Skip to main content

In Utero Hematopoietic Stem Cell Transplantation for Congenital Disorders

  • Chapter
  • First Online:
Human Fetal Tissue Transplantation

Abstract

Recent advances in stem cell biology, prenatal diagnosis, and fetal surgery have transformed our ability to use in utero stem cell transplantation to cure congenital anomalies. With the recent discovery of inducible pluripotent stem (iPS) cells [1], new opportunities are available to generate patient-matched iPS cells for specific diseases. Advances in prenatal imaging and molecular diagnostics allow us to accurately diagnose congenital hematologic diseases as early as 10–12 weeks of gestation [2]. Furthermore, high-resolution ultrasonography has made it technically feasible to deliver stem cells in the early gestation fetus. Fetal intervention in patients has expanded since its first description in 1982 [3] and is used to treat anatomic anomalies with both conventional and minimally invasive techniques [4]. The improved understanding of stem cell biology, the ability to diagnose congenital diseases that are amenable to prenatal therapy, and the technical capability to deliver cells safely in utero have brought renewed interest and excitement for the promise of prenatal stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  2. Flake AW, Zanjani ED. In utero hematopoietic stem cell transplantation: ontogenic opportunities and biologic barriers. Blood. 1999;94:2179–91.

    PubMed  CAS  Google Scholar 

  3. Harrison MR, Golbus MS, Filly RA, et al. Fetal surgery for congenital hydronephrosis. N Engl J Med. 1982;306:591–3.

    Article  PubMed  CAS  Google Scholar 

  4. Sydorak RM, Nijagal A, Albanese CT. Endoscopic techniques in fetal surgery. Yonsei Med J. 2001;42:695–710.

    PubMed  CAS  Google Scholar 

  5. Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol. 1995;11:35–71.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson FL, Look AT, Gockerman J, Ruggiero MR, Dalla-Pozza L, Billings 3rd FT. Bone-marrow transplantation in a patient with sickle-cell anemia. N Engl J Med. 1984;311:780–3.

    Article  PubMed  CAS  Google Scholar 

  7. Kamani N, August CS, Douglas SD, Burkey E, Etzioni A, Lischner HW. Bone marrow transplantation in chronic granulomatous disease. J Pediatr. 1984;105:42–6.

    Article  PubMed  CAS  Google Scholar 

  8. Lucarelli G, Galimberti M, Polchi P, et al. Bone marrow transplantation in patients with thalassemia. N Engl J Med. 1990;322:417–21.

    Article  PubMed  CAS  Google Scholar 

  9. Parkman R. The application of bone marrow transplantation to the treatment of genetic diseases. Science. 1986;232:1373–8.

    Article  PubMed  CAS  Google Scholar 

  10. Santore MT, Roybal JL, Flake AW. Prenatal stem cell transplantation and gene therapy. Clin Perinatol. 2009;36:451–71, xi.

    Article  PubMed  Google Scholar 

  11. Elder M, Golbus MS, Cowan MJ. Ontogeny of T- and B-cell immunity. In: Edwards RG, editor. Fetal tissue transplants in medicine. Cambridge: University Press; 1992. p. 97–128.

    Google Scholar 

  12. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897–906.

    Article  PubMed  CAS  Google Scholar 

  13. Palmer E. Negative selection – clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol. 2003;3:383–91.

    Article  PubMed  CAS  Google Scholar 

  14. Ashizuka S, Peranteau WH, Hayashi S, Flake AW. Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation. Exp Hematol. 2006;34:359–68.

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi S, Peranteau WH, Shaaban AF, Flake AW. Complete allogeneic hematopoietic chimerism achieved by a combined strategy of in utero hematopoietic stem cell transplantation and postnatal donor lymphocyte infusion. Blood. 2002;100:804–12.

    Article  PubMed  CAS  Google Scholar 

  16. Peranteau WH, Hayashi S, Hsieh M, Shaaban AF, Flake AW. High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood. 2002;100:2225–34.

    Article  PubMed  CAS  Google Scholar 

  17. Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science. 1945;102:400–1.

    Article  PubMed  CAS  Google Scholar 

  18. Thomsen M, Hansen HE, Dickmeiss E. MLC and CML studies in the family of a pair of HLA haploidentical chimeric twins. Scand J Immunol. 1977;6:523–8.

    Article  PubMed  CAS  Google Scholar 

  19. Picus J, Aldrich WR, Letvin NL. A naturally occurring bone-marrow-chimeric primate. I. Integrity of its immune system. Transplantation. 1985;39:297–303.

    Article  PubMed  CAS  Google Scholar 

  20. Picus J, Holley K, Aldrich WR, Griffin JD, Letvin NL. A naturally occurring bone marrow-chimeric primate. II. Environment dictates restriction on cytolytic T lymphocyte-target cell interactions. J Exp Med. 1985;162:2035–52.

    Article  PubMed  CAS  Google Scholar 

  21. Andrassy J, Kusaka S, Jankowska-Gan E, et al. Tolerance to noninherited maternal MHC antigens in mice. J Immunol. 2003;171:5554–61.

    PubMed  CAS  Google Scholar 

  22. Burlingham WJ, Grailer AP, Heisey DM, et al. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. N Engl J Med. 1998;339:1657–64.

    Article  PubMed  CAS  Google Scholar 

  23. van Rood JJ, Loberiza Jr FR, Zhang MJ, et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood. 2002;99:1572–7.

    Article  PubMed  Google Scholar 

  24. Mold JE, Michaelsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008;322:1562–5.

    Article  PubMed  CAS  Google Scholar 

  25. Sabatino DE, Mackenzie TC, Peranteau W, et al. Persistent expression of hF.IX After tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther. 2007;15:1677–85.

    Article  PubMed  CAS  Google Scholar 

  26. Gouw SC, van den Berg HM. The multifactorial etiology of inhibitor development in hemophilia: genetics and environment. Semin Thromb Hemost. 2009;35:723–34.

    Article  PubMed  CAS  Google Scholar 

  27. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172:603–6.

    Article  PubMed  CAS  Google Scholar 

  28. Blazar BR, Taylor PA, Vallera DA. In utero transfer of adult bone marrow cells into recipients with severe combined immunodeficiency disorder yields lymphoid progeny with T- and B-cell functional capabilities. Blood. 1995;86:4353–66.

    PubMed  CAS  Google Scholar 

  29. Blazar BR, Taylor PA, Vallera DA. Adult bone marrow-derived pluripotent hematopoietic stem cells are engraftable when transferred in utero into moderately anemic fetal recipients. Blood. 1995;85:833–41.

    PubMed  CAS  Google Scholar 

  30. Carrier E, Gilpin E, Lee TH, Busch MP, Zanetti M. Microchimerism does not induce tolerance after in utero transplantation and may lead to the development of alloreactivity. J Lab Clin Med. 2000;136:224–35.

    Article  PubMed  CAS  Google Scholar 

  31. Kim HB, Shaaban AF, Milner R, Fichter C, Flake AW. In utero bone marrow transplantation induces donor-specific tolerance by a combination of clonal deletion and clonal anergy. J Pediatr Surg. 1999;34:726–9; discussion 9–30.

    Article  PubMed  CAS  Google Scholar 

  32. Kim HB, Shaaban AF, Yang EY, Liechty KW, Flake AW. Microchimerism and tolerance after in utero bone marrow transplantation in mice. J Surg Res. 1998;77:1–5.

    Article  PubMed  CAS  Google Scholar 

  33. Pallavicini MG, Flake AW, Madden D, et al. Hematopoietic chimerism in rodents transplanted in utero with fetal human hematopoietic cells. Transplant Proc. 1992;24:542–3.

    PubMed  CAS  Google Scholar 

  34. Peranteau WH, Endo M, Adibe OO, Flake AW. Evidence for an immune barrier after in utero hematopoietic-cell transplantation. Blood. 2007;109:1331–3.

    Article  PubMed  CAS  Google Scholar 

  35. Merianos DJ, Tiblad E, Santore MT, et al. Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice. J Clin Invest. 2009;119:2590–600.

    PubMed  CAS  Google Scholar 

  36. Lee PW, Cina RA, Randolph MA, et al. In utero bone marrow transplantation induces kidney allograft tolerance across a full major histocompatibility complex barrier in Swine. Transplantation. 2005;79:1084–90.

    Article  PubMed  Google Scholar 

  37. Peranteau WH, Heaton TE, Gu YC, et al. Haploidentical in utero hematopoietic cell transplantation improves phenotype and can induce tolerance for postnatal same-donor transplants in the canine ­leukocyte adhesion deficiency model. Biol Blood Marrow Transplant. 2009;15:293–305.

    Article  PubMed  Google Scholar 

  38. Blakemore K, Hattenburg C, Stetten G, et al. In utero hematopoietic stem cell transplantation with haploidentical donor adult bone marrow in a canine model. Am J Obstet Gynecol. 2004;190:960–73.

    Article  PubMed  Google Scholar 

  39. Omori F, Lutzko C, Abrams-Ogg A, et al. Adoptive transfer of genetically modified human hematopoietic stem cells into preimmune canine fetuses. Exp Hematol. 1999;27:242–9.

    Article  PubMed  CAS  Google Scholar 

  40. Shields LE, Gaur LK, Gough M, Potter J, Sieverkropp A, Andrews RG. In utero hematopoietic stem cell transplantation in nonhuman primates: the role of T cells. Stem Cells. 2003;21:304–14.

    Article  PubMed  Google Scholar 

  41. Tarantal AF, Goldstein O, Barley F, Cowan MJ. Transplantation of human peripheral blood stem cells into fetal rhesus monkeys (Macaca mulatta). Transplantation. 2000;69:1818–23.

    Article  PubMed  CAS  Google Scholar 

  42. Asano T, Ageyama N, Takeuchi K, et al. Engraftment and tumor formation after allogeneic in utero transplantation of primate embryonic stem cells. Transplantation. 2003;76:1061–7.

    Article  PubMed  Google Scholar 

  43. Almeida-Porada G, Porada C, Gupta N, Torabi A, Thain D, Zanjani ED. The human-sheep chimeras as a model for human stem cell mobilization and evaluation of hematopoietic grafts’ potential. Exp Hematol. 2007;35:1594–600.

    Article  PubMed  CAS  Google Scholar 

  44. Flake AW, Harrison MR, Adzick NS, Zanjani ED. Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science. 1986;233:776–8.

    Article  PubMed  CAS  Google Scholar 

  45. Narayan AD, Chase JL, Lewis RL, et al. Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood. 2006;107:2180–3.

    Article  PubMed  CAS  Google Scholar 

  46. Zanjani ED, Flake AW, Rice H, Hedrick M, Tavassoli M. Long-term repopulating ability of xenogeneic transplanted human fetal liver hematopoietic stem cells in sheep. J Clin Invest. 1994;93:1051–5.

    Article  PubMed  CAS  Google Scholar 

  47. Zanjani ED, Pallavicini MG, Ascensao JL, et al. Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero. J Clin Invest. 1992;89:1178–88.

    Article  PubMed  CAS  Google Scholar 

  48. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6:1282–6.

    Article  PubMed  CAS  Google Scholar 

  49. Touraine JL, Raudrant D, Royo C, et al. In-utero transplantation of stem cells in bare lymphocyte syndrome. Lancet. 1989;1:1382.

    Article  PubMed  CAS  Google Scholar 

  50. Flake AW, Roncarolo MG, Puck JM, et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med. 1996;335:1806–10.

    Article  PubMed  CAS  Google Scholar 

  51. Wengler GS, Lanfranchi A, Frusca T, et al. In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDXI). Lancet. 1996;348:1484–7.

    Article  PubMed  CAS  Google Scholar 

  52. Touraine JL, Raudrant D, Laplace S. Transplantation of hematopoietic cells from the fetal liver to treat patients with congenital diseases postnatally or prenatally. Transplant Proc. 1997;29:712–3.

    Article  PubMed  CAS  Google Scholar 

  53. Gil J, Porta F, Bartolome J, et al. Immune reconstitution after in utero bone marrow transplantation in a fetus with severe combined immunodeficiency with natural killer cells. Transplant Proc. 1999;31:2581.

    Article  PubMed  CAS  Google Scholar 

  54. Pirovano S, Notarangelo LD, Malacarne F, et al. Reconstitution of T-cell compartment after in utero stem cell transplantation: analysis of T-cell repertoire and thymic output. Haematologica. 2004;89:450–61.

    PubMed  CAS  Google Scholar 

  55. Mintz B, Anthony K, Litwin S. Monoclonal derivation of mouse myeloid and lymphoid lineages from totipotent hematopoietic stem cells experimentally engrafted in fetal hosts. Proc Natl Acad Sci USA. 1984;81:7835–9.

    Article  PubMed  CAS  Google Scholar 

  56. Czechowicz A, Kraft D, Weissman IL, Bhattacharya D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007;318:1296–9.

    Article  PubMed  CAS  Google Scholar 

  57. Stewart FM, Zhong S, Wuu J, Hsieh C, Nilsson SK, Quesenberry PJ. Lymphohematopoietic engraftment in minimally myeloablated hosts. Blood. 1998;91:3681–7.

    PubMed  CAS  Google Scholar 

  58. Peranteau WH, Endo M, Adibe OO, Merchant A, Zoltick PW, Flake AW. CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoietic-cell transplantation. Blood. 2006;108:4268–74.

    Article  PubMed  CAS  Google Scholar 

  59. Lindton B, Tolfvenstam T, Norbeck O, et al. Recombinant parvovirus B19 empty capsids inhibit fetal hematopoietic colony formation in vitro. Fetal Diagn Ther. 2001;16:26–31.

    Article  PubMed  CAS  Google Scholar 

  60. Flake AW, Zanjani ED. Cellular therapy. Obstet Gynecol Clin North Am. 1997;24:159–77.

    Article  PubMed  CAS  Google Scholar 

  61. Shaaban AF, Kim HB, Milner R, Flake AW. A kinetic model for the homing and migration of prenatally transplanted marrow. Blood. 1999;94:3251–7.

    PubMed  CAS  Google Scholar 

  62. Taylor PA, McElmurry RT, Lees CJ, Harrison DE, Blazar BR. Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood. 2002;99:1870–2.

    Article  PubMed  Google Scholar 

  63. Peranteau WH, Hayashi S, Kim HB, Shaaban AF, Flake AW. In utero hematopoietic cell transplantation: what are the important questions? Fetal Diagn Ther. 2004;19:9–12.

    Article  PubMed  Google Scholar 

  64. Durkin ET, Jones KA, Elnaggar D, Shaaban AF. Donor major histocompatibility complex class I expression determines the outcome of prenatal transplantation. J Pediatr Surg. 2008;43:1142–7.

    Article  PubMed  Google Scholar 

  65. Donahue J, Gilpin E, Lee TH, Busch MP, Croft M, Carrier E. Microchimerism does not induce tolerance and sustains immunity after in utero transplantation. Transplantation. 2001;71:359–68.

    Article  PubMed  CAS  Google Scholar 

  66. Leung P, Gidari AS. Effect of aminoglutethimide on murine fetal hepatic erythroid colony formation. Experientia. 1985;41:498–500.

    Article  PubMed  CAS  Google Scholar 

  67. Roodman GD, Lee J, Gidari AS. Effects of dexamethasone on erythroid colony and burst formation from human fetal liver and adult marrow. Br J Haematol. 1983;53:621–8.

    Article  PubMed  CAS  Google Scholar 

  68. Golombeck K, Ball RH, Lee H, et al. Maternal morbidity after maternal-fetal surgery. Am J Obstet Gynecol. 2006;194:834–9.

    Article  PubMed  Google Scholar 

  69. Chou SH, Chawla A, Lee TH, et al. Increased engraftment and GVHD after in utero transplantation of MHC-mismatched bone marrow cells and CD80low, CD86(−) dendritic cells in a fetal mouse model. Transplantation. 2001;72:1768–76.

    Article  PubMed  CAS  Google Scholar 

  70. Misra MV, Gutweiler JR, Suh MY, et al. A murine model of graft-vs-host disease after in utero hematopoietic cell transplantation. J Pediatr Surg. 2009;44:1102–7; discussion 7.

    Article  PubMed  Google Scholar 

  71. Mackenzie TC, Shaaban AF, Radu A, Flake AW. Engraftment of bone marrow and fetal liver cells after in utero transplantation in MDX mice. J Pediatr Surg. 2002;37:1058–64.

    Article  PubMed  Google Scholar 

  72. Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci USA. 2009;106:9826–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tippi C. MacKenzie M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Nijagal, A., MacKenzie, T.C. (2013). In Utero Hematopoietic Stem Cell Transplantation for Congenital Disorders. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics