Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 1964 Accesses

Abstract

Most of control performance methods assume that the system is (at least locally) linear. However, the presence of certain type of nonlinearity may cause severe performance problems. For instance, stiction, hysteresis and dead-band in actuators, or faulty sensors can induce unwanted oscillations. Thus, it is recommended to evaluate “how linear (or nonlinear)” the closed loop under consideration actually is in an early step of the assessment procedure. Features of nonlinear behaviour can be used as a basis for the development of some nonlinearity detection methods. The exploitation of the bicoherence property led to the bicoherence technique. Alternatively, the surrogate analysis method, which is based on the regularity of phase patterns in nonlinear time series, can be used. Both methods are presented in this chapter, and a comparative study is given on some industrial data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnard JP, Aldrich C, Gerber M (2001) Identification of dynamic process systems with surrogate data methods. AIChE J 47:2064–2075

    Article  Google Scholar 

  • Casdagli MC, Iasemidis LD, Sackellares JC, Roper SN, Gilmore RL, Savit RS (1996) Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy. Physica D 99:381–399

    Article  MATH  Google Scholar 

  • Choudhury MAAS, Shah SL, Thornhill NF (2004) Diagnosis of poor control-loop performance using higher-order statistics. Automatica 40:1719–1728

    Article  MathSciNet  MATH  Google Scholar 

  • Choudhury MAAS, Thornhill NF, Shah SL, Shook DS (2006a) Automatic detection and quantification of stiction in control valves. Control Eng Pract 14:1395–1412

    Article  Google Scholar 

  • Choudhury MAAS, Shook D, Shah SL (2006b) Linear or nonlinear? A bicoherence based metric of nonlinearity measure. In: Proc IFAC symposium SAFEPROCESS, Beijing, China

    Google Scholar 

  • Fackrell JWA (1996) Bispectral analysis of speech signals. PhD thesis, University of Edinburgh, UK

    Google Scholar 

  • Giannakis G, Tstatsanis M (1994) Time-domain tests for gaussianity and time-reversibility. IEEE Trans Signal Process 42:3460–3472

    Article  Google Scholar 

  • Haber R, Keviczky L (1999) Nonlinear system identification—input–output modelling approach, vol 2. Kluwer, Dordrecht

    Book  Google Scholar 

  • Hegger R, Kantz H, Schreiber T (2004) TISEAN2.1 surrogates manual, periodicity artefacts. www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.l

  • Hinich MJ (1982) Testing for Gaussianity and linearity of a stationary time series. J Time Ser Anal 3:169–176

    Article  MathSciNet  MATH  Google Scholar 

  • Jämsa-Jounela S-L, Poikonen R, Vantaski N, Rantala A (2003) Evaluation of control performance: methods, monitoring tool, and applications in a flotation plant. Miner Eng 16:1069–1074

    Article  Google Scholar 

  • Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  • Kaplan DT (1997) Nonlinearity and nonstationarity: the use of surrogate data in interpreting fluctuations. In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A (eds) Frontiers of blood pressure and heart rate analysis. IOS Press, Amsterdam

    Google Scholar 

  • Kaplan DT, Glass L (1995) Understanding nonlinear dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kim YC, Powers EJ (1979) Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans Plasma Sci PS-7:120–131

    Article  Google Scholar 

  • Matsuo T, Tadakuma I, Thornhill NF (2004) Diagnosis of a unit-wide disturbance caused by saturation in manipulated variable. In: Proc IEEE advanced process control applications for industry workshop, Vancouver, Canada

    Google Scholar 

  • Molle JD, Hinich M (1995) Trispectral analysis of stationary time series. J Acoust Soc Am 97:2963–2978

    Article  Google Scholar 

  • Nikias CL, Petropulu AP (1993) Higher-order spectra analysis: a non-linear signal processing framework. Prentice Hall, New York

    Google Scholar 

  • Paluš M (1995) Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D 80:186–205

    Article  MATH  Google Scholar 

  • Rhodes C, Morari M (1997) The false nearest neighbors algorithm: an overview. Comput Chem Eng 21:S1149–S1154

    Google Scholar 

  • Small M, Tse CK (2002) Applying the method of surrogate data to cyclic time series. Physica D 164:187–201

    Article  MATH  Google Scholar 

  • Stam CJ, Pijn JPM, Pritchard WS (1998) Reliable detection of nonlinearity in experimental time series with strong periodic components. Physica D 112:361–380

    Article  MathSciNet  MATH  Google Scholar 

  • Subba Rao TS, Gabr MM (1980) A test for linearity and stationarity of time series. J Time Ser Anal 1:145–158

    Article  MathSciNet  MATH  Google Scholar 

  • Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741

    Article  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer B, Farmer JD (1992) Testing for nonlinearity in time-series—the method of surrogate data. Physica D 58:77–94

    Article  MATH  Google Scholar 

  • Thornhill NF (2005) Finding the source of nonlinearity in a process with plant-wide oscillation. IEEE Trans Control Syst Technol 13:434–443

    Article  Google Scholar 

  • Thornhill NF (2007) Locating the source of a disturbance. In: Ordys AW, Uduehi D, Johnson MA (eds) Process control performance assessment. Springer, Berlin, pp 199–225

    Chapter  Google Scholar 

  • Thornhill NF, Shah SL, Huang B (2001) Detection of distributed oscillations and root-cause diagnosis. In: Proc CHEMFAS, Chejudo Island, Korea, pp 167–172

    Google Scholar 

  • Thornhill NF, Shah SL, Huang B, Vishnubholta A (2002) Spectral principal component analysis of dynamic process data. Control Eng Pract 10:833–846

    Article  Google Scholar 

  • Thornhill NF, Cox J, Paulonis M (2003a) Diagnosis of plant-wide oscillation through data-driven analysis and process understanding. Control Eng Pract 11:1481–1490

    Article  Google Scholar 

  • Thornhill NF, Huang B, Shah SL (2003b) Controller performance assessment in set point tracking and regulatory control. Int J Adapt Control Signal Process 17:709–727

    Article  MATH  Google Scholar 

  • Thornhill NF, Huang B, Zhang H (2003c) Detection of multiple oscillations in control loops. J Process Control 13:91–100

    Article  Google Scholar 

  • Timmer J, Schwarz U, Voss HU, Wardinski I, Belloni T, Hasinger G, van der Klis M, Kurths J (2000) Linear and nonlinear time series analysis of the black hole candidate Cygnus X-l. Phys Rev E 61:1342–1352

    Article  Google Scholar 

  • Tugnait JK (1987) Identification of linear stochastic systems via second- and fourth-order cumulant matching. IEEE Trans Inf Theory 33:393–407

    Article  MATH  Google Scholar 

  • Yuan J (1999) Testing linearity for stationary time series using the sample interquartile range. J Time Ser Anal 21:713–722

    Article  Google Scholar 

  • Zang X, Howell J (2004) Comparison of methods to identify the root cause of plant-wide oscillations. In: Proc IEEE confer control applications, Taipei, Taiwan, pp 695–700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Jelali, M. (2013). Detection of Loop Nonlinearities. In: Control Performance Management in Industrial Automation. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-4546-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4546-2_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4545-5

  • Online ISBN: 978-1-4471-4546-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics