Skip to main content

Spatial Variation in Faunal Composition of Hydrothermal Vent Communities on the East Pacific Rise and Galapagos Spreading Center

  • Conference paper
Book cover Gorda Ridge

Abstract

Comparisons of distributions of megafaunal species at hydrothermal vents on the East Pacfic Rise and Galapagos Spreading Center can be made at three levels: (1) within a vent field, (2) among vent fields within a cluster on a ridge segment, and (3) among ridge segments. Across 40° of latitude, megafaunal compositions of vent communities are remarkably consistent at the familial level. Along any given ridge segment, there appears to be a shared pool of species from which any vent field draws its fauna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argorise Group (1988) Geology of the East Pacific Rise axis (11°50′-10°15′N) using the ARGO and ANGUS imaging systems. Can Mineral 26:467–486.

    Google Scholar 

  • Ballard RD, Van Andel TH, Holcomb RT (1982) The Galapagos Rift at 86°W. 5. Variations in volcanism, structure, and hydrothermal activity along a 30-km segment of the rift valley. J Geophy Res 87:1149–1161.

    Article  Google Scholar 

  • Ballard RD, Hekinian R, Francheteau J (1984) Geologic setting of hydrothermal activity at 12°0′N on the East Pacific Rise: A submersible study. Earth Planetary Sci Lett 69:176–186.

    Article  Google Scholar 

  • Bowers TS, Campbell AC, Measures CI, Spivack AJ, Khadem M, Edmond J (1988) Chemical controls on the composition of vent fluids at 13°N-11°N and 21°N, East Pacific Rise. J Geophys Res 93:4522–4536.

    Article  Google Scholar 

  • Bundesanstalt für Geowissenschaften und Rohstoffe (1986) Fahrtbericht GEOMETEP 4 (20.10.1985–12.01.1986), Tgb. 11336/86, Archiv 99554, Hanover, FRG, 291 pp.

    Google Scholar 

  • Butterfield DA, McDuff RE, Lilley MD, Massoth GJ, Lupton JE (1988) Chemistry of hydrothermal fluids from the ASHES vent field: Evidence for phase separation. EOS 69:1468.

    Google Scholar 

  • Campbell AC, Bowers TS, Measures CI, Falkner KK, Khadem M, Edmond J (1988) A time-series of vent fluid compositions from 21°N, East Pacific Rise (1979, 1981, 1985) and the Guaymas Basin, Gulf of California (1982, 1985). J Geophys Res 93:4537–4549.

    Article  Google Scholar 

  • Cavanaugh CM (1985) Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. In: Jones ML (ed) Hydrothermal Vents of the Eastern Pacific: An Overview. Bull Biol Soc Wash 6:373–388.

    Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Procaryotic cells in the hydrothermal vent tubeworm Riftia pachyptila Jones: Possible chemoautotrophic symbionts. Science 213:340–342.

    Article  Google Scholar 

  • Converse DR, Holland HD, Edmond J (1984) Flow rates in the axial hot springs on the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planetary Sci Lett 69:159–175.

    Article  Google Scholar 

  • Corliss JB, Ballard RD (1977) Oases of life in the cold abyss. Natl Geogr 152:441–453.

    Google Scholar 

  • Corliss JB, Baross JA, Gordon LI, et al. (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083.

    Article  Google Scholar 

  • Crane K, Ballard RD (1980) The Galapagos Rift at 86°W. 4. Structure and morphology of hydrothermal fields and their relationship to volcanic and tectonic processes of the Rift Valley. J Geophys Res 85:1443–1454.

    Article  Google Scholar 

  • Desbruyeres D, Crassous P, Grassle J, et al. (1982) Donnees ecologiques sur un nouveau site d’hydrothermalisme actif de la ride du Pacifique oriental. CR Acad Sci Paris (Ser III) 295:489–494.

    Google Scholar 

  • Detrick RS et al. (1986) Mid-Atlantic bare-rock drilling and hydrothermal vents. Nature 321:14–15.

    Article  Google Scholar 

  • Enright JT, Newman WA, Hessler RR, McGowan JA (1981) Deep-ocean hydrothermal vent communities. Nature 289:441–445.

    Article  Google Scholar 

  • Feibeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213:336–338.

    Article  Google Scholar 

  • Francheteau J, Ballard RD (1983) The East Pacific Rise near 21°N, 13°N and 20°S: Inferences for along-strike variability of axial processes of the Mid-Ocean Ridge. Earth Planetary Sci Lett 64:93–116.

    Article  Google Scholar 

  • Fustec A, Desbruyeres D, Juniper SK (1987) Deep-sea hydrothermal vent communities at 13°N on the East Pacific Rise: Microdistribution and temporal variations. Biol Oceanogr 4:121–164.

    Google Scholar 

  • Galapagos Biology Expedition Participants (1979) Galapagos’79: Initial findings of a biology quest. Oceanus 22:2–10.

    Google Scholar 

  • Gallo D, Kidd WSF, Fox PJ, et al. (1984) Tectonics at the intersection of the East Pacific Rise with Tamayo Transform Fault. Marine Geophy Res 6:159–185.

    Article  Google Scholar 

  • Gieskes JM, Elderfield H, Lawrence JR, Johnson J, Meyers B, Campbell A (1982) Geochemistry of interstitial waters and sediments, Leg 64, Gulf of California. In: Curray JR, Moore DG, et al. (eds) Initial Reports of the Deep-Sea Drilling Project, Vol 64, Pt 2. Washington: U.S. Government Printing Office, pp 675–694.

    Google Scholar 

  • Grassle JF (1985) Hydrothermal vent animals: Distribution and biology. Science 229:713–717.

    Article  Google Scholar 

  • Grassle JF (1986) The ecology of deep-sea hydro-thermal vent communities. Adv Marine Biol 23:301–362.

    Article  Google Scholar 

  • Grassle JF, Humphris SE, Rona PA, Thompson G, Van Dover CL (1986) Animals at Mid-Atlantic Ridge hydrothermal vents. EOS 67:1022.

    Google Scholar 

  • Grassle JP (1985) Genetic differentiation in populations of hydrothermal vent mussels (Bathymodiolus thermophilic) from the Galapagos Rift and 13°N on the East Pacific Rise. In: Jones ML (ed), Hydrothermal Vents of the Eastern Pacific: An Overview. Bull Biol Soc Wash 6:429–442.

    Google Scholar 

  • Hekinian R, Fevrier M, Avedik F, et al. (1983) East Pacific Rise near 13°N: Geology of new hydrothermal fields. Science 219:1321–1324.

    Article  Google Scholar 

  • Hekinian R, Francheteau J, Ballard RD (1985) Morphology and evolution of hydrothermal deposits at the axis of the East Pacific Rise. Oceanol Acta 8:147–155.

    Google Scholar 

  • Hessler RR, Smithey WM (1983) The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In: Rona PA, Bostrom L, Laubier L, Smith KL (eds) Hydro-thermal Processes at Seafloor Spreading Centers, NATO Conference Series IV. New York: Plenum Press, pp 735–770.

    Google Scholar 

  • Hessler RR, Smithey WM, Keller CH (1985) Spatial and temporal variation of giant clams, tubeworms and mussels at deep-sea hydrothermal vents. In: Jones ML (ed) Hydrothermal Vents of the Eastern Pacific: An Overview. Bull Biol Soc Wash 6:411–428.

    Google Scholar 

  • Hessler RR, Lonsdale P, Hawkins J (1988a) Patterns on the ocean floor. N Sci 117:47–51.

    Google Scholar 

  • Hessler RR, Smithey WM, Boudrias MA, Keller CH, Lutz RA, Childress JJ (1988b) Temporal changes in megafauna at the Rose Garden hydrothermal vent. Deep-Sea Res. 35:1681–1709.

    Article  Google Scholar 

  • Kastens K, Ryan WBF, Fox PJ (1986) Structural and volcanic expression of a fast slipping ridge-transform-ridge-plate boundary: Seamarc I and photographic surveys at the Clipperton Transform Fault. J Geophys Res 91:3469–3488.

    Article  Google Scholar 

  • Lalou C, Brichet E (1982) Ages and implications of East Pacific Rise sulfide deposits at 21° N. Nature 300:821–826.

    Article  Google Scholar 

  • Lalou C, Brichet E (1987) On the isotopic chronology of submarine hydrothermal deposits. Chem Geol 65:197–207.

    Google Scholar 

  • Laubier L, Desbruyeres D (1984) Les oasis du fond des oceans. Recherche 15:1506–1517.

    Google Scholar 

  • Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers (preliminary communication). Deep-Sea Res 24:857–863.

    Article  Google Scholar 

  • Macdonald K, Becker K, Spiess FN, Ballard RD (1980) Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth Planetary Sci Lett 48:1–7.

    Article  Google Scholar 

  • Macdonald K, Sempere J-C, Fox PJ (1984) East Pacific Rise from Siqueiros to Orozco Fracture Zones: Along-strike continuity of axial neovolcanic zone and structure and evolution of overlapping spreading centers. J Geophys Res 89:6049–6069.

    Article  Google Scholar 

  • Macdonald K, Haymon RM, Miller SP, Sempere J-C, Fox PJ (1988) Deep-tow and Sea Beam studies of dueling propagating ridges on the East Pacific Rise near 20° 40′ S. J Geophys Res 93: 2875–2898.

    Article  Google Scholar 

  • McConachy TF, Ballard RD, Mottl MJ, Von Herzen RP (1986) The geological form and setting of a hydrothermal vent field at 10° 56′ N, East Pacific Rise: A detailed study using Angus and Alvin. Geology 14:295–298.

    Article  Google Scholar 

  • Renard V, Hekinian R, Francheteau J, Ballard RD, Backer H (1985) Submersible observations at the axis of the ultra-fast-spreading East Pacific Rise (17° 30′ to 21° 30′ S). Earth Planetary Sci Lett 75:339–353.

    Article  Google Scholar 

  • Rona PA, Klinkhammer G, Nelson TA, Trefry JH, Elderfield H (1986) Black smokers, massive sulfides and vent biota at the Mid-Atlantic Ridge. Nature 321:33–37.

    Article  Google Scholar 

  • Rosenblatt R, Cohen D (1986) Fishes living in deep-sea thermal vents in the tropical Eastern Pacific, with descriptions of a new genus and two new species of eelpouts (Zoarcidade). Trans San Diego Nat Hist Soc 21:71–79.

    Google Scholar 

  • Van Dover CL, Franks PJS, Ballard RD (1987) Prediction of hydrothermal vent locations from distributions of brachyuran crabs. Limnol Oceanogr 32:1006–1010.

    Article  Google Scholar 

  • Van Dover CL, Fry B, Grassle JF, Humphris SE, Rona PA (1988) Feeding biology of Mid-Atlantic Ridge hydrothermal vent shrimp: Functional morphology, gut content analyses and stable isotopic compositions. Marine Biol 98:209–216.

    Article  Google Scholar 

  • Von Damm KL, Edmond JM, Measures CI, Grant B (1985) Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 49:2221–2237.

    Article  Google Scholar 

  • Williams AB (1988) New marine decapod crustaceans from waters influenced by hydrothermal discharge, brine and hydrocarbon seepage. Fish Bull 86:263–287.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Van Dover, C.L., Hessler, R.R. (1990). Spatial Variation in Faunal Composition of Hydrothermal Vent Communities on the East Pacific Rise and Galapagos Spreading Center. In: McMurray, G.R. (eds) Gorda Ridge. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3258-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3258-2_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7937-2

  • Online ISBN: 978-1-4612-3258-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics