the convex hulls of the
X; have property (i), then (Xi,...,X4+1) has same-type transversals.
Proceed by contradiction.

(b) Prove that property (ii) (separation) implies property (i) (no hyper-
plane transversal). Proceed by contradiction and use Radon’s lemma.
(c) Prove that (i) implies (ii). [

. Let k > 3 be a fixed integer.

(a) Show that for n sufficiently large, any n-point set X in general position
in the plane contains at least cn?* convex independent subsets of size 2k,
for a suitable ¢ = ¢(k) > 0.

(b) Let S = {p1,p2,...,p2r} be a convex independent subset of X,
where the points are numbered along the circumference of the con-
vex hull in a clockwise order, say. The holder of S is the set H(S) =
{p1,P3,---,P2k—1}. Show that there is a set H that is the holder of at
least (n*) sets S.

(¢) Derive that each of the indicated triangular regions of such an H
contain Q(n) points of X:

Infer the positive-fraction Erd6s—Szekeres theorem in the plane.

(d) Show that the positive-fraction Erd6s—Szekeres theorem in higher
dimensions is implied by the planar version.

(A Ramsey-type theorem for segments)

(a) Let L be a set of n lines and P a set of n points in the plane, both
in general position and with no point of P lying on any line of L. Prove
that we can select subsets L' C L, |L'| > an, and P’ C P, |P'| > an,
such that P’ lies in a single cell of the arrangement of L’ (where o > 0
is a suitable absolute constant). You can use the same-type lemma for
m = 3 (or an elementary argument). (4]

(b) Given a set S of n segments and a set L of n lines in the plane, both
in general position and with no endpoint of a segment lying on any of
the lines, show that there exist S C S and L' C L, |5’|,|L’'| = fBn, with
a suitable constant 3 > 0, such that either each segment of S’ intersects
each line of L' or all segments of S’ are disjoint from all lines of L.
(c) Given a set R of n red segments and a set B of n blue segments
in the plane, with RUB in general position, prove that there are subsets
R' CR,|R'| > n,and B’ C B, |B’| > yn, such that either each segment
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of R’ intersects each segment of B’ or each segment of R’ is disjoint from
each segment of B’ (v > 0 is another absolute constant).
The result in (c) is due to Pach and Solymosi [PS01].

9.4 A Hypergraph Regularity Lemma

Here we consider a fine tool from the theory of hypergraphs, which we will
need for yet another version of the selection lemma in the subsequent section.
It is a result inspired by the famous Szemerédi reqularity lemma for graphs.
Very roughly speaking, the Szemerédi regularity lemma says that for given
€ > 0, the vertex set of any sufficiently large graph G can be partitioned
into some number, not too small and not too large, of parts in such a way
that the bipartite graphs between “most” pairs of the parts look like random
bipartite graphs, up to an “error” bounded by €. An exact formulation is
rather complicated and is given in the notes below. The result discussed here
is a hypergraph analogue of a weak version of the Szemerédi regularity lemma.
It is easier to prove than the Szemerédi regularity lemma.

Let H = (X, E) be a k-partite hypergraph whose vertex set is the union
of k pairwise disjoint n-element sets X1, Xs,..., Xk, and whose edges are
k-tuples containing precisely one element from each X;. For subsets Y; C X;,
i=1,2,...,k, let e(Y1,...,Ys) denote the number of edges of H contained
in Y7 U---UY%. In this notation, the total number of edges of H is equal to
e(X1,-..,Xg). Further, let

e(Yl, . .,Yk)

P i) = R vl

denote the density of the subhypergraph induced by the Y;.

9.4.1 Theorem (Weak regularity lemma for hypergraphs). Let H be
a k-partite hypergraph as above, and suppose that p(H) > 3 for some 8 > 0.
Let0<e < % Suppose that n is sufficiently large in terms of k, 3, and €.

Then there exist subsets Y; C X; of equal size |Y;| = s > ﬁl/skn, 7=
1,2,...,k, such that

(i) (High density) p(Y1,...,Ys) > 0B, and
(ii) (Edges on all large subsets) e(Z1,...,2;) > 0 for any Z; C Y; with
|Zi| >es,i=1,2,...,k

The following scheme illustrates the situation (but of course, the vertices
of the Y; and Z; need not be contiguous).
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X i

for all Z,,..., Z; there exists an edge

}.'g

Proof. Intuitively, the sets Y; should be selected in such a way that the
subhypergraph induced by them is as dense as possible. We then want to
show that if there were Z1,..., Z of size at least £s with no edges on them,
we could replace the Y; by sets with a still larger density. But if we looked at
the usual density p(Y1,...,Y%), we would typically get too small sets Y;. The
trick is to look at a modified density parameter that slightly favors larger
sets. Thus, we define the magical density p(Y1,...,Yx) by

e(Yi,..., Ye)
Yi,...,Y) = .
H N ARTARN A
We choose Yi,...,Y%, Y; C X;, as sets of equal size that have the maximum
possible magical density p(Y1,...,Y%). We denote the common size |Y;| =

.-+ =|Y| by s.
First we derive the condition (i) in the theorem for this choice of the Y;.
We have

W) v, ) 2w, X0 = et > e
and so (Y1, ..., Ys) > Bs*, which verifies (i). Since obviously e(Y3, ..., Y:) <
s¥, we have pu(Yi,...,Yx) < s¢ . Combining with u(Ya,...,Ye) > Bnc" de-
rived above, we also obtain that s > 8/ n.

It remains to prove (ii). Since €s is a large number by the assumptions,
rounding it up to an integer does not matter in the subsequent calculations
(as can be checked by a simple but somewhat tedious analysis). In order
to simplify matters, we will thus assume that es is an integer, and we let
Z1 CY,...,Z; C Yy bees-element sets. We want to prove e(Z1, ..., Zx) > 0.
We have
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e(Z1,...,Z) = e(Yq,...,Y:) (9.2)
—e(Yi\ Z1,Ys,Ys, ..., Yi)
—e(Z1,Y2\ Z2,Y3,...,Y%)
~e(Z1,22,Ys\ Z3,...,Yk)

—e(Zy,Z2,23,...,Yi \ Zy).

We want to show that the negative terms are not too large, using the as-
sumption that the magical density of Y7, ..., Y% is maximum. The problem
is that Y3,...,Yx maximize the magical density only among the sets of equal
size, while we have sets of different sizes in the terms. To get back to sets of
equal size, we use the following observation. If, say, R; is a randomly chosen
subset of Y] of some given size r, we have

E[p(R]_,YQ, .. ,Yk)] = p(Yl, . ,Yk),

where E[ -] denotes the expectation with respect to the random choice of an r-
element R; C Y;. This preservation of density by choosing a random subset is
quite intuitive, and it is not difficult to verify it by counting (Exercise 1). For
estimating the term e(Y; \ Z1, Y5, ..., Y:), we use random subsets R, ..., Ry
of size (1—¢)s of Y3, ..., Y%, respectively. Thus,

e(Yi\ Z1,Y2,...,Ys) = (1 —€)s*E[p(Y1 \ Z1,Ra,...,Ry)].

Now for any choice of Rs,..., Rx, we have

(1—€)s)"="u(Yy \ 21, Rs, ..., Ri)
(L—€)s) u(¥1, Y, ..., V)
(1-e)~ p(Ys,...,Yr).

p(Y1 \Zl,Rz, e ,Rk)

IA

Therefore,
e(Yi\ Z1,Ya,...,Yi) < (1—€)' = e(Yr,..., Vi) < (1 — e)e(Ys, ..., Yi).

To estimate the term e(Z1, Za, . .., Zi-1,Y:\ Zi, Yi41, - - ., Yi), we use random
subsets R; C Y;\ Z; and R;y1 C Yiy1,..., Rk C Yy, this time all of size es.
A similar calculation as before yields

e(Z1,Zay- s Zim1, i\ Ziy Yiy1, -, Vi) < €717 (1 —e)e(Vs, . .., Ya).

(This estimate is also valid for ¢ = 1, but it is worse than the one derived
above and it would not suffice in the subsequent calculation.) From (9.2) we
obtain that e(Zy,..., Zk) is at least e(Y3,...,Y;) multiplied by the factor
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k
1—(1-€)=(1—g) Zsi‘l =e—gl=e (1-e*1)
1=2

€ (1 + 5_5’; (b1 - 1))

c (1 + eek ln(l/a)(é_k—l _ 1))

>e(l+(1+efln %)(ak'l - 1))
= (1 -Inl+efinl)

> 1 ()

> 0.

Theorem 9.4.1 is proved.

Bibliography and remarks. The Szemerédi regularity lemma is
from [Sze78], and in its full glory it goes as follows: For every € > 0 and
for every kg, there exist K and ng such that every graph G onn > ng
vertices has a partition (Vp, V1,. .., Vi) of the vertex set into k+1 parts,
ko < k < K, where |Vp| < en, |V1| = |V2| = -+ = |Vk| = m, and all but
at most €k? of the (’,_f) pairs {V;,V;} are e-regular, which means that
for every A C V; and B C V; with |A|,|B| > em we have |p(A, B) —
p(Vi,V;)| < e. Understanding the idea of the proof is easier than
understanding the statement. The regularity lemma is an extremely
powerful tool in modern combinatorics. A survey of applications and
variations can be found in Komlés and Simonovits [KS96].

Our presentation of Theorem 9.4.1 essentially follows Pach [Pac98],
whose treatment is an adaptation of an approach of Komlds and Sés.

One can formulate various hypergraph analogues of the Szemerédi
regularity lemma in its full strength. For instance, for a 3-uniform
hypergraph, one can define a triple V1, V2, Vo of disjoint subsets of
vertices to be e-regular if |p(A;1, A2, A3) — p(V1, Vo, V3)| < € for every
A; CV; with |A;| > €|Vi|, and formulate a statement about a parti-
tion of the vertex set of every 3-regular hypergraph in which almost
all triples of classes are e-regular. Such a result indeed holds, but this
formulation has significant shortcomings. For example, the Szemerédi
regularity lemma allows approximate counting of small subgraphs in
the given graph (see Exercise 3 for a simple example), which is the
key to many applications, but the notion of e-regularity for triple sys-
tems just given does not work in this way (Exercise 4). A technically
quite complicated but powerful regularity lemma for 3-regular hyper-
graphs that does admit counting of small subhypergraphs was proved
by Frankl and Rodl [FRO1]. The first insight is that for triple systems,
one should not partition only vertices but also pairs of vertices.

Let us mention a related innocent-looking problem of geometric
flavor. For a point ¢ € § = {1,2,...,n}%, we define a jack with center
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¢ as the set of all points of S that differ from ¢ in at most 1 coordinate.
The problem, formulated by Székely, asks for the maximum possible
cardinality of a system of jacks in S such that no two jacks share a line
(i.e., every two centers differ in at least 2 coordinates) and no point
is covered by d jacks. It is easily seen that no more than n¢~! jacks
can be taken, and the problem is to prove an o(n~!) bound for every
fixed d. The results of Frankl and Rédl [FRO1] imply this bound for
d = 4, and recently R6d]l and Skokan announced a positive solution
for d = 5 as well; these results are based on sophisticated hypergraph
regularity lemmas. A positive answer would imply the famous theorem
of Szemerédi on arithmetic progressions (see, e.g., Gowers [Gow98] for
recent, work and references) and would probably provide a “purely
combinatorial” proof.

Exercises

1. Verify the equality E[p(R1,Ys,...,Y:)] = p(Y1,...,Y%), where the ex-
pectation is with respect to a random choice of an r-element R; C Y;.
Also derive the other similar equalities used in the proof in the text. [2]

2. (Density Ramsey-type result for segments)

(a) Let ¢ > 0 be a given positive constant. Using Exercise 9.3.5(c) and
the weak regularity lemma, prove that there exists 8 = ((c) > 0 such
that whenever R and B are sets of segments in the plane with RUB in
general position and such that the number of pairs (r,b) with r € R,
b€ B, and rNb # 0 is at least cn?, then there are subsets R’ C R and
B’ C B such that |R'| > n, |B’| > Bn, and each r € R’ intersects each
be B

(b) Prove the analogue of (a) for noncrossing pairs. Assuming at least cn?
pairs (r,b) with rNb = 0, select R’ and B’ of size n such that rNb =10
for each r € R’ and b € B'.

These results are from Pach and Solymosi [PS01].

3. (a) Let G = (V,F) be a graph, and let V be partitioned into classes
V1, Vs, V3 of size m each. Suppose that there are no edges with both
vertices in the same V;, that |p(V;,V;) — %| < ¢ for all i < j, and that
each pair (V;,V}) is e-regular (this means that |p(A, B) — p(V;,V;)| < €
for any A C V; and B C V; with |A|,|B| > em). Prove that the number
of triangles in G is ( + o(1))m®, where the o(1) notation refers to € — 0
(while m is considered arbitrary but sufficiently large in terms of ¢).
(b) Generalize (a) to counting the number of copies of Ky, where G has
4 classes V1, ..., V4 of equal size (if all the densities are about %, then the
number should be (275 + o(1))m?).

4. For every ¢ > 0 and for arbitrarily large m, construct a 3-uniform 4-
partite hypergraph with vertex classes Vi,...,Vy, each of size m, that
contains no K. f’) (the system of all triples on 4 vertices), but where
lp(Vi, V;, Vi) — 3| < e for all i < j < k and each triple (V;,V},Vj) is
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e-regular. The latter condition means |p(A;, 45, Ax) — p(V;, V;, Vi) < €
for every A; C Vi, A; CV;, Ap C Vi of size at least em. [E]

9.5 A Positive-Fraction Selection Lemma

Here we discuss a stronger version of the first selection lemma (Theo-
rem 9.1.1). Recall that for any n-point set X C R¢, the first selection lemma
provides a “heavily covered” point, that is, a point contained in at least a
fixed fraction of the (%) simplices with vertices in points of X. The the-
orem below shows that we can even get a large collection of simplices with
a quite special structure. For example, in the plane, given n red points, n
white points, and n blue points, we can select {5 red, 75 white, and % blue
points in such a way that all the red—white-blue triangles for the resulting

sets have a point in common. Here is the d-dimensional generalization.

9.5.1 Theorem (Positive-fraction selection lemma). For all natural
numbers d, there exists ¢ = ¢(d) > 0 with the following property. Let
X1,Xa,..., X441 C R? be finite sets of equal size, with X1UX5U - - - UX 441
in general position. Then there is a point a € R® and subsets Z; C X3,...,
Zgy1 C Xay1, with |Z;] > ¢|X;|, such that the convex hull of every transver-
sal of (Z1,...,Z441) contains a.

As was remarked above, for d = 2, one can take ¢ = % There is an
elementary and not too difficult proof (which the reader is invited to discover).
In higher dimensions, the only known proof uses the weak regularity lemma
for hypergraphs.

Proof. Let X = X; U---U X4y1. We may suppose that all the X; are
large (for otherwise, one-point Z; will do). Let Fy be the set of all “rainbow”
X-simplices, i.e., of all transversals of (X1, ..., X4y1), where the transversals
are formally considered as sets for the moment. The size of Fy is, for d fixed,
at least a constant fraction of ((L)_fll) (here we use the assumptions that the X;
are of equal size). Therefore, by the second selection lemma (Theorem 9.2.1),
there is a subset F; C Fy of at least Ant! X-simplices containing a common
point a, where 8 = (d) > 0. (Note that we do not need the full power of the
second selection lemma here, since we deal with the complete (d+1)-partite
hypergraph.)

For the subsequent argument we need the common point a to lie in the
interior of many of the X-simplices. One way of ensuring this would be
to assume a suitable strongly general position of X and use a perturba-
tion argument for arbitrary X. Another, perhaps simpler, way is to apply
Lemma 9.1.2, which guarantees that a lies on the boundary of at most O(n?)
of the X-simplices of F;. So we let Fo C F; be the X-simplices containing a
in the interior, and for a sufficiently large n we still have |F,| > f/nd+!.

Next, we consider the (d+1)-partite hypergraph H with vertex set X and
edge set Fp. We let ¢ = ¢(d,d + 2), where ¢(d,m) is as in the same-type
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lemma, and we apply the weak regularity lemma (Theorem 9.4.1) to H. This
yields sets Y7 C X;,..., Y441 € X441, whose size is at least a fixed fraction of
the size of the X;, and such that any subsets Z; C Y1,..., Zg+1 C Y441 of size
at least ¢|Y;| induce an edge; this means that there is a rainbow X-simplex
with vertices in the Z; and containing the point a.

The argument is finished by applying the same-type lemma with the d+2
sets Y1,Y%,...,Ya41 and Ygyo = {a}. We obtain sets Z; C Y3,..., Zy41 C
Y1 and Zgio = {a} with same-type transversals, and with |Z;] > ¢]Y]
fori=1,2,...,d+1. (Indeed, the same-type lemma guarantees that at least
one point is selected even from an 1-point set.) Now either all transversals
of (Z1,...,Z4+1) contain the point a in their convex hull or none does (use
Exercise 9.3.1(d)). But the latter possibility is excluded by the choice of the
Y; (by the weak regularity lemma). The positive-fraction selection lemma is
proved. O

It is amazing how many quite heavy tools are used in this proof. It would
be nice to find a more direct argument.

Bibliography and remarks. The planar case of Theorem 9.5.1 was
proved by Bérany, Fiiredi, and Lovész [BFL90] (with ¢(2) > %), and
the result for arbitrary dimension is due to Pach [Pac98].
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Transversals and Epsilon Nets

Here we are going to consider problems of the following type: We have a
family F of geometric shapes satisfying certain conditions, and we would like
to conclude that F can be “pierced” by not too many points, meaning that
we can choose a bounded number of points such that each set of F contains at
least one of them. Such questions are sometimes called Gallai-type problems,
because of the following nice problem raised by Gallai: Let F be a finite family
of closed disks in the plane such that every two disks in F intersect. What
is the smallest number of points needed to pierce F7 For this problem, the
exact answer is known: 4 points always suffice and are sometimes necessary.

We will not cover this particular (quite difficult) result; rather, we con-
sider general methods for proving that the number of piercing points can be
bounded. These methods yield numerous results where no other proofs are
available. On the other hand, the resulting estimates are usually quite large,
and in some simpler cases (such as Gallai’s problem mentioned above), spe-
cialized geometric arguments provide much better bounds.

Some of the tools introduced in this chapter are widely applicable and
sometimes more significant than the particular geometric results. Such im-
portant tools include the transversal and matching numbers of set systems,
their fractional versions (connected via the duality of linear programming),
the Vapnik—Chervonenkis dimension and ways of estimating it, and epsilon
nets.

10.1 General Preliminaries: Transversals and
Matchings
Let F be a system of sets on a ground set X; both F and X may generally

be infinite. A subset T' C X is called a transversal of F if it intersects all the
sets of F.
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The transversal number of F, denoted by 7(F), is the smallest possible car-
dinality of a transversal of F.

Many combinatorial and geometric problems, some them considered in
this chapter, can be rephrased as questions about the transversal number of
suitable set systems.

Another important parameter of a set system F is the packing number
(or matching number) of F, usually denoted by v(F). This is the maximum
cardinality of a system of pairwise disjoint sets in F:

v(F) =sup{|IM|: M C F, M1 N My =0 for all My, My € M, My # M}.

A subsystem M C F of pairwise disjoint sets is called a packing (or a match-
ing; this refers to graph-theoretic matching, which is a system of pairwise
disjoint edges).

Any transversal is at least as large as any packing, and so always

v(F) < 7(F).

In the reverse direction, very little can be said in general, since 7(F) can be
arbitrarily large even if ¥(F) = 1. As a simple geometric example, we can
take the plane as the ground set X and let the sets of F be n lines in general
position. Then v(F) = 1, since every two lines intersect, but 7(F) > %n,
because no point is contained in more than two of the lines.

Fractional packing and transversal numbers. Now we introduce an-
other parameter of a set system, which always lies between v and 7 and which
has proved extremely useful in arguments estimating 7 or v. First we restrict
ourselves to set systems on finite ground sets.

Let F be a system of subsets of a finite set X. A fractional transversal for
F is a function ¢: X — [0,1] such that for each S € F, we have ) s ¢(z) >
1. The size of a fractional transversal ¢ is > .y (z), and the fractional
transversal number 7*(F) is the infimum of the sizes of fractional transversals.
So in a fractional transversal, we can take one-third of one point, one-fifth
of another, etc., but we must put total weight of at least one full point into
every set.
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Similarly, a fractional packing for F is a function 9: F — [0, 1] such that
for each z € X, we have Y g 7. .5 ¥(S) < 1. So sets receive weights and the
total weight of sets containing any given point must not exceed 1. The size
of a fractional packing v is ) g %(S), and the fractional packing number
v*(F) is the supremum of the sizes of all fractional packings for F.

It is instructive to consider the “triangle” system of 3 sets on 3 points,

and check that v =1, 7=2,and v* =7 = %

Any packing M yields a fractional packing (by assigning weight 1 to the
sets in M and 0 to others), and so v < v*. Similarly, 7* < 7.

We promised one parameter but introduced two: 7* and v*. But they
happen to be the same.

10.1.1 Theorem. For every set system F on a finite ground set, we have
v*(F) = 7*(F). Moreover, the common value is a rational number, and
there exist an optimal fractional transversal and an optimal fractional packing
attaining only rational values.

This is not a trivial result; the proof is a nice application of the duality
of linear programming. Here is the version of the linear programming duality
we need.

10.1.2 Proposition (Duality of linear programming). Let A be an
m x n real matrix, b € R™ a (column) vector, and ¢ € R" a (column) vector.
Let

P={zcR"z>0, Az > b}

and
D:{yeRm:yZO,yTASCT}

(the inequalities between vectors should hold in every component). If both
P #( and D # 0, then
min {c’z: z € P} = max {yTb: y € D};

in particular, both the minimum and the maximum are well-defined and
attained.

This result can be quickly proved by piecing together a larger matrix from
A, b, and ¢ and applying a suitable version of the Farkas lemma (Lemma 1.2.5)
to it (Exercise 6). It can also be derived directly from the separation theorem.
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Let us remark that there are several versions of the linear programming
duality (differing, for example, in including or omitting the requirement = >
0, or replacing Az > b by Az = b, or exchanging minima and maxima), and
they are easy to mix up.

Proof of Theorem 10.1.1. Set n = |X| and m = |F|, and let A be the
m X n incidence matrix of the set system JF: Rows correspond to sets, columns
to points, and the entry corresponding to a point p and aset Sislifpe S
and 0 if p € S. It is easy to check that v*(F) and 7*(F) are solutions to the
following optimization problems:

™(F) = min{15z: > 0, Az > 1.},
v*(F) = max {yTlm: y>0,yTA< 15},

where 1,, € R™ denotes the (column) vector of all 1’s of length n. Indeed, the
vectors r € R” satisfying z > 0 and Az > 1,, correspond precisely to the
fractional transversals of F, and similarly, the y € R with y > 0 and yT A <
1T correspond to the fractional packings. There is at least one fractional
transversal, e.g., = 1,, and at least one fractional packing, namely, y = 0,
and so Proposition 10.1.2 applies and shows that v*(F) = 7*(F).

At the same time, 7*(F) is the minimum of the linear function z — 17z
over a polyhedron, and such a minimum, since it is finite, is attained at a
vertex. The inequalities describing the polyhedron have rational coefficients,
and so all vertices are rational points. ]

Remark about infinite set systems. Set systems encountered in geome-
try are usually infinite. In almost all the considerations concerning transver-
sals, the problem can be reduced to a problem about finite sets, usually by
a simple ad hoc argument. Nevertheless, we include here a few remarks that
can aid a simple consistent treatment of the infinite case. However, they will
not be used in the sequel in any essential way.

There is no problem with the definitions of  and 7 in the infinite case, but
one has to be a little careful with the definition of v* and 7* to preserve the
equality v* = 7*. Everything is still fine if we have finitely many sets on an
infinite ground set: The infinite ground set can be factored into finitely many
equivalence classes, where two points are equivalent if they belong to the
same subcollection of the sets. One can choose one point in each equivalence
class and work with a finite system.

For infinitely many sets, some sort of compactness condition is certainly
needed. For example, the system of intervals {[i,00): 4 = 1,2,...} has, ac-
cording to any reasonable definition, v* =1 but 7* = co.

If we let F be a family of closed sets in a compact metric space X (compact
Hausdorff space actually suffices), we can define v*(F) as supy, > _gcr ¥(5),
where the supremum is over all ¥: F — [0,1] attaining only finitely many
nonzero values and such that 3 ¢z g %(S) <1 for each z € X.
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For the definition of 7*, the first attempt might be to consider all functions
@: X — [0,1] attaining only finitely many nonzero values and summing up to
at least 1 over every set. But this does not work very well: For example, if we
let F be the system of all compact subsets of [0, 1] of Lebesgue measure %,
say, then v* < 2 but 7* would be infinite, since any finite subset is avoided
by some member of F. It is better to define a fractional transversal of F as
a Borel measure p on X such that u(S) > 1 for all S € F, and 7*(F) as
the infimum of x(X) over all such . With this definition, the validity of the
first part Theorem 10.1.1 is preserved; i.e., v*(F) = 7*(F) for all systems F
of closed sets in a compact X. The proof uses a little of functional analysis,
and we omit it; it can be found in [KM97a]. The rationality of »* and 7* no
longer holds in the infinite case.

Bibliography and remarks. Gallai’s problem about pairwise in-
tersecting disks mentioned at the beginning of this chapter was first
solved by Danzer in 1956, but he hasn’t published the solution. For
another solution and a historical account see Danzer [Dan86].

Attempting to summarize the contemporary knowledge about the
transversal number and the packing number in combinatorics would
mean taking a much larger bite than can be swallowed, so we restrict
ourselves to a few sketchy remarks. An excellent source for many com-
binatorial results is Lovdsz’s problem collection [Lov93].

A quite old result relating v and 7 is the famous Konig’s edge-
covering theorem from 1912, asserting that v(F) = 7(F) if F is the
system of edges of a bipartite graph (this is also easily seen to be
equivalent to Hall’s marriage theorem, proved by Frobenius in 1917;
see Lovasz and Plummer [LP86] for the history). On the other hand,
an appropriate generalization to systems of triples, namely, 7 < 2v
for any tripartite 3-uniform hypergraph, is a celebrated recent result
of Aharoni [Aha0l] (based on Aharoni and Haxell [AHO00]), while the
generalization 7 < (k—1)v for k-partite k-uniform hypergraphs, known
as Ryser’s conjecture, remains unproved for k > 4.

While computing v or 7 for a given F is well known to be NP-
hard, 7* can be computed in time polynomial in |X| + |F| by linear
programming (this is another reason for the usefulness of the frac-
tional parameter). The problem of approximating 7 is practically very
important and has received considerable attention. More often it is
considered in the dual form, as the set cover problem: Given F with
UF = X, find the smallest subcollection F' C F that still covers X.
The size of such F’ is the transversal number of the set system dual
to (X, F), where each set S € F is assigned a point ys and each point
z € X gives rise to the set {ys: z € S}.

For the set cover problem, it was shown by Chvétal and indepen-
dently by Lovész that the greedy algorithm (always take a set covering
the maximum possible number of yet uncovered points) achieves a so-
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lution whose size is no more than (1 + In|X|) times larger than the
optimal one.! Lovész actually observed that the proof implies, for any
finite set system F,

T(F) <7*(F)- (L + In A(F)),

where A(F) is the maximum degree of F, i.e., the maximum number of
sets with a common point (Exercise 4). The weaker bound with A(F)
replaced by | F| is easy to prove by probabilistic argument (Exercise 3).
It shows that in order to have a large gap between 7* and 7, the set
system must have very many sets.

Exercises

1.

(a) Find examples of set systems with 7* bounded by a constant and 7
arbitrarily large.
(b) Find examples of set systems with v bounded by a constant and v*
arbitrarily large.

. Let F be a system of finitely many closed intervals on the real line. Prove

that v(F) = 7(F). (&
Prove that
7(F) < 7*(F) - In(|F|+1)

for all (finite) set systems F. Choose a transversal as a random sample.
(Analysis of the greedy algorithm for transversal) Let F be a finite set
system. We choose points 1, z2, ..., z; of a transversal one by one: z; is
taken as a point contained in the maximum possible number of uncovered
sets (i.e., sets of F containing none of z1,...,T;—1).

(a) Prove that the size ¢ of the resulting transversal satisfies

1 1

t<il/l(}-)'f‘—lm(]:)+"'+(—d:myd—l(~7:)+lyd(]:)»

- 1.2 2-3 d

where d = A(F) is the maximum degree of F and vk (F) is the maximum
size of a simple k-packing in F. A subsystem M C F is a simple k-packing
if A(M) <k (so i (F) =v(F)). B

(b) Conclude that 7(F) <t < 7*(F) - ¢_, el

. Konig’s edge-covering theorem asserts that if E is the set of edges of a

bipartite graph, then v(E) = 7(E). Hall’s marriage theorem states that if
G is a bipartite graph with color classes A and B such that every subset
S C A has at least |S| neighbors in B, then there is a matching in G
containing all vertices of A.

1 As a part of a very exciting development in complexity theory, it was re-
cently proved that no polynomial-time algorithm can do better in general unless
P =NP; see, e.g., [Hoc96] for proofs and references.
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(a) Derive Konig’s edge-covering theorem from Hall’s marriage theorem.

[z]
(b) Derive Hall’s marriage theorem from Konig’s edge-covering theorem.
(2]

6. Let A, b, ¢, P, and D be as in Proposition 10.1.2.
(a) Check that cTz > yTb for all z € P and all y € D. [i
(b) Prove that if P # 0 and D # {, then the system Ax < b,
yTA > ¢, ¢’z > yTb has a nonnegative solution z,y (which implies
Proposition 10.1.2). Apply the version of the Farkas lemma as in Exer-
cise 1.2.7(b). [

10.2 Epsilon Nets and VC-Dimension

Large sets should be easier to hit by a transversal than small ones. The notion
of e-net and the related theory elaborate on this intuition. We begin with a
special case, where the ground set is finite and the size of a set is simply
measured as the cardinality.

10.2.1 Definition (Epsilon net, a special case). Let (X,F) be a set
system with X finite and let € € [0,1] be a real number. A set N C X (not
necessarily one of the sets of F) is called an e-net for (X, F) if NNS # 0 for
all S € F with |S| > ¢|X

So an e-net is a transversal for all sets larger than ¢|X|. Sometimes it is
convenient to write % instead of e, with » > 1 a real parameter. A beautiful
result (Theorem 10.2.4 below) describes a simple combinatorial condition
on the structure of F that guarantees the existence of %-nets of size only
O(rlogr) for all r > 2.

If we want to deal with infinite sets, measuring the size as the number
of points is no longer appropriate. For example, a “large” subset of the unit
square could naturally be defined as one with large Lebesgue measure. So
in general we consider an arbitrary probability measure g on the ground
set. In concrete situations we will most often encounter p concentrated on
finitely many points. This means that there is a finite set ¥ € X and a
positive function w:Y — (0,1] with }° .y w(y) = 1, and p is given by
u(A) = Zye any W(y). In particular, if the weights of all points y € Y are
the same, i.e., ITI/T’ we speak of the uniform measure on Y. Another common
example of p is a suitable multiple of the Lebesgue measure restricted to
some geometric figure.

10.2.2 Definition (Epsilon net). Let X be a set, let u be a probability
measure on X, let F be a system of u-measurable subsets of X, and let
¢ € [0,1] be a real number. A subset N C X is called an e-net for (X,F)
with respect to p if NNS # 0 for all S € F with u(S) > e.



238 Chapter 10: Transversals and Epsilon Nets

VC-dimension. In order to describe the result promised above, about ex-
istence of small e-nets, we need to introduce a parameter of a set system
called the Vapnik—Chervonenkis dimension, or VC-dimension for short. Its
applications are much wider than for the existence of e-nets.

Let F be a set system on X and let Y C X. We define the restriction of
F on'Y (also called the trace of F on Y) as

f|y={SﬂY:S€.7:}.

It may happen that several distinct sets in F have the same intersection with
Y; in such a case, the intersection is still present only once in Fly .

10.2.3 Definition (VC-dimension). Let F be a set system on a set X.
Let us say that a subset A C X is shattered by F if each of the subsets of A
can be obtained as the intersection of some S € F with A, i.e., if F| 4 = 24.
We define the VC-dimension of F, denoted by dim(F), as the supremum of
the sizes of all finite shattered subsets of X. If arbitrarily large subsets can
be shattered, the VC-dimension is co.

Let us consider two examples. First, let H be the system of all closed
half-planes in the plane. We claim that dim(?) = 3. If we have 3 points in
general position, each of their subsets can be cut off by a half-plane, and so
such a 3-point set is shattered. Next, let us check that no 4-point set can be
shattered. Up to possible degeneracies, there are only two essentially different
positions of 4 points in the plane:

L ] o °

In both these cases, if the black points are contained in a half-plane, then
a white point also lies in that half-plane, and so the 4 points are not shat-
tered. This is a rather ad hoc argument, and later we will introduce tools
for bounding the VC-dimension in geometric situations. We will see that
bounded VC-dimension is rather common for families of simple geometric
objects in Euclidean spaces.

A rather different example is the system K5 of all convex sets in the plane.
Here the VC-dimension is infinite, since any finite convex independent set A
is shattered: Each B C A can be expressed as the intersection of A with a
convex set, namely, B = AN conv(B).
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We can now formulate the promised result about small e-nets.

10.2.4 Theorem (Epsilon net theorem). If X is a set with a probability
measure p, F is a system of p-measurable subsets of X with dim(F) < d,
d > 2, and r > 2 is a parameter, then there exists a L-net for (X,F) with
respect to u of size at most Cdr Inr, where C is an absolute constant.

The proof below gives the estimate C' < 20, but a more accurate calcula-
tion shows that C can be taken arbitrarily close to 1 for sufficiently large r.
More precisely, for any d > 2 there exists an ro > 1 such that for all r > 7o,
each set system of VC-dimension d admits a %-net of size at most drlnr.
Moreover, this bound is tight in the worst case up to smaller-order terms.

For the proof (and also later on) we need a fundamental lemma bounding
the number of distinct sets in a system of given VC-dimension. First we define
the shatter function of a set system F by

T = P Fly-
In words, 7x(m) is the maximum possible number of distinct intersections of
the sets of F with an m-point subset of X.

10.2.5 Lemma (Shatter function lemma). For any set system F of
VC-dimension at most d, we have mr(m) < ®4(m) for all m, where ®4(m) =
(§)+(T) +-+(2)-

Thus, the shatter function for any set system is either 2™ for all m (the
case of infinite VC-dimension) or it is bounded by a fixed polynomial.

For d fixed and m — 0o, ®4(m) can be simply estimated by O(m?). For
more precise calculations, where we are interested in the dependence on d,

we can use the estimate ®4(m) < (%)d, where e is the basis of natural
logarithms. This is valid for all m,d > 1.

Proof of Lemma 10.2.5. Since VC-dimension does not increase by passing
to a subsystem, it suffices to show that any set system of VC-dimension
at most d on an n-point set has no more than ®4(n) sets. We proceed by
induction on d, and for a fixed d we use induction on n.

Consider a set system (X, F) with |X| = n and dim(F) = d, and fix some
z € X. In the induction step, we would like to remove z and pass to the
set system Fy = F| X\ {z} °" n—1 points. This F; has VC-dimension at

most d, and hence |F;] < ®4(n—1) by the inductive hypothesis. How many
more sets can F have compared to F1? The only way that the number of sets
decreases by removing z is when two sets S, 5’ € F give rise to the same set
in F1, which means that S’ = SU {z}, z € S, or the other way round. This
suggests that we define an auxiliary set system F» consisting of all sets in F
that correspond to such pairs S,8' € F: Fo, ={Se€ F:z ¢ S,SU{z} € F}.

By the above discussion, we have |F| = |F1| + |F2|. Crucially, we observe
that dim(F2) < d—1, since if A C X \ {z} is shattered by F3, then AU{z} is
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shattered by F. Therefore, |F2| < ®4_1(n—1). The resulting recurrence has
already been solved in the first proof of Proposition 6.1.1. O

The rest of the proof of the epsilon net theorem is a clever probabilistic
argument; one might be tempted to believe that it works by some magic.
First we need a technical lemma concerning the binomial distribution.

10.2.6 Lemma. Let X = X;+ X+ -+ X,,, where the X; are independent
random variables, X; attaining the value 1 with probability p and the value
0 with probability 1—p. Then Prob[X > 1np| > 1, provided that np > 8.

Proof. This is a routine consequence of Chernoff-type tail estimates for the
binomial distribution, and in fact, considerably stronger estimates hold. The
simple result we need can be quickly derived from Chebyshev’s inequality
for X, stating that Prob[|X — E[X]| > t] < Var[X] /t2, t > 0. Here E[X] =
np and Var[X] = Y"1, Var[X;] < np. So

4

Prob[X < 3np] < Prob[|X — E[X]| > inp| < e <

=

O

Proof of the epsilon net theorem. Let us put s = Cdrlnr (assuming
without harm that it is an integer), and let N be a random sample picked by
s independent random draws, where each element is drawn from X according
to the probability distribution p. (So the same element can be drawn several
times; this does not really matter much, and this way of random sampling is
chosen to make calculations simpler.) The goal is to show that N is a %—net
with a positive probability.

To simplify formulations, let us assume that all S € F satisfy p(S) > 1;
this is no loss of generality, since the smaller sets do not play any role. The
probability that the random sample N misses any given set S € F is at most
(1 —1)s < e3/7, and so if s were at least rIn(|F|+1), say, the conclusion
would follow immediately. But r is typically much smaller than |F| (it can
be a constant, say), and so we need to do something more sophisticated.

Let Eg be the event that the random sample N fails to be a %-net, ie.,
misses some S € F. We bound Prob[Fg| from above using the following
thought experiment.

By s more independent random draws we pick another random sample
M.2 We put k = 57, again assuming that it is an integer, and we let E; be
the following event:

There exists an S € F with NN.S =0 and |MNS| > k.

2 This double sampling resembles the proof of Proposition 6.5.2, and indeed these
proofs have a lot in common, although they work in different settings.
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Here an explanation concerning repeated elements is needed. Formally, we
regard N and M as sequences of elements of X, with possible repetitions, so
N = (z1,22,...,%s), M = (y1,¥2,-- -, ¥s). The notation |M N S| then really
means |[{i € 1,2,...,s: y; € S}|, and so an element repeated in M and lying
in S is counted the appropriate number of times.

Clearly, Prob[E4] < Prob[Ey], since F; requires Fy plus something more.
We are going to show that Prob[E;] > 7 Prob[Ep]. Let us investigate the
conditional probability Prob[FE; | N], that is, the probability of F; when
N is fixed and M is random. If N is a %-net, then E; cannot occur, and
Prob[Ey | N] = Prob[E; | N] = 0.

So suppose that there exists an S € F with NN S = 0. There may
be many such S, but let us fix one of them and denote it by Sy. We have
Prob[E; | N] > Prob[|M N Sy| > k]. The quantity |[M N Sy| behaves like
the random variable X in Lemma 10.2.6 with n = s and p = %, and so
Prob[|M N Sy| > k] > 1. Hence Prob[Ey|N] < 2Prob[E; | N] for all N,
and thus Prob[Ep] < 2Prob|E}].

Next, we are going to bound Prob[E;] differently. Instead of choos-
ing N and M at random directly as above, we first make a sequence
A = (21,22,...,295) of 25 independent random draws from X. Then, in the
second stage, we randomly choose s positions in A and put the elements at
these positions into N, and the remaining elements into M (so there are (*°)
possibilities for A fixed). The resulting distribution of N and M is the same
as above. We now prove that for every fixed A, the conditional probabil-
ity Prob[E; | A] is small. This implies that Prob[E;] is small, and therefore
Prob[Ep] is small as well.

So let A be fixed. First let S € F be a fixed set and consider the con-
ditional probability Ps = Prob[NNS =0, |MNS|>k|A.If|ANS| <k,
then Pg = 0. Otherwise, we bound Ps < Prob[N NS = #| A|. The latter is
the probability that a random sample of s positions out of 2s in A avoids the
at least k positions occupied by elements of S. This is at most

(2s—k;) k s.
s <[(1-=2 < e—(k/2s)s - e—k/2 — e—(Cdlnr)/4 - T—Cd/4
(23) - 2s — .

S
This was an estimate of Ps for a fixed S € F. Now, finally, we use the
assumption about the VC-dimension of F, via the shatter function lemma:
The sets of F have at most ®4(2s) distinct intersections with A. Since the

event “N NS =0 and [M NS| > k” depends only on AN S, it suffices to
consider at most ®4(2s) distinct sets S, and so for every fixed A,

d d
Prob[E; | A] < ®4(23) cpmCd/A < (—222> rCd/4 = (2er Inr- r‘c/4) < %
if d,r > 2 and C is sufficiently large. So Prob[Ep] < 2Prob[E;]| < 1, which
proves Theorem 10.2.4. D
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The epsilon net theorem implies that for set systems of small VC-dimen-
sion, the gap between the fractional transversal number and the transversal
number cannot be too large.

10.2.7 Corollary. Let F be a finite set system on a ground set X with
dim(F) < d. Then we have

7(F) < Cdr*(F) Inm*(F),
where C' is as in the epsilon net theorem.

Proof. Let r = 7*(F). Since F is finite, we may assume that an optimal
fractional transversal ¢: X — [0,1] is concentrated on a finite set Y. This ¢,
after rescaling, defines a probability measure p on X, by letting u({y}) =
+9(y), y € Y. Each S € F has u(S) > 1 by the definition of fractional
transversal, and so a L-net for (X,F) with respect to u is a transversal. By
the epsilon net theorem, there exists a transversal of size at most CdrInr.
O

We mention a concrete application of the corollary in the next section,
where we collect examples of set systems of bounded VC-dimension.

Bibliography and remarks. The notion of VC-dimension orig-
inated in statistics. It was introduced by Vapnik and Chervonenkis
[VC71]. Under different names, it has also appeared in other papers
(Sauer [Sau72] and Shelah [She72]), but the work [VC71] was probably
the most influential for subsequent developments. The name VC-di-
mension and some other, by now more or less standard, terminology
were introduced by Haussler and Welzl [HW87]. VC-dimension and the
related theory play an important role in several mathematical fields,
such as statistics (the theory of empirical processes), computational
learning theory, computational geometry, discrete geometry, combina-
torics of hypergraphs, and discrepancy theory.

The shatter function lemma was independently discovered in the
three already mentioned papers [VCT71], [Sau72], [She72].

The shatter function, together with the dual shatter function (de-
fined as the shatter function of the dual set system) was introduced
and applied by Welzl [Wel88]. Implicitly, these notions were used much
earlier, and they appear in the literature under various names, such
as growth functions.

The notion of e-net and the epsilon net theorem (with X finite
and p uniform) are due to Haussler and Welzl [HW87]. Their proof
is essentially the one shown in the text, and it closely follows an ear-
lier proof by Vapnik and Chervonenkis [VC71] concerning the related
notion of e-approzimations. In the same setting as in the definition of
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e-nets, a set A C X is an e-approximation for (X, F) with respect to
pif for all S € F,

|[AN S|
u(S) —

So while an e-net intersects each large set at least once, an e-ap-
proximation provides a “proportional representation” up to the er-
ror of £. Vapnik and Chervonenkis [VC71] proved the existence of
1-approximations of size O(dr?logr) for all set system of VC-dimen-
sion d.

Komlés, Pach, and Woginger [KPW92] improved the dependence
on d in.the Haussler—Welzl bound on the size of e-nets. The improve-
ment is achieved by choosing the second sample M of size ¢ somewhat
larger than s and doing the calculations more carefully. They also
proved an almost matching lower bound using suitable random set
systems. The proofs can be found in [PA95] as well.

The proof in the Vapnik—Chervonenkis style, while short and
clever, does not seem to convey very well the reasons for the existence
of small e-nets. Somewhat longer but more intuitive proofs have been
found in the investigation of deterministic algorithms for constructing
e-approximations and e-nets; one such proof is given in [Mat99a], for
instance.

Exercises

1. Show that for any integer d there exists a convex set C in the plane such
that the family of all isometric copies of C has VC-dimension at least d.
[«

2. Show that the shatter function lemma is tight. That is, for all d and n
construct a system of VC-dimension d on n points with ®4(n) sets.

10.3 Bounding the VC-Dimension and Applications

The VC-dimension can be determined without great difficulty in several sim-
ple cases, such as for half-spaces or balls in R¢, but for only slightly more com-
plicated families its computation becomes challenging. On the other hand, a
few simple steps explained below show that the VC-dimension is bounded for
any family whose sets can be defined by a formula consisting of polynomial
equations and inequalities combined by Boolean connectives (conjunctions,
disjunctions, etc.) and involving a bounded number of real parameters. This
includes families like all ellipsoids in R¢9, all boxes in R?, arbitrary intersec-
tions of pairs of circular disks in the plane, and so on. On the other hand,
arbitrary convex polygons are not covered (since a general convex polygon
cannot be described by a bounded number of real parameters) and indeed,
this family has infinite VC-dimension.
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We begin by determining the VC-dimension for half-spaces.

10.3.1 Lemma. The VC-dimension of the system of all (closed) half-spaces
in R? equals d+1.

Proof. Obviously, any set of d+1 affinely independent points can be shat-
tered. On the other hand, no d+2 points can be shattered by Radon’s lemma.
0O

Next, we turn to the family P4 p of all sets in R® definable by a single
polynomial inequality of degree at most D.

10.3.2 Proposition. Let R[z1,z2,...,Z4)<p denote the set of all real poly-
nomials in d variables of degree at most D, and let

Pap = {{x eR%: p(z)>0k:pe R[$1,$2,...,xd]SD}.
Then dim(Py,p) < (*5P).

Proof. The following simple but powerful trick is known as the Veronese
mapping in algebraic geometry (or as linearization; it is also related to the
reduction of Voronoi diagrams to convex polytopes in Section 5.7). Let M
be the set of all possible nonconstant monomials of degree at most D in
Z1,...,2q. For example, for D = d = 2, we have M = {z1, T2, 2172, 2%, 23}
Let m = |M| and let the coordinates in R™ be indexed by the monomials
in M. Define the map ¢: R¢ — R™ by ¢(z), = u(zx), where the monomial y
serves as a formal symbol (index) on the left-hand side, while on the right-
hand side we have the number obtained by evaluating i at the point z € R¢.
For example, for d = D = 2, the map is

¢: (1,22) € R? & (21,22, 7129, 7%, 22) € RS.

We claim that if A C R? is shattered by P4 p, then (A) is shattered by
half-spaces in R™. To see this, let B C A, and let p € P4 p be a polynomial
that is nonnegative at the points of B and negative at A\ B. We let a,
be the coefficient of 4 in p and ag the constant term of p, and we define
the half-space h, € R™ as {y € R™: a¢ + > uenm OuYyu > 0}. For example,
if p(z1,22) = 7+ 332 — 2172 + 2% € P22, the corresponding half-space is
hp = {y € R®%: 7+ 3y — y3 + ya > 0}. Then we get h, N p(4) = ¢(B).
Since, finally, ¢ is injective, we obtain a set of size |A| in R™ shattered by
half-spaces. By Lemma 10.3.1, we have dim(Pyp) < |M|+1 = (D;d). 0

Geometrically, the Veronese map embeds R? into R™ as a curved man-
ifold in such a way that any subset of R? definable by a single polynomial
inequality of degree at most D can be cut off by a half-space in R™. Except
for few simple cases, this is hard to visualize, but the formulas work in a
really simple way.
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By Proposition 10.3.2, any subfamily of some Py p has bounded VC-di-
mension; this applies, e.g., to balls in R% (D = 2) and ellipsoids in R¢ (D = 2
as well). For concrete families, the bound from Proposition 10.3.2 is often very
weak. First, if we deal only with special polynomials involving fewer than
(P+4) monomials, then we can use an embedding into R™ with a smaller m.
We also do not have to use only coordinates corresponding to monomials
in the embedding. For example, for the family of all balls in R, a suitable
embedding is ¢: R? — R+ given by (z1,...,%4) — (z1,Z2,...,2% + 23 +
-+ +x2). It is closely related to the “lifting” transforming Voronoi diagrams
in R to convex polytopes in R4*! discussed in Section 5.7. Estimates for the
VC-dimension can also be obtained from Theorem 6.2.1 about the number
of sign patterns of polynomials or from similar results.

Combinations of polynomial inequalities. Families like all rectangular
boxes in R? or lunes (differences of two disks in the plane) can be handled
using the following result.

10.3.3 Proposition. Let F(X1, Xs,...,Xy) be a fixed set-theoretic expres-
sion (using the operations of union, intersection, and difference) with variables
Xi,... X} standing for sets; for instance,

F(X;,X2,X3) = (X1 UX2UX3)\ (X1 NX2N X3).
Let S be a set system on a ground set X with dim(S) =d < co. Let
T ={F(51,...,5): S1,...,5: € S}.
Then dim(7) = O(kdInk).

Proof. The trick is to look at the shatter functions. Let A C X be an
m-point set. It is easy to verify by induction on the structure of F' that
for any S1,9s,...,S5k, we have F(S1,...,Sx)NA = F(S1NA,...,SNA).
In particular, F(S1,...,Sk) N A depends only on the intersections of the S;
with A. Therefore, 77(m) < ms(m)¥. By the shatter function lemma, we have
ws(m) < ®4(m). If A is shattered by T, then 77(m) = 2™. From this we have
the inequality 2™ < ®4(m)*. Calculation using the estimate ®q(m) < (£2)¢
leads to the claimed bound. m]

Propositions 10.3.3 and 10.3.2 together show that families of geometric
shapes definable by formulas of bounded size involving polynomial equations
and inequalities have bounded VC-dimension. (In the terminology introduced
in Section 7.7, families of semialgebraic sets of bounded description complex-
ity have bounded VC-dimension.) In the subsequent example we will en-
counter a family of quite different nature with bounded VC-dimension. First
we present a general observation.

VC-dimension of the dual set system. Let (X,F) be a set system.
The dual set system to (X, F) is defined as follows: The ground set is Y =
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{ys: S € F}, where the ys are pairwise distinct points, and for each z € X
we have the set {ys: S € F, z € S} (the same set may be obtained for several
different z, but this does not matter for the VC-dimension).

10.3.4 Lemma. Let (X,F) be a set system and let (Y,G) be the dual set
system. Then dim(G) < 24m(F)+1,

Proof. We show that if dim(G) > 2¢, then dim(F) > d. Let A be the inci-
dence matrix of (X, F), with columns corresponding to points of X and rows
corresponding to sets of F. Then the transposed matrix AT is the incidence
matrix of (Y,G). If Y contains a shattered set of size 2¢, then A has a 24 x 22°
submatrix M with all the possible 0/1 vectors of length 2% as columns. We
claim that M contains as a submatrix the 2¢ x d matrix M; with all pos-
sible 0/1 vectors of length d as rows. This is simply because the d columns
of M; are pairwise distinct and they all occur as columns of M. This M;
corresponds to a shattered subset of size d in (X, F). Here is an example for
d=2:

0 000O0O0OO0OO0OT171111111
M= 0 0001 11100O0HO01111
1001 1001100110011}
0101 010101010101
the submatrix M, is marked bold. 0

An art gallery problem. An art gallery, for the purposes of this section, is
a compact set X in the plane, such as the one drawn in the following picture:

The set X is the lightly shaded area, while the black regions are walls that
are not part of X. We want to choose a small set G C X of guards that
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together can see all points of X, where a point x € X sees a point y € X if
the segment zy is fully contained in X. The visibility region V(z) of a point
z € X is the set of all points y € X seen by z, as is illustrated below:

It is easy to construct galleries that require arbitrarily many guards; it
suffices to include many small niches so that each of them needs an individual
guard. To forbid this cheap way of making a gallery difficult to guard, we
consider only galleries where each point can be seen from a reasonably large
part of the gallery. That is, we suppose that the gallery X has Lebesgue
measure 1 and that u(V (x)) > ¢ for every z € X, where ¢ > 0 is a parameter
(say 15) and p is the Lebesgue measure restricted to X. Can every such
gallery be guarded by a number of guards that depends only on £?

The answer to this question is still no, although an example is not entirely
easy to construct. The problem is with galleries with many “holes,” i.e., many
connected components of the complement (corresponding to pillars in a real-
world gallery, say). But if we forbid holes, then the answer becomes yes.

10.3.5 Theorem. Let X be a simply connected art gallery (i.e., with R?\ X
connected) of Lebesgue measure 1, and let r > 2 be a real number such that
p(V(z)) > L for all z € X. Then X can be guarded by at most Crlogr
points, where C' is a suitable absolute constant.

Proof. The bound O(rlogr) for the number of guards is obtained from the
epsilon net theorem (Theorem 10.2.4). Namely, we introduce the set system
V = {V(z): z € X}, and note that G is a set guarding all of X if and only
if it is a transversal of V. Further, an e-net for (X, V) with respect to u is a
transversal of V), since by the assumption, u(V) > ¢ = % for each V € V. So
the theorem will be proved if we can show that dim()) is bounded by some
constant (independent of X).

Tools like Proposition 10.3.2 and Proposition 10.3.3 seem to be of little
use, since the visibility regions can be arbitrarily complicated. We thus need
a different strategy, one that can make use of the simple connectedness. We
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proceed by contradiction: Assuming the existence of an extremely large set
A C X shattered by V, we find, by a sequence of Ramsey-type steps, a
configuration forcing a hole in X.

Let d be a sufficiently large number, and suppose that there is a d-point
set A C X shattered by V. This means that for each subset B C A there
exists a point op € X that can see all points of B but no point of A\ B. We
put ¥ = {op: B C A}. In such a situation, we say that A is shattered by ¥.

Starting with A and X, we find a smaller shattered set in a special position.
We draw a line through each pair of points of A. The arrangement of these
at most (‘;) lines has at most O(d*) faces (vertices, edges, and open convex

polygons), so there is one such face Fy containing a subset X' C X of at least
2¢/0(d*) points of .

These points correspond to subsets of A, and so they define a set system
Vi on A. If d; = dim(V;) were bounded by a constant independent of d,
then the number of sets in V; would grow at most polynomially with d (by
Lemma 10.2.5). But we know that it grows exponentially, and so d; — oo
as d — oo. Thus, we may assume that some subset A; C A is shattered by
a subset 31 C ¥/, with d; = |A4;| large, and the whole of X; lies in a single
face of the arrangement of the lines determined by points of A;.

Next, we would like to ensure a similar condition in the reverse direction,
that is, all the points being shattered lying in a single cell of the arrangement
of the lines determined by the shattering points.

A simple, although wasteful, way is to apply Lemma 10.3.4 about the
dimension of the dual set system. This means that we can select sets As C X3
and o C A; such that A; is shattered by ¥5 and dy = |Ag| is still large
(about log, dy).

Now we can repeat the procedure from the first step of the proof, this
time selecting a set As C A of size d3 (still sufficiently large) and 35 C %,
such that Ajs is shattered by ¥3 and all of %3 lies in a single face of the
arrangement of the lines determined by the pairs of points of Az. This face
must be 2-dimensional, since if it were an edge, all the points of A3 and X3
would be collinear, which is impossible.

We thus have all points of A3 within a single 2-face of the arrangement of
the lines determined by X3 and vice versa. In other words, no line determined
by two points of A3 intersects conv(X3), and no line determined by two points
of X3 intersects conv(As). In particular, conv(A43z) Nconv(X3) = @. It follows
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that each point of X3 sees all points of A3 within an angle smaller than =
and in the same clockwise angular order; let <4 be this linear order of the
points of As. Similarly, we have a common counterclockwise angular order
<y of points of X3 around any point of Aj.

Suppose that the initial d was so large that d3 = |As| = 5. For each
a € As, we consider the point o(a) € X3 that sees all points of Az but a.
Let these 5 points form a set ¥4 C ¥3. We have a situation indicated below,
where dashed connecting segments correspond to invisibility and they form
a matching between A3 and X4.

- .
5 : .
£ - = Xy
- 2 -
i .

Since we have 5 points on each side, we may choose an a € Az such that
a is neither the first nor the last point of A3 in <4, and at the same time
o = o(a) € ¥4 is not the first or last point in <s. Then we have the following
situation (full segments indicate visibility, and the dashed segment means
invisibility):

The segments ac’ and a’c both lie above the line ao, and they intersect as
indicated (a’ cannot line in the triangle aco’, because the line aa’ would go
between ¢ and o', and neither can the segment oa’ be outside that triangle,
because then the line oo’ would separate a from a'). Similarly, the segments
ac” and a” o intersect as shown. The four segments ag’, a’o, ao”, and a” o are
contained in X, and since X is simply connected, the shaded quadrilateral
bounded by them must be a part of X. Hence a and o can see each other.
This contradiction proves Theorem 10.3.5. O

The bound on the VC-dimension obtained from this proof is rather large:
about 10'2. By a more careful analysis, avoiding the use of Lemma 10.3.4 on
the dual VC-dimension where one loses the most, the bound has been im-
proved to 23. Determining the exact VC-dimension in the worst case might
be quite challenging. The art gallery drawn in the initial picture is not chosen
only because of the author’s liking for several baroque buildings with pentag-
onal symmetry, but also because it is an example where V has VC-dimension
at least 5 (Exercise 2). A more complicated example gives VC-dimension 6,
and this is the current best lower bound.
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Bibliography and remarks. As was remarked in the text, for
bounding the VC-dimension of set systems defined by polynomial in-
equalities, we can use the linearization method (as in the proof of
Proposition 10.3.2) or results like Theorem 6.2.1 on the number of sign
patterns. The latter can often provide asymptotically sharp bounds on
the shatter functions (which are usually the more important quantita-
tive parameters in applications); for linearizations, this happens only
in quite simple cases.

There are fairly general results bounding the VC-dimension for
families of sets defined by functions more general than polynomials;
see, e.g., Wilkie [Wil99] and Karpinski and Macintyre [KM97b)].

Considerations similar to the proof of Proposition 10.3.3 appear in
Dudley [Dud78]. Lemma 10.3.4 about the VC-dimension of the dual
set system was noted by Assouad [Ass83].

The art gallery problem considered in this section was raised by
Kavraki, Latombe, Motwani, and Raghavan [KLMR98] in connection
with automatic motion planning for robots. Theorem 10.3.5, with the
proof shown, is from Kalai and Matousek [KM97a]. That paper also
proves that for galleries with h holes, the number of guards can be
bounded by a function of € and h, and provides an example showing
that one may need at least (log h) guards in the worst case for a suit-
able fixed e. Valtr [Val98] greatly improved the quantitative bounds,
obtaining the lower bound of 6 and upper bound of 23 for dim(V) for
simply connected galleries, as well as a bound of O(log, &) for galleries
with h holes. In another paper [Val99b], he constructed contractible
3-dimensional galleries where the visibility region of each point occu-
pies almost half of the total volume of the gallery but the number
of guards is unbounded, which shows that Theorem 10.3.5 has no
straightforward analogue in dimension 3 and higher. Here is another
result from [KM97a]: If a planar gallery X is such that among every k
points of X there are 3 that can be guarded by a single guard, then all
of X can be guarded by O(k®logk) guards. Let us stress that our ex-
ample was included mainly as an illustration to VC-dimension, rather
than as a typical specimen of the extensive subject of studying guards
in art galleries from the mathematical point of view. This field has a
large number results, some of them very nice; see, e.g., the handbook
chapter [Urr00] for a survey.

Exercises

1. (a) Determine the VC-dimension of the set system consisting of all tri-
angles in the plane.
(b) What is the VC-dimension of the system of all convex k-gons in the
plane, for a given integer k? [2]
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2. Show that dim(V) > 5 for the art gallery shown above Theorem 10.3.5.
(2]

Can you construct an example with VC-dimension 6, or even higher?

3. Show that the unit square cannot be expressed as {(z,v) € R?: p(z,y) >
0} for any polynomial p(z, y).

4. (a) Let H be a finite set of lines in the plane. For a triangle T', let Hr be
the set of lines of H intersecting the interior of T', and let 7 C 2 be the
system of the sets Hr for all triangles T. Show that the VC-dimension
of T is bounded by a constant. [2]

(b) Using (a) and the epsilon net theorem, prove the suboptimal cut-
ting lemma (Lemma 6.5.1): For every finite set H of lines in the plane
and for every r, 1 < r < |H|, there exists a i-cutting for L consisting
of O(r?log®r) generalized triangles. Use the proof in Section 4.6 as an
inspiration.

(c) Generalize (a) and (b) to obtain a cutting lemma for circles with the
same bound O(r?log®r) (see Exercise 4.6.3). [2]

5. Let d > 1 be an integer, let U = {1,2,...,d} and V = 2Y. Let the
shattering graph SGq4 have vertex set U UV and edge set {{a,A}: a €
U, A€V, a€ A}. Prove that if H is a bipartite graph with classes R and
S, |R| = r and |S| = s, such that r+log, s < d, then there is an r-element
subset R; C U and an s-element S; C V such that the subgraph induced
in SG4 by R; U S; is isomorphic to H. Thus, the shattering graph is
“universal”: It contains all sufficiently small bipartite subgraphs.

6. For a graph G, let N(G) = {Ng(v): v € V(G)} be the system of vertex
neighborhoods (where Ng(v) = {u € V(Q): {u,v} € E(G)}).

(a) Prove that there is a constant dy such that dim(N(G)) < dy for all
planar G.

(b) Show that for every C there exists d = d(C) such that if G is a
graph in which every subgraph on n vertices has at most Cn edges, for
all n > 1, then dim(N(G)) < d. (This implies (a) and, more generally,
shows that bounded genus of G implies bounded dim(N(G)).)

(c) Show that for every k there exists d = d(k) such that if dim(N(G)) >
d, then G contains a subdivision of the complete graph K as a subgraph.
(This gives an alternative proof that if dim(N(G)) is large, then the genus
of G is large, too.)

10.4 Weak Epsilon Nets for Convex Sets

Weak e-nets. Let H be the system of all closed half-planes in the plane,
and let 4 be the planar Lebesgue measure restricted to a (closed) disk D of
unit area. What should the smallest possible e-net for (R2?, ) with respect
to u look like? A natural idea would be to place the points of the e-net
equidistantly around the perimeter of the disk:



252 Chapter 10: Transversals and Epsilon Nets

Is this the best way? No; according to Definition 10.2.2, three points placed
as in the picture below form a valid e-net for every € > 0, since any half-plane
cutting into D necessarily contains at least one of them!

L 2

One may feel that this is a cheating. The problem is that the points of this
e-net are far away from where the measure is concentrated. For some applica-
tions of e-nets this is not permissible, and for this reason, e-nets of this kind
are usually called weak e-nets in the literature, while a “real” e-net in the
above example would be required to have all of its points inside the disk D.

For z-nets obtained using the epsilon net theorem (Theorem 10.2.4), this
presents no real problem, since we can always restrict the considered set
system to the subset where we want our e-net to lie. In the above example
we would simply require an e-net for the set system (D, H|py). The restriction
to a subset does not increase the VC-dimension.

On the other hand, there are set systems of infinite VC-dimension, and
there we cannot require small e-nets to exist for every restriction of the ground
set. Indeed, if (X, F) has infinite VC-dimension, then by definition, there is
an arbitrarily large A C X that is shattered by F, meaning that F|4 = 24,
And the complete set system (A, 24) certainly does not admit small -nets:
Any %—net, say, for (A,24) with respect to the uniform measure on A must
have at least 3 |A| elements! In this sense, the epsilon net theorem is an “if
and only if” result: A set system (X, F) and all of its restrictions to smaller
ground sets admit e-nets of size depending only on ¢ if and only if dim(F) is
finite.

As was mentioned after the definition of VC-dimension, the (important)
system /Co of convex sets in the plane has infinite VC-dimension. Therefore,
the epsilon net theorem is not applicable, and we know that restrictions of
K2 to some bad ground sets (convex independent sets, in this case) provide
arbitrarily large complete set systems. But yet it turns out that not too
large (weak) e-nets exist if the ground set is taken to be the whole plane
(or, actually, it can be restricted to any convex set). These are much less
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understood than the -nets in the case of finite VC-dimensions, and many
interesting questions remain open.

As has been done in the literature, we will restrict ourselves to measures
concentrated on finite point sets, and first we will talk about uniform mea-
sures. To be on the safe side, let us restate the definition for this particular
case, keeping the traditional terminology of “weak e-nets.”

10.4.1 Definition (Weak epsilon net for convex sets). Let X be a
finite point set in R* and € > 0 a real number. A set N C R? is called a
weak e-net for convex sets with respect to X if every convex set containing
at least | X| points of X contains a point of N.

In the rest of this section we consider exclusively e-nets with respect to
convex sets, and so instead of “weak e-net for convex sets with respect to X”
we simply say “weak e-net for X.”

10.4.2 Theorem (Weak epsilon net theorem). Foreveryd >1,¢ >0,
and finite X C RY, there exists a weak c-net for X of size at most f(d,¢),
where f(d,e) depends on d and € but not on X.

The best known bounds are f(2,%) = O(r?) in the plane and f(d, 1) =
O(r?(log 7)%(4) for every fixed d, with a suitable constant b(d) > 0. The proof
shown below gives f(d,2) = O(r¢*1). On the other hand, no lower bound
superlinear in r is known (for fixed d).

Proof. The proof is simple once we have the first selection lemma (Theo-
rem 9.1.1) at our disposal.

Let an X C R¢ be an n-point set. The required weak e-net N is con-
structed by a greedy algorithm. Set Ny = 0. If N; has already been con-
structed, we look whether there is a convex set C' containing at least en
points of X and no point of N;. If not, V; is a weak e-net by definition. If
yes, we set X; = X NC, and we apply the first selection lemma to X;. This
gives us a point a; contained in at least cg (L{ﬂ) = Q(e4+1ndt1) X -simplices.
We set N; 11 = N; U {a;} and continue with the next step of the algorithm.

Altogether there are ( df“_l) X-simplices. In each step of the algorithm, at
least Q(e+1n?+1) of them are “killed,” meaning that they were not inter-
sected by N; but are intersected by N;+1. Hence the algorithm takes at most
O(e~(4+1) steps. )

In a forthcoming application, we also need weak e-nets for convex sets
with respect to a nonuniform measure (but still concentrated on finitely many
points).

10.4.3 Corollary. Let y be a probability measure concentrated on finitely
many points in R%. Then weak e-nets for convex sets with respect to u exist,
of size bounded by a function of d and .
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Sketch of proof. By taking ¢ a little smaller, we can make the point weights
rational. Then the problem is reduced to the weak epsilon net theorem with
X a multiset. One can check that all ingredients of the proof go through in
this case, too. 0O

10.4.4 Corollary. For every finite system F of convex sets in R%, we have
T(F) < f(d,1/7*(F)), where f(d,€) is as in the weak epsilon net theorem.

The proof of the analogous consequence of the epsilon net theorem, Corol-
lary 10.2.7, can be copied almost verbatim.

Bibliography and remarks. Weak e-nets were introduced by Haus-
sler and Welzl [HW87]. The existence of weak e-nets for convex sets
was proved by Alon, Bérdny, Fiiredi, and Kleitman [ABFK92] by the
method shown in the text but with a slight quantitative improvement,
achieved by using the second selection lemma (Theorem 9.2.1) instead
of the first selection lemma.

The estimates for f(d, 1) mentioned after Theorem 10.4.2 have the
following sources: The bound O(r?) in the plane is from [ABFK92] (see
Exercise 1), and the best general bound in R, close to O(r?), is due to
Chagzelle, Edelsbrunner, Grini, Guibas, Sharir, and Welzl [CEGT95]. It
seems that these bounds are quite far from the truth. Intuitively, one
of the “worst” cases for constructing a weak e-net should be a convex
independent set X. For such sets in the plane, though, near-linear
bounds have been obtained by Chazelle et al. [CEGT95]; they are
presented in Exercises 2 and 3 below. The original proof of the result in
Exercise 3 was formulated using hyperbolic geometry. A simple lower
bound for the size of weak e-nets was noted in [Mat01]; it concerns

the dependence on d for ¢ fixed and shows that f(d, 5—10) =0 <e v/ 2)
as d — oo.

Exercises

1. Complete the following sketch of an alternative proof of the weak epsilon
net theorem.
(a) Let X be an n-point set in the plane (assume general position if
convenient). Let & be a vertical line with half of the points of X on each
side, and let X1, X5 be these halves. Let M be the set of all intersections
of segments of the form z,xo with h, where z; € X; and z2 € Xo.
Let Ny be a weak &’-net for M (this is a one-dimensional situation!).
Recursively construct weak &”’-nets N;, N, for X; and X5, respectively,
and set N = Ny U N; U N,. Show that with a suitable choice of € and
¢, N is a weak e-net for X of size O(e72).
(b) Generalize the proof from (a) to R? (use induction on d). Estimate
the exponent of € in the resulting bound on the size of the constructed
weak e-net.
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2. The aim of this exercise is to show that if X is a finite set in the plane
in convex position, then for any € > 0 there exists a weak e-net for X of
size nearly linear in 1.

(a) Let an n-point convex independent set X C R? be given and let
£ < n be a parameter. Choose points pg,p1,...,pe—1 of X, appearing in
this order around the circumference of conv(X), in such a way that the
set X; of points of X lying (strictly) between p;_; and p; has at most n/¢
points for each i. Construct a weak €'-net N; for each X; (recursively)
with &’ = fe/3, and let M be the set containing the intersection of the
segment pop;_1 with p;p;, for all pairs 4,5, 1 < i < j—1 < £—2. Show
that the set N = {po,...,pr—1} UN; U---UN, UM is a weak e-net for
X.

(b) If f(e) denotes the minimum necessary size of a weak e-net for a
finite convex independent point set in the plane, derive a recurrence for
f(g) using (a) with a suitably chosen ¢, and prove the bound for f(e) =
O (2 (log 1)°). What is the smallest ¢ you can get?

3. In this exercise we want to show that if X is the vertex set of a regular
convex n-gon in the plane, then there exists a weak e-net for X of size
o).
Suf;pose X lies on the unit circle u centered at 0. For an arc length o < 7
radians, let 7(a) be the radius of the circle centered at 0 and touching a
chord of u connecting two points on u at arc distance a. For i = 0,1,2,.. .,
let N; be a set of Le(%ool)ij points placed at regular intervals on the circle
of radius r(¢(1.01)*/10) centered at 0 (we take only those ¢ for which
this is well-defined). Show that 0 U |J; NV; is a weak e-net of size O(1)
for X (the constants 1.01, etc., are rather arbitrary and can be greatly
improved).

10.5 The Hadwiger-Debrunner (p, g)-Problem

Let F be a finite family of convex sets in the plane. By Helly’s theorem, if
every 3 sets from F intersect, then all sets of F intersect (unless F has 2 sets,
that is). What if we know only that out of every 4 sets of F, there are some 3
that intersect? Let us say that F satisfies the (4, 3)-condition. In such a case,
F may consist, for instance, of n—1 sets sharing a common point and one
extra set lying somewhere far away from the others. So we cannot hope for
a nonempty intersection of all sets. But can all the sets of F be pierced by a
bounded number of points? That is, does there exist a constant C such that
for any family F of convex sets in R? satisfying the (4, 3)-condition there are
at most C' points such that each set of F contains at least one of them?

This is the simplest nontrivial case of the so-called (p, g)-problem raised
by Hadwiger and Debrunner and solved, many years later, by Alon and Kleit-
man.



256 Chapter 10: Transversals and Epsilon Nets

10.5.1 Theorem (The (p, q)-theorem). Let p,q,d be integers with p >
g > d+1. Then there exists a number HDy(p, ¢) such that the following is true:
Let F be a finite family of convex sets in R? satisfying the (p, q)-condition;
that is, among any p sets of F there are q sets with a common point. Then
F has a transversal consisting of at most HDg4(p, q) points.

Clearly, the condition ¢ > d+1 is necessary, since n hyperplanes in gen-
eral position in R? satisfy the (d, d)-condition but cannot be pierced by any
bounded number of points independent of 7.

It has been known for a long time that if p(d—1) < (¢g—1)d, then HD4(p, q)
exists and equals p—g+1 (Exercise 2). This is the only nontrivial case where
exact values, or even good estimates, of HDy(p, g) are known.

The reader might (rightly) wonder how one can get interesting examples of
families satisfying the (4, 3)-condition, say. A large collection of examples can
be obtained as follows: Choose a probability measure y in the plane (u(R?) =
1), and let F consist of all convex sets S with p(S) > 0.5. The (4, 3)-condition
holds, because 4 sets together have measure larger than 2, and so some point
has to be covered at least 3 times. The proof below shows that every family
F of planar convex sets fulfilling the (4, 3)-condition somewhat resembles this
example; namely, that there is a probability measure p such that u(S) > ¢
for all S € F, with some small positive constant ¢ > 0 (independent of F).
Note that the existence of such y implies the (p, 3) condition for a sufficiently
large p = p(c).

The Alon-Kleitman proof combines an amazing number of tools. The
whole structure of the proof, starting from basic results like Helly’s theorem,
is outlined in Figure 10.1. The emphasis is on simplicity of the derivation
rather than on the best quantitative bounds (so, for example, Tverberg’s
theorem is not required in full strength). The most prominent role is played
by the fractional Helly theorem and by weak e-nets for convex sets. An unsat-
isfactory feature of this method is that the resulting estimates for HDy(p, q)
are enormously large, while the truth is probably much smaller.

Since we have prepared all of the tools and notions in advance, the proof
is now short. We do not attempt to optimize the constant resulting from the
proof, and so we may as well assume that g = d+1.

By Corollary 10.4.4, we know that 7 is bounded by a function of 7* for
any finite system of convex sets in R%. So it remains to show that if F satisfies
the (p, d+1)-condition, then 7*(F) = v*(F) is bounded.

10.5.2 Lemma (Bounded v*). Let F be a finite family of convex sets in
R? satisfying the (p,d+1)-condition. Then v*(F) < C, where C depends on
p and d but not on F.

Proof. The first observation is that if F satisfies the (p, d+1)-condition, then
many (d+1)-tuples of sets of F intersect. This can be seen by double counting.
Every p-tuple of sets of F contains (at least) one intersecting (d+1)-tuple,
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Helly’s theorem

¥ Radon’s lemma,
The lexicographic mini-
mum of the intersection of
d+1 convex sets in R? is
determined by d sets

double
counting

Tverberg’s theorem
(finiteness of T'(d, ) suffices)

fractional Helly theorem alternative direct proof
(Exercise 10.4.2)

double with much worse bound
counting
double

first selection lemma

greedy algorithm\
v

. weak e-nets for convex sets of
(=Ii, d;l—}l))—cor;dgmon size depending only on d and ¢
v* bounde

counting

7 bounded by a function
of d and 7* for systems of
convex sets

linear programming
duality = v* = 7*

(p, q@)-theorem:
(p, d+1)-condition = 7 bounded

Figure 10.1. Main steps in the proof of the (p, ¢)-theorem.

and a single (d+1)-tuple is contained in (;:g_ﬁ) p-tuples (where n = |F|).
Therefore, there are at least

("En+11)2a(d11>

p—d+1
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intersecting (d+1)-tuples, with @ > 0 depending on p, d only. The fractional
Helly theorem (Theorem 8.1.1) implies that at least On sets of F have a
common point, with 3 = 3(d,a) > 0 a constant.?

How is this related to the fractional packing number? It shows that a
fractional packing that has the same value on all the sets of F cannot have
size larger than %, for otherwise, the point lying in Bn sets would receive
weight greater than 1 in that fractional packing. The trick for handling other
fractional packings is to consider the sets in F with appropriate multiplicities.

Let t: F — [0,1] be an optimal fractional packing (3 gcr. ,es¥(S) <1
for all x). As we have noted in Theorem 10.1.1, we may assume that the
values of ¢ are rational numbers. Write ¢(S) = %S—), where D and the m(S)
are integers (D is a common denominator). Let us form a new collection F,
of sets, by putting m(S) copies of each S into F,; so F,, is a multiset of sets.

Let N = |Fr| = > gcr m(S) = D-v*(F). Suppose that we could conclude
the existence of a point a lying in at least SN sets of F,, (counted with
multiplicity). Then

1> Y we= Y Mo Lnope,

SeF:a€S SeF:a€S

and so v*(F) < 5.

The existence of a point a in at least SN sets of F,, follows from the
fractional Helly theorem, but we must be careful: The new family F,, does
not have to satisfy the (p, d+1)-condition, since the (p, d+1)-condition for F
speaks only of p-tuples of distinct sets from F, while a p-tuple of sets from
F.n may contain multiple copies of the same set.

Fortunately, F,, does satisfy the (p’, d+1)-condition with p’ = d(p—1)+1.
Indeed, a p’-tuple of sets of F,,, contains at least d+1 copies of the same set or
it contains p distinct sets, and in the latter case the (p, d+1)-condition for F
applies. Using the fractional Helly theorem (which does not require the sets
in the considered family to be distinct) as before, we see that there exists a
point a common to at least SN sets of F,, for some 8 = S(p, d). Lemma 10.5.2
is proved, and this also concludes the proof of the (p, ¢)-theorem. a

Bibliography and remarks. The (p,g)-problem was posed by
Hadwiger and Debrunner in 1957, who also solved the special case in
Exercise 2 below. The solution described in this section follows Alon
and Kleitman [AK92].

Much better quantitative bounds on HD4(p, ¢) were obtained by
Kleitman, Gyérfds, and Téth [KGTO01] for the smallest nontrivial val-
ues of p,q,d: 3 < HD»(4,3) < 13.

3 By removing these 8n sets and iterating, we would get that F can be pierced by
O(logn) points. The main point of the (p, g)-theorem is to get rid of this logn
factor.
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Exercises

1. For which values of p and r does the following hold? Let F be a finite
family of convex sets in R%, and suppose that any subfamily consisting
of at most p sets can be pierced by at most r points. Then F can be
pierced by at most C points, for some C = Cy(p, ).

2. Let p > q > d+1 and p(d—1) < (¢—1)d. Prove that HD4(p, q) < p—q+1.
You may want to start with the case of HDy(5,4). [£]

3. Let X C R? be a (4k+1)-point set, and let F = {conv(Y): Y C X,|Y]| =
2k+1}.

(a) Verify that F has the (4, 3)-property, and show that if X is in convex
position, then 7(F) > 3.
(b) Show that 7(F) < 5 (for any X).

These results are due to Alon and Rosenfeld (private communication).

10.6 A (p, g)-Theorem for Hyperplane Transversals

The technique of the proof of the (p, g)-theorem is quite general and allows
one to prove (p, g)-theorems for various families. That is, if we have some basic
family B of sets, such as the family K of all convex sets in Theorem 10.5.1, a
(p, q)-theorem for B means that if F C B satisfies the (p, ¢)-condition, then
7(F) is bounded by a function of p and ¢ (depending on B but not on the
choice of F).

To apply the technique in such a situation, we first need to bound v*(F)
using the (p, ¢)-condition. To this end, it suffices to derive a fractional Helly-
type theorem for . Next, we need to bound 7(F) as a function of 7*(F). If
the VC-dimension of F is bounded, this is just Corollary 10.2.7, and other-
wise, we need to prove a “weak e-net theorem” for F. Here we present one
sophisticated illustration.

10.6.1 Theorem (A (p,q)-theorem for hyperplane transversals).
Let p > d+1 and let F be a finite family of convex sets in R% such that
among every p members of F, there exist d+1 that have a common hyper-
plane transversal (i.e., there is a hyperplane intersecting all of them). Then
there are at most C = C(p,d) hyperplanes whose union intersects all mem-
bers of F.

Note that here the piercing is not by points but by hyperplanes. Let
Thyp(F)s Thyp(F), and v (F) be the notions corresponding to the transversal
number, fractional transversal number, and fractional packing number in this
setting.* We prove only the planar case, since some of the required auxiliary
results become more complicated in higher dimensions.

4 We could reformulate everything in terms of piercing by points if we wished to
do so, by assigning to every S € F the set Ts of all hyperplanes intersecting S.
Then, e.g., Thyp(F) = 7({Ts: S € F}).
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To prove Theorem 10.6.1 for d = 2, we first want to derive a fractional
Helly theorem.

10.6.2 Lemma (Fractional Helly for line transversals). If F is a family
of n convex sets in the plane such that at least o(3) triples have line transver-

sals, then at least n of the sets have a line transversal, § = 3(a) > 0.

Proof. Let F be a family as in the lemma. We distinguish two cases de-
pending on the number of pairs of sets in F that intersect.

First, suppose that at least 2 (7) pairs {S, S’} € (%) satisfy SN S’ # 0.
Project all sets of F vertically on the z-axis. The projections form a family of
intervals with at least ¢ ('2‘) intersecting pairs, and so by the one-dimensional
fractional Helly theorem, at least 8'n of these have a common point z. The
vertical line through z intersects 3'n sets of F.

Next, it remains to deal with the case of at most % (g) intersecting pairs
in F. Call a triple {S1, Sa, S3} good if it has a line transversal and its three
members are pairwise disjoint. Since each intersecting pair gives rise to at
most n triples whose members are not pairwise disjoint, there are at most
n-2(3) < %(3) nondisjoint triples, and so at least £ () good triples remain.

Let {S1,52,53} be a good triple; we claim that its sets have a line
transversal that is a common tangent to (at least) two of them. To see this,
start with an arbitrary line transversal, translate it until it becomes tangent
to one of the S;, and then rotate it while keeping tangent to S; until it be-
comes tangent to an Sj, ¢ # j.

Let L denote the set of all lines that are common tangents to at least
two disjoint members of F. Since two disjoint convex sets in the plane have
exactly 4 common tangents, |L| < 4(3).

First, to see the idea, let us make the simplifying assumption that no 3
sets of F have a common tangent. Then each line £ € L has a unique defining
pair of disjoint sets for which it is a common tangent. As we have seen, for
each good triple {S}, Sz, S3} there is a line £ € L such that two sets of the
triple are the defining pair of £ and the third is intersected by £. Now, since
we have % () good triples and |L| < 4(7), there is an £y € L playing this role
for at least dn of the good triples, § > 0. Each of these dn triples contains
the defining pair of ¢ plus some other set, so altogether £y intersects at least
on sets. (Note the similarity to the proof of the fractional Helly theorem.)

Now we need to relax the simplifying assumption. Instead of working with
lines, we work with pairs (£, {S,S'}), where S,5" € F are disjoint and ¢ is
one of their common tangents, and we let L be the set of all such pairs. We
still have |L| < 4(7), and each good triple {51, Sz, S3} gives rise to at least
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one (¢,{S,S'}) € L, where {S,5'} C {51,552, Ss3}. The rest of the argument
is as before. ' 0O

The interesting feature is that while this fractional Helly theorem is valid,
there is no Helly theorem for line transversals! That is, for all n one can
find families of n disjoint planar convex sets (even segments) such that any
n—1 have a line transversal but there is no line transversal for all of them
(Exercise 5.1.9).

Lemma 10.6.2 implies, exactly as in the proof of Lemma 10.5.2, that V}’;yp
is bounded for any family satisfying the (p,d+1)-condition. It remains to
prove a weak e-net result.

10.6.3 Lemma. Let L be a finite set (or multiset) of lines in the plane and
let r > 1 be given. Then there exists a set N of O(r?) lines (a weak e-net)
such that whenever S C R? is an (arcwise) connected set intersecting more

than '%I lines of L, then it intersects a line of N.

Proof. Recall from Section 4.5 that a %—cutting for a set L of lines is a
collection {Ay, ..., A+} of generalized triangles covering the plane such that
the interior of each A; is intersected by at most |Ti| lines of L. The cutting
lemma (Lemma, 4.5.3) guarantees the existence of a 1-cutting of size O(r?).

The cutting lemma does not directly cover multisets of lines. Nevertheless,
with some care one can check that the perturbation argument works for
multisets of lines as well.

Thus, let {A1,...,A:} be a %-cutting for the considered L, t = O(r?).
The weak e-net N is obtained by extending each side of each A; into a line.
Indeed, if an arcwise connected set S intersects more than I—f—' lines of L,
then it cannot be contained in the interior of a single A;, and consequently,
it intersects a line of N. |

Conclusion of the proof of Theorem 10.6.1. Lemma 10.6.3 is now
used exactly as the e-nets results were used before, to show that myp(F) =
O(7hyp(F )2) in this case. This proves the planar version of Theorem 10.6.1.

0O

Bibliography and remarks. Theorem 10.6.1 was proved by Alon
and Kalai [AK95], as well as the results indicated in Exercises 3
and 4 below. It is related to the following conjecture of Griinbaum
and Motzkin: Let F be a family of sets in R? such that the intersec-
tion of any at most k sets of F is a disjoint union of at most k closed
convex sets. Then the Helly number of F is at most k(d+1). So here,
in contrast to Exercise 4, the Helly number is determined exactly. 1
mention this mainly because of a neat proof by Amenta [Ame96) using
a technique originally developed for algorithmic purposes.
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It is not completely honest to say that there is no Helly theorem for
line (and hyperplane) transversals, since there are very nice theorems
of this sort, but the assumptions must be strengthened. For example,
Hadwiger’s transversal theorem asserts that if F is a finite family of
disjoint convex sets in the plane with a linear ordering < such that
every 3 members of F can be intersected by a directed line in the order
given by <, then F has a line transversal. This has been generalized
to hyperplane transversals in R, and many related results are known;
see, e.g., the survey Goodman, Pollack, and Wenger (GPW93].

The application of the Alon-Kleitman technique for transversals
of d-intervals in Exercise 2 below is due to Alon [Alo98]. Earlier, a
similar result with the slightly stronger bound 7 < (d? — d)v was
proved by Kaiser [Kai97] by a topological method, following an initial
breakthrough by Tardos [Tar95], who dealt with the case d = 2. By
the Alon-Kleitman method, Alon [Alo] proved analogous bounds for
families whose sets are subgraphs with at most d components of a
given tree, or, more generally, subgraphs with at most d components
of a graph G of bounded tree-width. In a sense, the latter is an “if
and only if” result, since for every k there exists w(k) such that every
graph of tree-width w(k) contains a collection of subtrees with v = 1
and T > k.

Alon, Kalai, Matousek, and Meshulam [AKMMO1] investigated
generalizations of the Alon—Kleitman technique in the setting of ab-
stract set systems. They showed that (p, d+1)-theorems for all p fol-
low from a suitable fractional Helly property concerning (d+1)-tuples,
and further that a set system whose nerve is d-Leray (see the notes to
Section 8.1) has the appropriate fractional Helly property and conse-
quently satisfies (p, d+1)-theorems.

Exercises

1.

(a) Prove that if F is a finite family of circular disks in the plane such
that every two members of F intersect, then 7(F) is bounded by a con-
stant (this is a very weak version of Gallai’s problem mentioned at the
beginning of this chapter).

(b) Show that for every p > 2 there is an ngp such that if a family of
ng disks in the plane satisfies the (p,2)-condition, then there is a point
common to at least 3 disks of the family. [4] )

(c) Prove a (p, 2)-theorem for disks in the plane (or for balls in R%).
A d-interval is a set J C R of the form J = I; UI, U --- U I, where
the I; C R are closed intervals on the real line. (In the literature this is
customarily called a homogeneous d-interval.)

(a) Let F be a finite family of d-intervals with v(F) = k. The family
may contain multiple copies of the same d-interval. Show that there is a
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B = B(d, k) > 0 such that for any such F, there is a point contained in
at least 3 - |F| members of F. 8] Can you prove this with 8 = 57 [&]
(b) Prove that 7(F) < dr*(F) for any finite family of d-intervals.

(c) Show that 7(F) < 2d%v(F) for any finite family of d-intervals, or at
least that 7 is bounded by a function of d and v.

. Let K% denote the family of all unions of at most k convex sets in R?
(so the d-intervals from Exercise 2 are in K¢). Prove a (p, d+1)-theorem
for this family by the Alon—Kleitman technique: Whenever a finite fam-
ily F C KX satisfies the (p,d+1)-condition, 7(F) < f(p,d, k) for some
function f. [4]

. (a) Show that the family X3 as in Exercise 3 has no finite Helly number.
That is, for every h there exists a subfamily F C K3 of h+1 sets in which
every h members intersect but (| F = 0. [&]

(b) Use the result of Exercise 3 to derive that for every k,d > 1, there
exists an h with the following property. Let 7 C Kk be a finite family
such that the intersection of any subfamily of F lies in K% (i.e., is a union
of at most k convex sets). Suppose that every at most A members of F
have a common point. Then all the sets of F have a common point. (This
is expressed by saying that the family }C’; has Helly order at most h.)
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Attempts to Count k-Sets

Consider an n-point set X C R%, and fix an integer k. Call a k-point subset
S C X a k-set of X if there exists an open half-space v such that S = X N-y;
that is, S can be “cut off” by a hyperplane. In this chapter we want to
estimate the maximum possible number of k-sets of an n-point set in RY, as
a function of n and k.

This question is known as the k-set problem, and it seems to be extremely
challenging. Only partial results have been found so far, and there is a sub-
stantial gap between the upper and lower bounds even for the number of
planar k-sets, in spite of considerable efforts by many researchers. So this
chapter presents work in progress, much more so than the other parts of this
book. I believe that the k-set problem deserves to be such an exception, since
it has stimulated several interesting directions of research, and the partial
results have elegant proofs.

11.1 Definitions and First Estimates

For technical reasons, we are going to investigate a quantity slightly different
from the number of k-sets, which turns out to be asymptotically equivalent,
however.

First we consider a planar set X C R? in general position. A k-facet of
X is a directed segment xy, z,y € X, such that exactly k& points of X lie
(strictly) to the left of the directed line determined by x and y.

Y °
'/ a 4-facet
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Similarly, for X C R, a k-facet is an oriented (d—1)-dimensional simplex
with vertices x1,%3,...,24 € X such that the hyperplane h determined by
Z1,T2,...,Zq has exactly k points of X (strictly) on its positive side. (The
orientation of the simplex means that one of the half-spaces determined by
h is designated as positive and the other one as negative.)

Let us stress that we consider k-facets only for sets X in general position
(no d+1 points on a common hyperplane). In such a case, the O-facets are
precisely the facets of the convex hull of X, and this motivates the name
k-facet (so k-facets are not k-dimensional!).

A special case of k-facets are the halving facets. These exist only if n — d
is even, and they are the "%d—facets; i.e., they have exactly the same number
of points on both sides of their hyperplane. Each halving facet appears as
an "—;‘—i-facet with both orientations, and so halving facets can be considered
unoriented. In the plane, instead of k-facets and halving facets, one often
speaks of k-edges and halving edges. The drawing shows a planar point set
with the halving edges:

We let KFAC(X, k) denote the number of k-facets of X, and KFACy(n, k)
is the maximum of KFAC(X, k) over all n-point sets X C R? in general
position.

Levels, k-sets, and k-facets. The maximum possible number of k-sets is
attained for point sets in general position: Each k-set is defined by an open
half-space, and so a sufficiently small perturbation of X loses no k-sets (while
it may create some new ones).

Next, we want to show that for sets in general position, the number of
k-facets and the number of k-sets are closely related (although the exact
relations are not simple). The best way seems to be to view both notions in
the dual setting.

Let X C R be a finite set in general position. Let H = {D(z): € X} be
the collection of hyperplanes dual to the points of X, where D is the duality
“with the origin at x4 = —00” as defined in Section 5.1.

We may assume that each k-set S of X is cut off by a nonvertical hy-
perplane hg that does not pass through any point of X. If S lies below hg,
then the dual point ys = D(hg) is a point lying on no hyperplane of H and
having exactly k hyperplanes of H below it. So yg lies in the interior of a
cell at level k of the arrangement of H. Similarly, if S lies above hg, then yg
is in a cell at level n—k. Moreover, if ys, and ys, lie in the same cell, then
S1 = Ss, and so k-sets exactly correspond to cells of level k£ and n—k.

Similarly, we find that the k-facets of X correspond to vertices of the
arrangement of H of levels k or n—k—d (we need to subtract d because of
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the d hyperplanes passing through the vertex that are not counted in its
level).

The arrangement of H has at most O(n®"!) unbounded cells (Exer-
cise 6.1.2). Therefore, all but at most O(n?~!) cells of level k have a top-
most vertex, and the level of such a vertex is between k—d+1 and k. On
the other hand, every vertex is the topmost vertex of at most one cell
of level k. A similar relation exists between cells of level n—k and ver-
tices of level n—k—d. Therefore, the number of k-sets of X is at most
O(n?-1) + Z?;é KFAC(X, k—j). Conversely, KFAC(X, k) can be bounded
in terms of the number of k-sets; this we leave to Exercise 2. From now on,
we thus consider only estimating KFAC,(n, k).

Viewing KFAC,(n, k) in terms of the k-level in a hyperplane arrangement,
we obtain some immediate bounds from the results of Section 6.3. The k-level
has certainly no more vertices than all the levels 0 through k together, and
hence

KFACq(n, k) = O (nWJ (k+1)4/1)

by Theorem 6.3.1. On the other hand, the arrangements showing that Theo-
rem 6.3.1 is tight (constructed using cyclic polytopes) prove that for k < n/2,
we have

KFACy(n, k) = (nld/zl (k+1)fd/21-1) ;

this determines KFAC,(n, k) up to a factor of k.

The levels 0 through n together have O(n®) vertices, and so for any par-
ticular arrangement of n hyperplanes, if &k is chosen at random, the expected
k-level complexity is O(n?~1). This means that a level with a substantially
higher complexity has to be exceptional, much bigger than most other levels.
It seems hard to imagine how this could happen. Indeed, it is widely believed
that KFAC4(n, k) is never much larger than n?~!. On the other hand, levels
with somewhat larger complexity can appear, as we will see in Section 11.2.

Halving facets versus k-facets. In the rest of this chapter we will mainly
consider bounds on the halving facets; that is, we will prove estimates for the
function

HFACy(n) = 1 KFACy(n, 25%), n—d even.

It is easy to see that for all k, we have KFAC4(n, k) < 2-HFAC4(2n+d) (Ex-
ercise 1). Thus, for proving asymptotic bounds on maxg<x<n—4 KFAC4(n, k),
it suffices to estimate the number of halving facets. It turns out that even
a stronger result is true: The following theorem shows that upper bounds
on HFAC,;(n) automatically provide upper bounds on KFACy(n, k) sensitive
to k.

11.1.1 Theorem. Suppose that for some d and for all n, HFAC4(n) can
be bounded by O(n?~¢4), for some constant cqy > 0. Then we have, for all
k< n—d

— 2

KFACy(n, k) = O (nLd/2J (kH)rd/z]—cd) '
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Proof. We use the method of the probabilistic proof of the cutting lemma
from Section 6.5 with only small modifications; we assume familiarity with
that proof. We work in the dual setting, and so we need to bound the number
of vertices of level k in the arrangement of a set H of n hyperplanes in general
position. Since for k£ bounded by a constant, the complexity of the k-level is
asymptotically determined by Clarkson’s theorem on levels (Theorem 6.3.1),
we can assume 2 < k < 3.

Wesetr =2 andp =7 = %, and we let S C H be a random sample
obtained by independent Bernoulli trials with success probability p. This time
we let T(S) denote the bottom-vertex triangulation of the bottom unbounded
cell of the arrangement of S (actually, in this case it seems simpler to use the
top-vertex triangulation instead of the bottom-vertex one); the rest of the
arrangement is ignored. (For d = 2, we can take the vertical decomposition
instead.) Here is a schematic illustration for the planar case:

lies ol S5

7(S)

/ ‘ =~ level k of H

The conditions (C0)—(C2) as in Section 6.5 are satisfied for this 7(S)
(in (CO) we have constants depending on d, of course), and as for (C3),
we have |T(S)| = O(|S|l9/2] + 1) for all § C H by the asymptotic upper
bound theorem (Theorem 5.5.2) and by the properties of the bottom-vertex
triangulation. Thus, the analogy of Proposition 6.5.2 can be derived: For
every t > 0, the expected number of simplices with excess at least ¢ in T(S)
is bounded as follows:

E[|T(S)s:]] = O (z—trtdﬂl) -0 (2—t(%)td/2J) . (11.1)

Let Vi, denote the set of the vertices of level k in the arrangement of H,
whose size we want to estimate, and let Vi(S) be the vertices in Vj that
have level 0 with respect to the arrangement of S; i.e., they are covered by a
simplex of T(S).

First we claim that, typically, a significant fraction of the vertices of V
appears in V(S), namely, E[|Vi(S)|] > 1|Vi|. For every v € Vj, the proba-
bility that v € Vi (S), i.e., that none of the at most k hyperplanes below v
goes into S, is at least (1 —p)¥ = (1 — £)* > 1, and the claim follows.

It remains to bound E[|Vj(S)|] from above. Let A € T(S) be a simplex
and let Ha be the set of all hyperplanes of H intersecting A. Not all of these
hyperplanes have to intersect the interior of A (and thus be counted in the
excess of A), but since H is in general position, there are at most a constant
number of such exceptional hyperplanes. We note that all the vertices in
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Vi(S) N A have the same level in the arrangement of Ha (it is & minus the
number of hyperplanes below A). By the assumption in the theorem, we thus
have |Vi(S) N A| = O(|Ha|? %) = O((ta%)4ce) = O((tak)?~°), where ta
is the excess of A. Therefore,

E[IVi(S)]] < O(k%2e) - Y tdee,
AET(S)

Using (11.1), the sum is bounded by O((%)ld/2J); this is as in Section 6.5.
We have shown that

Vel < 4E[|Vi(S)]] = O (nl¥/2le/21=e2)
and Theorem 11.1.1 is proved. a

Bibliography and remarks. We summarize the bibliography of k-
sets here, and in the subsequent sections we only mention the origins
of the particular results described there. In the following we always
assume k > 1, which allows us to write k instead of k+1 in the bounds.

The first paper concerning k-sets is by Lovasz [Lov71], who proved
an O(n*?2) bound for the number of halving edges. Straus (unpub-
lished) showed an Q(nlogn) lower bound. This appeared, together
with the bound O(nv/k) for planar k-sets, in Erdés, Lovész, Simmons,
and Straus [ELSS73]. The latter bound was independently found by
Edelsbrunner and Welzl [EW85]. It seems to be the natural bound to
come up with if one starts thinking about planar k-sets; there are nu-
merous variations of the proof (see Agarwal, Aronov, Chan, and Sharir
[AACS98]), and breaking this barrier took quite a long time. The first
progress was made by Pach, Steiger, and Szemerédi [PSS92], who im-
proved the upper bound by the tiny factor of log* k. A significant
breakthrough, and the current best planar upper bound of O(nkl/ 3),
was achieved by Dey [Dey98]. A simpler version of his proof, involving
new insights, was provided by Andrzejak, Aronov, Har-Peled, Seidel,
and Welzl [AAHP*98].

An improvement over the Q(nlogk) lower bound [ELSS73] was
obtained by Téth [T6t01b], namely, KFACs(n, k) > nexp(cvlogk)
for a constant ¢ > 0 (a similar bound was found by Klawe, Paterson,
and Pippenger in the 1980s in an unpublished manuscript, but only
for the number of vertices of level k in an arrangement of n pseudolines
in the plane).

The first nontrivial bound on k-sets in higher dimension was
proved by Bérdny, Fiiredi, and Lovdsz [BFL90]. They showed that
HFAC3(n) = O(n*°%8). Their method includes the main ingredients
of most of the subsequent improvements; in particular, they proved a
planar version of the second selection lemma (Theorem 9.2.1) and con-
jectured the colored Tverberg theorem (see the notes to Sections 8.3
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and 9.2). Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, and Wenger
[ACE™91] improved the bound for the planar second selection lemma
(with a new proof) and showed that HFACs(n) = O(n8/3log®/% n).
A nontrivial upper bound for every fixed dimension d, HFAC4(n) =
O(nd=¢) for a suitable c; > 0, was obtained by Alon, Bérany,
Fiiredi, and Kleitman [ABFK92], following the method of [BFL90]
and using the recently established colored Tverberg theorem. Dey and
Edelsbrunner [DE94| proved a slightly better 3-dimensional bound
HFAC3(n) = O(n®/3) by a direct and simple 3-dimensional argument
avoiding the use of a planar selection lemma (see Exercise 11.3.8). A
new significant improvement to HFAC3(n) = O(n?%) was achieved by
Sharir, Smorodinsky, and Tardos [SST01]; their argument is sketched
in the notes to Section 11.4.

Theorem 11.1.1 is due to Agarwal et al. [AACS98]. Their proof
uses a way of random sampling different from ours, but the idea is the
same.

Another interesting result on planar k-sets, due to Welzl [Wel86, is
> ke KFAC(X, k) = O (n/2_,ck k) for every n-point set X C R?
and every index set K C {1,2,...,|n/2|} (see Exercise 11.3.2). Using
identities derived by Andrzejak et al. [AAHP*98] (based on Dey’s

method), the bound can be improved to O (n(]K |- > rex k)l/g); this

was communicated to me by Emo Welzl.

Edelsbrunner, Valtr, and Welzl [EVW97] showed that “dense” sets
X, i.e., n-point X C R? such that the ratio of the maximum to mini-
mum interpoint distance is O(n!/?), cannot asymptotically maximize
the number of k-sets. For example, in the plane, they proved that a
bound of HFAC,(n) = O(n'*®) for arbitrary sets implies that any
n-point dense set has at most O(n't®/2) halving edges. Alt, Felsner,
Hurtado, and Noy [AFH*00] showed that if X C R? is a set contained
in a union of C convex curves, then KFAC(X, k) = O(n) for all k, with
the constant of proportionality depending on C.

Several upper bounds concern the maximum combinatorial com-
plexity of level k for objects other than hyperplanes. For segments in
the plane, the estimate obtained by combining a result of Dey [Dey98]
with the general tools in Agarwal et al. [AACS98] is O(nk!/3a(%)).
Their method yields the same result for the level k£ in an arrangement
of n extendible pseudosegments (defined in Exercise 6.2.5). For arbi-
trary pseudosegments, the result of Chan mentioned in that exercise
(n pseudosegments can be cut into O(nlogn) extendible pseudoseg-
ments) gives the slightly worse bound O(nk'/ 3a(%) log?/3(k+1)).

The study of levels in arrangements of curves with more than one
pairwise intersection was initiated by Tamaki and Tokuyama [TT98],
who considered a family of n parabolas in R? (here is a neat motiva-
tion: Given n points in the plane, each of them moving along a straight



11.1 Definitions and First Estimates 271

line with constant velocity, how many times can the pair of points with
median distance change?). They showed that n parabolas can be cut
into O(ns/ 3) pieces in total so that the resulting collection of curves
is a family of pseudosegments (see Exercise 6). This idea of cutting
curves into pseudosegments proved to be of great importance for other
problems as well; see the notes to Section 4.5. Tamaki and Tokuyama
obtained the bound of O(n?~'/12) for the maximum complexity of the
k-level for n parabolas. Using the tools from [AACS98] and a cutting
into extendible pseudosegments, Chan [Cha0Oa] improved this bound
to O(nk~2/21og?3(k+1)).

All these results can be transferred without much difficulty from
parabolas to pseudocircles, which are closed planar Jordan curves, ev-
ery two intersecting at most twice. Aronov and Sharir [ASOla] proved
that if the curves are circles, then even cutting into O(n3/%%¢) pseu-
dosegments is possible (the best known lower bound is Q(n*/3); see
Exercise 5). This upper bound was extended by Nevo, Pach, Pinchasi,
and Sharir [NPPS01] to certain families of pseudocircles: The pseudo-
circles in the family should be selected from a 3-parametric family of
real algebraic curves and satisfy an additional condition; for example,
it suffices that their interiors can be pierced by O(1) points (also see
Alon, Last, Pinchasi, and Sharir [ALPS01] for related things).

Tamaki and Tokuyama constructed a family of n curves with at
most 3 pairwise intersections that cannot be cut into fewer than Q(n?)
pseudosegments, demonstrating that their approach cannot yield non-
trivial bounds for the complexity of levels for such general curves (Ex-
ercise 5). However, for graphs of polynomials of degree at most s,
Chan [Cha00a] obtained a cutting into roughly O(n2=%/3""") pseu-
dosegments and consequently a nontrivial upper bound for levels. His
bound was improved by Nevo et al. [NPPS01].

As for higher-dimensional results, Katoh and Tokuyama [KT99]
proved the bound O(n?k?/3) for the complexity of the k-level for n
triangles in R2.

Bounds on k-sets have surprising applications. For example, Dey’s
results for planar k-sets mentioned above imply that if G is a graph
with n vertices and m edges and each edge has weight that is a linear
function of time, then the minimum spanning tree of G changes at
most O(mn'/3) times; see Eppstein [Epp98]. The number of k-sets
of the infinite set (ZZ)¢ (lattice points in the nonnegative orthant)
appears in computational algebra in connection with Grébner bases
of certain ideals. The bounds of O((klogk)¢~!) and Q(k¢!logk) for
every fixed d, as well as references, can be found in Wagner [Wag01].
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Exercises

1.

2.

3.

4.

5.

Verify that for all £ and all dimensions d, KFACg4(n, k) < 2-HFAC;(2n+
d). [z]

Show that every vertex in an arrangement of hyperplanes in general po-
sition is the topmost vertex of exactly one cell. For X ¢ R? finite and in
general position, bound KFAC(X, k) using the numbers of j-sets of X,
k<j<k+d-1.0E

Suppose that we have a construction that provides an n-point set in the
plane with at least f(n) halving edges for all even n. Show that this
implies KFACz(n, k) = Q(|n/2k] f(2k)) for all k < %.

Suppose that for all even n, we can construct a planar n-point set with at
least f(n) halving edges. Show that one can construct n-point sets with
Q(nf(n)) halving facets in R? (for infinitely many n, say). [ Can you
extend the construction to R¢, obtaining Q(n?2f(n)) halving facets?
(Lower bounds for cutting curves into pseudosegments) In this exercise, I'
is a family of n curves in the plane, such as those considered in connection
with Davenport—Schinzel sequences: Each curve intersects every vertical
line exactly once, every two curves intersect at most s times, and no 3
have a common point.

(a) Construct such a family I'" with s = 2 (a family of pseudoparabolas)
whose arrangement has Q(n4/ 3) empty lenses, where an empty lens is
a bounded cell of the arrangement of I' bounded by two of the curves.
(The number of empty lenses is obviously a lower bound for the number
of cuts required to turn I' into a family of pseudosegments.)

(b) Construct a family I with s = 3 and with Q(n?) empty lenses. [z

. (Cutting pseudoparabolas into pseudosegments) Let T’ be a family of n

pseudoparabolas in the plane as in Exercise 5(a). For every two curves
7,7 € T’ with exactly two intersection points, the lens defined by v and
v consists of the portions of v and 4’ between their two intersection
points, as indicated in the picture:

g

/

v

(a) Let A be a family of pairwise nonoverlapping lenses in the arrange-
ment of I', where two lenses are nonoverlapping if they do not share any
edge of the arrangement (but they may intersect, or one may be enclosed
in the other). The goal is to bound the maximum size of A. We define a
bipartite graph G with V(G) =T'x {0,1} and with E(G) consisting of all
edges {(v,0), (7', 1)} such that there is a lens in A whose lower portion
comes from vy and upper portion from . Prove that G contains no K3 4
and hence |A| = O(n%/3). Supposing that K3 4 were present, correspond-
ing to “lower” curves <;,7v2,73 and “upper” curves 7;,...,v}, consider
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the upper envelope U of 71, 72,73 and the lower envelope L of v1,...,7;.
(A more careful argument shows that even K3 3 is excluded.) [4]
(b) Show that the graph G in (a) can contain a K> , for arbitrarily large r.
(c) Given T, define the lens set system (X, L) with X consisting of all
bounded edges of the arrangement of I and the sets of £ corresponding
to lenses (each lens contributes the set of arrangement edges contained
in its two arcs). Check that 7(£) is the smallest number of cuts needed
to convert T' into a collection of pseudosegments, and that the result of
(a) implies v(£) = O(n®/3).
(d) Using the method of the proof of Clarkson’s theorem on levels and
the inequality in Exercise 10.1.4(a), prove that 7(L) = O(n®/3).

7. (The k-set polytope) Let X C R? be an n-point set in general position
and let k € {1,2,...,n—1}. The k-set polytope Qx(X) is the convex hull

of the set
{Zx: ScX,|S| =k}

€S

in RY. Prove that the vertices of Q4(X) correspond bijectively to the
k-sets of X. [4]

The k-set polytope was introduced by Edelsbrunner, Valtr, and Welzl
[EVW97]. It can be used for algorithmic enumeration of k-sets, for ex-
ample by the reverse search method mentioned in the notes to Section 5.5.

11.2 Sets with Many Halving Edges

Here we are going to construct n-point planar sets with a superlinear number
of halving edges. It seems more intuitive to present the constructions in the
dual setting, that is, to construct arrangements of n lines with many vertices
of level 1‘—}2

A simpler construction. We begin with a construction providing Q(n logn)
vertices of the middle level.

By induction on m, we construct a set L,, of 2™ lines in general posi-
tion with at least f,, = (m+1)2™"2 vertices of the middle level (i.e., level
2m=1_1). We note that each line of L, contains at least one of the middle-
level vertices.

For m = 1 we take two nonvertical intersecting lines.

Let m > 1 and suppose that an L,, satisfying the above conditions has
already been constructed. First, we select a subset M C L,, of 2™~ ! lines,
and to each line of £ € M we assign a vertex v(£) of the middle level lying
on ¢, in such a way that v(€) # v(¢') for £ # ¢'. The selection can be done
greedily: We choose a line into M, take a vertex of the middle level on it, and
exclude the other line passing through that vertex from further consideration.
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Next, we replace each line of L,, by a pair of lines, both almost parallel
to the original line. For a line £ € M, we let the two lines replacing ¢ intersect
at v(£). Each of the remaining lines is replaced by two almost parallel lines
whose intersection is not near to any vertex of the arrangement of L,,. This
yields the set Ly,4.1.

As the following picture shows, a middle-level vertex of the form v(¢)
yields 3 vertices of the new middle level (level 2™ —1 in the arrangement of

Lm+1)l
¢

Each of the other middle-level vertices yields 2 vertices of the new middle

level:
e

Hence the number of middle-level vertices for L, is at least 2f,, + 2™ !
2[(m+1)2m2] + 2™ = fra.

ol

A better construction. This construction is more complicated, but it
shows the lower bound
n- eQ(\/logn)

for the number of vertices of the middle level (and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>