Skip to main content

Jack Schwartz and Robotics: The Roaring Eighties

  • Chapter
  • 859 Accesses

Abstract

This article reviews the birth and growth of algorithmic motion planning in robotics, and the immense contributions of Jack Schwartz to the creation and development of this area during the 1980s. These contributions have started with the series of works on the “Piano Movers” problem, by Jack and myself (reviewed in detail in this article), and continued in many other works, mostly theoretical but with a strong practical motivation. These works, by Jack and others, have brought together many disciplines in mathematics and computer science, and have had enormous impact on the development of computational geometry.

Work on this paper was partially supported by NSF Grant CCF-08-30272, by Grant 2006/194 from the U.S.–Israel Binational Science Foundation, by Grant 338/09 from the Israel Science Fund, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We note in passing that θ is not a good choice of parameter, because it makes the equations that will arise in the analysis non-algebraic, whereas algebraicity will be a crucial ingredient of the analysis. This is not a serious issue, because we can replace θ by tan(θ/2) and make all the relevant equations algebraic. Still, to make the presentation more readable, we stick to using θ.

References

  1. Agarwal, P.K., Pach, J., Sharir, M.: State of the union (of geometric objects). In: Proc. Joint Summer Research Conf. on Discrete and Computational Geometry: 20 Years Later. Contemp. Math., vol. 452, pp. 9–48. AMS, Providence (2008)

    Google Scholar 

  2. Agarwal, P.K., Sharir, M.: Davenport-Schinzel sequences and their geometric applications. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 1–47. North-Holland, Amsterdam (2000)

    Chapter  Google Scholar 

  3. Agarwal, P.K., Sharir, M.: Arrangements of surfaces in higher dimensions. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119. North-Holland, Amsterdam (2000)

    Chapter  Google Scholar 

  4. Agarwal, P., Aronov, B., Sharir, M.: Motion planning for a convex polygon in a polygonal environment. Discrete Comput. Geom. 22, 201–221 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronov, B., Sharir, M.: Castles in the air revisited. Discrete Comput. Geom. 12, 119–150 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Basu, S.: The combinatorial and topological complexity of a single cell. Discrete Comput. Geom. 29, 41–59 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu, S., Pollack, R., Roy, M.-F.: Computing roadmaps of semi-algebraic sets on a variety. J. Am. Math. Soc. 3, 55–82 (1999)

    MathSciNet  Google Scholar 

  8. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computations in Mathematics, vol. 10. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Bastuscheck, C.M., Schonberg, E., Schwartz, J.T., Sharir, M.: Object recognition by 3-dimensional curve matching. Int. J. Intell. Syst. 1, 105–132 (1986)

    Article  Google Scholar 

  10. Canny, J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988)

    Google Scholar 

  11. Canny, J.: Computing roadmaps of general semi-algebraic sets. Comput. J. 36, 504–514 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: A singly exponential stratification scheme for real semi-algebraic varieties and its applications. Theor. Comput. Sci. 84, 77–105 (1991). Also in Proc. 16th Int. Colloq. on Automata, Languages and Programming, pp. 179–193 (1989)

    Article  MATH  Google Scholar 

  13. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M., Snoeyink, J.: Computing a face in an arrangement of line segments and related problems. SIAM J. Comput. 22, 1286–1302 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Boston (2005)

    MATH  Google Scholar 

  15. Collins, G.E.: Quantifier elimination for real closed fields by cylindric algebraic decomposition. In: 2nd GI Conf. Aut. Theory and Formal Lang. LNCS, vol. 33, pp. 134–183. Springer, Berlin (1975)

    Google Scholar 

  16. Dunford, N., Schwartz, J.T.: Linear Operators, Part I: General Theory. Interscience Publishers, New York (1958)

    Google Scholar 

  17. Guibas, L., Sharir, M., Sifrony, S.: On the general motion planning problem with two degrees of freedom. Discrete Comput. Geom. 4, 491–521 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Halperin, D., Sharir, M.: Almost tight upper bounds for the single cell and zone problems in three dimensions. Discrete Comput. Geom. 14, 385–410 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Halperin, D., Sharir, M.: Arrangements and their applications in robotics: recent developments. In: Goldberg, K., Halperin, D., Latombe, J.C., Wilson, R. (eds.) The Algorithmic Foundations of Robotics, pp. 495–511. A.K. Peters, Boston (1995)

    Google Scholar 

  20. Hopcroft, J., Joseph, D., Whitesides, S.: Movement problems in 2-dimensional linkages. SIAM J. Comput. 13, 610–629 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: Efficient detection of intersections among spheres. Int. J. Robot. Res. 2(4), 77–80 (1983)

    Article  Google Scholar 

  22. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE hardness of the ‘Warehouseman’s problem’. Int. J. Robot. Res. 3(4), 76–88 (1984)

    Article  Google Scholar 

  23. Hopcroft, J.E., Schwartz, J.T., Sharir, M. (eds.): Planning, Geometry, and Complexity of Robot Motion. Ablex, Norwood (1987)

    Google Scholar 

  24. Kalvin, A., Schonberg, E., Schwartz, J.T., Sharir, M.: Two dimensional model based boundary matching using footprints. Int. J. Robot. Res. 5(4), 38–55 (1986)

    Article  Google Scholar 

  25. Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M.: Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580 (1996)

    Article  Google Scholar 

  26. Kedem, K., Sharir, M., Toledo, S.: On critical orientations in the Kedem-Sharir motion planning algorithm. Discrete Comput. Geom. 17, 227–239 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Leven, D., Sharir, M.: An efficient and simple motion planning algorithm for a ladder moving in 2-dimensional space amidst polygonal barriers. J. Algorithms 8, 192–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leven, D., Sharir, M.: On the number of critical free contacts of a convex polygonal object moving in two-dimensional polygonal space. Discrete Comput. Geom. 2, 255–270 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Z., Canny, J.F. (eds.): Nonholonomic Motion Planning. Kluwer Academic, Norwell (1993)

    Google Scholar 

  30. Lockwood, E.H., Prag, A.: Book of Curves. Cambridge University Press, Cambridge (1961)

    Book  MATH  Google Scholar 

  31. Mishra, B.: Mathematics mortua manus: Discovering dexterity. This volume

    Google Scholar 

  32. Mishra, B., Schwartz, J.T., Sharir, M.: On the existence and synthesis of multifinger positive grips. Algorithmica 2, 541–558 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pach, J., Sharir, M.: Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures. Am. Math. Soc. Press, Providence (2009). Lecture Notes, Alcalá, Spain, August–September (2006)

    MATH  Google Scholar 

  34. Peaucellier, M.: Correspondence. Nouv. Ann. Math. 3, 414–415 (1864)

    Google Scholar 

  35. Reif, J.: Complexity of mover’s problem and generalizations. In: Hopcroft, J., Schwartz, J., Sharir, M. (eds.) Planning, Geometry and Complexity of Robot Motion, pp. 267–281 (1987)

    Google Scholar 

  36. Schwartz, J.T., Sharir, M.: On the Piano Movers’ problem: I. The case of a rigid polygonal body moving amidst polygonal barriers. Commun. Pure Appl. Math. 36, 345–398 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schwartz, J.T., Sharir, M.: On the Piano Movers’ problem: II. General techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4, 298–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schwartz, J.T., Sharir, M.: On the Piano Movers’ problem: III. Coordinating the motion of several independent bodies: the special case of circular bodies moving amidst polygonal barriers. Int. J. Robot. Res. 2(3), 46–75 (1983)

    Article  MathSciNet  Google Scholar 

  39. Schwartz, J.T., Sharir, M.: Mathematical problems and training in robotics. Not. Am. Math. Soc. 30, 478–481 (1983)

    Google Scholar 

  40. Schwartz, J.T., Sharir, M.: On the Piano Movers’ problem: V. The case of a rod moving in three-dimensional space amidst polyhedral obstacles. Commun. Pure Appl. Math. 37, 815–848 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schwartz, J.T., Sharir, M.: A survey of motion planning and related geometric algorithms. Artif. Intell. 37, 157–169 (1988). Also in: D. Kapur, J. Mundy (eds.) Geometric Reasoning, pp. 157–169. MIT Press, Cambridge (1989), and in: S.S. Iyengar, A. Elfes (eds.) Autonomous Mobile Robots, vol. I, pp. 365–374. IEEE Comput. Soc., Los Alamitos (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schwartz, J.T., Sharir, M.: On the two-dimensional Davenport Schinzel problem. J. Symb. Comput. 10, 371–393 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schwartz, J.T., Sharir, M.: Finding effective ‘force targets’ for two-dimensional multifinger frictional grips. Algorithmica 8, 1–20 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schwartz, J.T., Sharir, M.: Algorithmic motion planning in robotics, an invited chapter. In: Van Leeuwen, J. (ed.) Algorithms and Complexity. Handbook of Theoretical Computer Science, vol. A, pp. 391–430. Elsevier, Amsterdam (1990)

    Google Scholar 

  45. Sharir, M.: Algorithmic motion planning in robotics. Computer 22, 9–20 (1989)

    Article  Google Scholar 

  46. Sharir, M.: Robot motion planning. In: Schonberg, E. (ed.) The Houses that Jack Built, pp. 287–300. Courant Institute, New York University (1995). Also in Commun. Pure Appl. Math. 48, 1173–1186 (1995)

    Google Scholar 

  47. Sharir, M.: Motion planning. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 733–754. CRC Press, Boca Raton (1997). Second Edition, pp. 1037–1064 (2004)

    Google Scholar 

  48. Sharir, M.: Arrangements of surfaces in higher dimensions. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry (Proc. 1996 AMS Mt. Holyoke Summer Research Conference). Contemporary Mathematics, vol. 223, pp. 335–353. Am. Math. Soc., Providence (1999)

    Google Scholar 

  49. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  50. Sharir, M., Ariel-Sheffi, E.: On the Piano Movers’ problem: IV. Various decomposable two-dimensional motion planning problems. Commun. Pure Appl. Math. 37, 479–493 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sifrony, S., Sharir, M.: A new efficient motion planning algorithm for a rod in two-dimensional polygonal space. Algorithmica 2, 367–402 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  53. Vegter, G.: The visibility diagram: a data structure for visibility problems and motion planning. In: Proc. 2nd Scand. Workshop Algorithm Theory. Lecture Notes in Computer Science, vol. 447, pp. 97–110. Springer, Berlin (1990)

    Google Scholar 

  54. Wolfson, H.J., Rigoutsos, I.: Geometric hashing: an overview. IEEE Comput. Sci. Eng. 4, 10–21 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micha Sharir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Sharir, M. (2013). Jack Schwartz and Robotics: The Roaring Eighties. In: Davis, M., Schonberg, E. (eds) From Linear Operators to Computational Biology. Springer, London. https://doi.org/10.1007/978-1-4471-4282-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4282-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4281-2

  • Online ISBN: 978-1-4471-4282-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics