Skip to main content

Kinematic Synthesis

  • Conference paper
Book cover 21st Century Kinematics
  • 3827 Accesses

Abstract

In this chapter we examine the kinematic synthesis theory for spatial serial chains. The kinematics equations of the chain are presented in their usual form using the Denavit-Hartenberg convention. The product of exponentials version of these kinematics equations are then reformulated using relative displacements from a reference position. These equations are shown to be equivalent to a dual quaternion, or Clifford algebra, formulation of the kinematics equations. It is these equations that are used for the design of serial chains. Remarkably, these equations specialize to the well-known complex vector design equations for planar serial chains. The complexity of the synthesis problem is known to simplify if the serial chain has a reachable surface, and we consider two cases the sphere and the circular torus. While the synthesis equations for the spatial SS chain has 20 solutions, the spatial RRS chain that generates the circular torus has over 90,000 solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter combines excerpts from J.M. McCarthy and G.S. Soh, Geometric Design of Linkages, Springer, 2010, and is based on the Ph.D. research by Alba Perez and Haijun Su. Reproduced by kind permission of Springer © 2012.

References

  1. Gupta, K.C.: Kinematic analysis of manipulators using the zero reference position description. Int. J. Robot. Res. 5(2), 5–13 (1986)

    Article  Google Scholar 

  2. McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)

    Google Scholar 

  3. Perez, A., McCarthy, J.M.: Dual quaternion synthesis of constrained robotic systems. ASME J. Mech. Des. 126(3), 425–435 (2004)

    Article  Google Scholar 

  4. Murray, R.M., Li, X., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1995)

    Google Scholar 

  5. De Sa, S., Roth, B.: Kinematic mappings. Part 2: rational algebraic motions in the plane. ASME J. Mech. Des. 103, 712–717 (1981)

    Article  Google Scholar 

  6. Ravani, B., Roth, B.: Motion synthesis using kinematic mapping. ASME J. Mech. Transm. Autom. Des. 105(3), 460–467 (1983)

    Article  Google Scholar 

  7. Suh, C.H., Radcliffe, C.W.: Kinematics and Mechanisms Design. Wiley, New York (1978)

    Google Scholar 

  8. Burmester, L.: Lehrbuch der Kinematik. Verlag Von Arthur Felix, Leipzig (1886)

    MATH  Google Scholar 

  9. Hartenberg, R.S., Denavit, J.: Kinematic Synthesis of Linkages. McGraw-Hill, New York (1964)

    Google Scholar 

  10. Chen, P., Roth, B.: Design equations for the finitely and infinitesimally separated position synthesis of binary links and combined link chains. ASME J. Eng. Ind. 91, 209–219 (1969)

    Article  Google Scholar 

  11. Sandor, G.N., Erdman, A.G.: Advanced Mechanism Design: Analysis and Synthesis, Vol. 2. Prentice-Hall, Englewood Cliffs (1984)

    Google Scholar 

  12. McCarthy, J.M.: 4.6: dual quaternions and the pole triangle. In: Erdman, A.G. (ed.) Forty Years of Modern Kinematics: A Tribute to Ferdinand Freudenstein. Wiley, New York (1993)

    Google Scholar 

  13. Lin, C.S., Erdman, A.G.: Dimensional synthesis of planar triads: motion generation with prescribed timing for six precision positions. Mech. Mach. Theory 22(5), 411–419 (1987)

    Article  Google Scholar 

  14. Subbian, T., Flugrad, D.R.: 6 and 7 position triad synthesis using continuation methods. J. Mech. Des. 116(2), 660–665 (1994)

    Article  Google Scholar 

  15. Krovi, V., Ananthasuresh, G.K., Kumar, V.: Kinematic and kinetostatic synthesis of planar coupled serial chain mechanisms. ASME J. Mech. Des. 124(2), 301–312 (2002)

    Article  Google Scholar 

  16. Schoenflies, A.: Geometrie der Bewegung in Synthetischer Darstellung, Leipzig (1886). (See also the French translation: La Géométrie du Mouvement, Paris, 1983)

    Google Scholar 

  17. Morgan, A.P., Sommese, A.J., Wampler, C.W.: A product-decomposition bound for Bezout numbers. SIAM J. Numer. Anal. 32(4), 1308–1325 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Innocenti, C.: Polynomial solution of the spatial Burmester problem. Mechanism Synthesis and Analysis, ASME DE-Vol. 7 (1994)

    Google Scholar 

  19. Liao, Q., McCarthy, J.M.: On the seven position synthesis of a 5-SS platform linkage. ASME J. Mech. Des. 123(1), 74–79 (2001)

    Article  Google Scholar 

  20. Raghavan, M.: Suspension mechanism synthesis for linear toe curves. In: Proceedings for the Design Engineering Technical Conferences. Paper No. DETC2002/MECH-34305, Sept. 29–Oct. 2, Montreal, Canada (2002)

    Google Scholar 

  21. Perez-Gracia, A., McCarthy, J.M.: The kinematic synthesis of spatial serial chains using Clifford algebra exponentials. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 220(7), 953–968 (2006). doi:10.1243/09544062JMES166

    Article  Google Scholar 

  22. Perez, A., McCarthy, J.M.: Clifford algebra exponentials and planar linkage synthesis equations. ASME J. Mech. Des. 127(5), 931–940 (2005). doi:10.1115/1.1904047

    Article  Google Scholar 

  23. Lee, E., Mavroidis, C.: Solving the geometric design problem of spatial 3R robot manipulators using polynomial homotopy continuation. ASME J. Mech. Des. 124(4), 652–661 (2002)

    Article  Google Scholar 

  24. Lee, E., Mavroidis, C.: Geometric design of 3R manipulators for reaching four end-effector spatial poses. Int. J. Robot. Res. 23(3), 247–254 (2004)

    Article  Google Scholar 

  25. Perez, A., McCarthy, J.M.: Geometric design of RRP, RPR and PRR serial chains. Mech. Mach. Theory 40(11), 1294–1311 (2005). doi:10.1016/j.mechmachtheory.2004.12.023

    Article  MathSciNet  MATH  Google Scholar 

  26. Bottema, O., Roth, B.: Theoretical Kinematics. Dover Publications, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael McCarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

McCarthy, J.M. (2013). Kinematic Synthesis. In: McCarthy, J. (eds) 21st Century Kinematics. Springer, London. https://doi.org/10.1007/978-1-4471-4510-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4510-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4509-7

  • Online ISBN: 978-1-4471-4510-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics