Skip to main content

Preimplantation Diagnosis for Chromosomal Disorders

  • Chapter
  • First Online:
Book cover Practical Preimplantation Genetic Diagnosis
  • 1538 Accesses

Abstract

It is well known that chromosomal abnormalities originate predominantly from female meiosis. As demonstrated by DNA polymorphism studies performed in families with aneuploid spontaneous abortions or liveborn babies with trisomy syndromes, these abnormalities derive mainly from meiosis I [1–3]. It was suggested that the age-related increase of common trisomies is probably determined by the age-related reduction of meiotic recombination, resulting in premature separation of bivalents and chromosomal nondisjunction. Meiosis II errors were also postulated to derive from meiosis I, as a result of the increased meiotic recombination rate, which may lead to a separation failure of bivalents [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sherman SL, Peterson MB, Freeman SB, et al. Nondisjunction of chromosome 21 in maternal meiosis I: evidence for a maternal age-dependent mechanism involving reduced recombination. Hum Mol Genet. 1994;3:1529–35.

    Article  PubMed  CAS  Google Scholar 

  2. Hassold T, Merril M, Adkins K, Freemen S, Sherman S. Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am J Hum Genet. 1995;57:867–74.

    PubMed  CAS  Google Scholar 

  3. Peterson MB, Mikkelsen M. Nondisjunction in trisomy 21: origin and mechanisms. Cytogenet Cell Genet. 2000;91:199–203.

    Article  Google Scholar 

  4. Lamb NE, Freeman S, Savage-Austin A, et al. Susceptible chiasmate configurations of chromosome 21 predispose to nondisjunction in both maternal meiosis I, and meiosis II. Nat Genet. 1996;14:400–5.

    Article  PubMed  CAS  Google Scholar 

  5. Pellestor F, Andreo B, Armal F, Humeau C, Demaille J. Mechanisms of non-disjunction in human female meiosis: the co-existence of two modes of malsegregation evidenced by the karyotyping of 1397 in-vitro unfertilized oocytes. Hum Reprod. 2002;17:2134–45.

    Article  PubMed  Google Scholar 

  6. Dyban A, Fredine M, Severova E, Cieslac J, Wolf G, Kuliev A, Verlinsky Y. Detection of aneuploidy in human oocytes and corresponding first polar bodies using FISH. Seventh International Conference on Early Prenatal Diagnosis. Jerusalem; 1994 (Abstract #97).

    Google Scholar 

  7. Verlinsky Y, Cieslak J, Freidin M, et al. Pregnancies following pre-conception diagnosis of common aneuploidies by fluorescent in-situ hybridization. Hum Reprod. 1995;10:1923–7.

    PubMed  CAS  Google Scholar 

  8. Munné S, Daily T, Sultan KM, Grifo J, Cohen J. The use of first polar bodies for preimplantation diagnosis of aneuploidy. Hum Reprod. 1995;10:1014–120.

    PubMed  Google Scholar 

  9. Dyban A, Fredine M, Severova E, et al. Detection of aneuploidy in human oocytes and corresponding first polar bodies by FISH. J Assist Reprod Genet. 1996;13:72–7.

    Article  Google Scholar 

  10. Pujol A, Boiso I, Benet J, et al. Analysis of nine chromosome probes in first polar bodies and metaphase II oocytes for the detection of aneuploidies. Eur J Hum Genet. 2003;11:325–36.

    Article  PubMed  CAS  Google Scholar 

  11. Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Birth of healthy children after preimplantation diagnosis of common aneuploidies by polar body FISH analysis. Fertil Steril. 1996;66:126–9.

    PubMed  CAS  Google Scholar 

  12. Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Preimplantation diagnosis of common aneuploidies by the first and second polar body FISH analysis. J Assist Reprod Genet. 1998;15:285–9.

    Article  PubMed  CAS  Google Scholar 

  13. Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Prepregnancy genetic testing for common age-related aneuploidies by polar body analysis. Genet Test. 1998;1:231–5.

    Article  CAS  Google Scholar 

  14. Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Prevention of age-related aneuploidies by polar body testing of oocytes. J Assist Reprod Genet. 1999;16:165–9.

    Article  PubMed  CAS  Google Scholar 

  15. Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Chromosomal abnormalities in the first and second polar body. Mol Cell Endocrinol. 2001;183:S47–9.

    Article  PubMed  CAS  Google Scholar 

  16. Verlinsky Y, Cieslak J, Kuliev A. High frequency of meiosis II aneuploidies in IVF patients of advanced maternal age. Reprod Technol. 2001;10:11–4.

    Google Scholar 

  17. Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Cieslak-Janzen G. Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online. 2011;22:2–8.

    Article  PubMed  Google Scholar 

  18. Gianaroli L, Magli MC, Ferraretti AP. The in vivo and in vitro efficiency and efficacy of PGD for aneuploidy. Mol Cell Endocrinol. 2001;183:S13–8.

    Article  PubMed  CAS  Google Scholar 

  19. Munne S. Preimplantation genetic diagnosis of numerical and structural chromosome abnormalities. Reprod Biomed Online. 2002;4:183–96.

    Article  PubMed  Google Scholar 

  20. Preimplantation Genetic Diagnosis International Society (PGDIS). Guidelines for good practice in PGD: program requirements and laboratory quality assurance. Reprod Biomed Online. 2008;16:134–47.

    Article  Google Scholar 

  21. ESHRE Preimplantation Genetic Diagnosis (PGD) Consortium. Best practice guidelines for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod. 2011;26:14–46.

    Article  Google Scholar 

  22. Preimplantation Genetic Diagnosis International Society (PGDIS). 10th International congress on preimplantation genetic diagnosis. Reprod Biomed Online. 2010;20:S1–42.

    Google Scholar 

  23. Van Blercom J, Davis P, Alexander S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod, 2000;15:2621–33. Kuliev A, Verlinsky Y. Current feature of preimplantation genetic disgnosis. Reprod BioMed Online 2002;5:296–301.

    Google Scholar 

  24. Magli C, Capoti A, Resta S, et al Prolonged absence of meiotic spindles bybirefringence imaging negatively affects normal fertilization and embryo development. Reprod BioMed Online 2011;23:747–54.

    Google Scholar 

  25. Ebner T, Yaman C, Mose M, Sommergruber M, Feichtinger O, Tews G. Prognostic value of first polar body morphology on fertilization rate and embryo quality in itracytoplasmic sperm injection. Hum Reprod. 2000;15:427–30.

    Article  PubMed  CAS  Google Scholar 

  26. Balaban B, Urman B, Isiklar A, Alatas C, Aksoy S, Mercan R. The effect of polar body morphology on embryo quality, implantation and pregnancy rates. Fertil Steril. 2001;76(Suppl1):S8.

    Google Scholar 

  27. Miller KF, Sinoway CE, Fly KL, Falcone T. Fragmentation pf the polar body at the time of ICSI does not predict fertilization or early embryo development but may be associated with improved pregnancy and implantation. Fertil Steril. 2001;76(Suppl1):S201.

    Article  Google Scholar 

  28. Verlinsky Y, Munne S, Cohen J, et al. Over a decade of preimplantation genetic diagnosis experience – a multi-center report. Fertil Steril. 2004;82:292–4.

    Article  PubMed  Google Scholar 

  29. Magli MC, Gianaroli L, Crippa A, Grugnetti C, Ruberti A, Ferraretti AP. Causes of aneuploidy – polar body based PGD. Reprod Biomed Online. 2009;18 Suppl 3:S3.

    Google Scholar 

  30. Gianaroli L, Magli MC, Lappi M, Capoti A, Robles F, Ferraretti AP. Preconception diagnosis. Reprod Biomed Online. 2009;18 Suppl 3:S5.

    Google Scholar 

  31. Fragouli E, Escalona E, Guttieres Mateo C, et al. Comparative genomic hybridization of oocytes and first polar bodies from young donors. Reprod Biomed Online. 2009;19:228–37.

    Article  PubMed  CAS  Google Scholar 

  32. Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16:R203–8.

    Article  PubMed  CAS  Google Scholar 

  33. Lamb NE, Feingold E, Savage-Austin A, et al. Characterization of susceptible chiasma configura­tions that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet. 1997;6:1391–401.

    Article  PubMed  CAS  Google Scholar 

  34. Kuliev A, Cieslak J, Verlinsky Y. Frequency and distribution of chromosomal abnormalities in human oocytes. Cytogenet Genome Res. 2005;111:193–8.

    Article  PubMed  CAS  Google Scholar 

  35. Angel R. First meiotic division nondisjunction in human oocytes. Am J Hum Genet. 1997;65:23–32.

    Article  Google Scholar 

  36. Gutierrez-Mateo C, Benet J, Colls P, et al. Aneuploidy study of human oocytes first polar body comparatice genomic hybridization anf metaphase II fluorescence in situ hybridization analysis. Hum Reprod. 2004;19:2859–68.

    Article  PubMed  CAS  Google Scholar 

  37. Fragouli E, Alfarawati S, Katz-Jaffe M, et al. Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil Steril. 2009. doi:10.1016/j.fertnstert.

  38. Geraedts J, Montag M, Magli C, et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum Reprod. 2011;26:3172–80.

    Article  Google Scholar 

  39. Magli C, Montag M, Koster M, et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part II: technical aspects. Hum Reprod. 2011. doi:10.1093/humrep/der295.

  40. Gabriel AS, Thornhill AR, Ottolini CS, et al. Array comparative genomic hybridization on first polar bodies suggests that non-disjunction is not the predominant mechanism leading to aneuploidy in humans. J Med Genet. 2011;48:433–7.

    Article  PubMed  CAS  Google Scholar 

  41. Hunt P, LeMaraire R, Embury P, Sheean L, Mroz K. Analysis of chromosome behaviour in intact mammalian oocytes: monitoring the segregation of a univalent chromosome during female meiosis. Hum Mol Genet. 1995;4:2007–12.

    Article  PubMed  CAS  Google Scholar 

  42. Munne S, Bahce M, Sandalinas M, et al. Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online. 2004;8:81–90.

    Article  PubMed  Google Scholar 

  43. Colls P, Escudero T, Cekleniak N, Sadowy S, Cohen J, Munne S. Increased efficiency of preimplantation genetic diagnosis for aneuploidy by testing 12 chromosomes. Reprod Biomed Online. 2009;19:532–8.

    Article  PubMed  CAS  Google Scholar 

  44. Uher P, Baborova P, Kralickova M, Zech MH, Verlinsky Y, Zech N. Non-informative results and monosomies in PGD: the importance of a third round of re-hybridization. Reprod Biomed Online. 2009;18:530–46.

    Google Scholar 

  45. Munne S. Chromosomal status of human embryo. In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa Healthcare; 2007. p. 209–34.

    Chapter  Google Scholar 

  46. Munné S, Sandalinas M, Escudero T, Marquuez C, Cohen J. Chromosome mosaicism in cleavage stage human embryos: evidence of a maternal age effect. Reprod Biomed Online. 2002;4:223–32.

    Article  PubMed  Google Scholar 

  47. Sherman SH, Freeman SB, Allen EG, Lamb NE. Risk factors for nondisjunction of trisomy 21. Cytogenet Genome Res. 2005;11:273–80.

    Article  Google Scholar 

  48. Battaglia DE, Goodwin P, Klein NA, Soules MR. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod. 1996;11:2217–22.

    Article  PubMed  CAS  Google Scholar 

  49. Eichenlaub-Ritter U, Vogt E, Yiu H, Gosden R. Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online. 2002;5:117–24.

    Article  PubMed  Google Scholar 

  50. Chatzimeletiou K, Morrison EE, Prapas N, Prapas Y, Handyside AH. Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identified by confocal laser scanning microscopy. Hum Reprod. 2005;20:672–82.

    Article  PubMed  Google Scholar 

  51. Angel E, Antonarakis SE. Genomic imprinting and uniparental disomy in medicine: clinical and molecular aspects. New York: Willey Liss; 2002.

    Google Scholar 

  52. Abu-Amero S, Monk D, Apostolidou S, Stanier P, Moore G. Imprinted genes and their role in human fetal growth. Cytogenet Genome Res. 2006;113:262–70.

    Article  PubMed  CAS  Google Scholar 

  53. Nashmyth K, Peters JM, Uhlman F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science. 2000;288:1379–84.

    Article  Google Scholar 

  54. Yuan L, Liu J, Hoja M, Wilbertz J, Nordqvist K, Hoog C. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science. 2002;296:1115–8.

    Article  PubMed  CAS  Google Scholar 

  55. Mummert S, Lobanenkov V, Feinberg AP. Association of chromosome arm 16q loss with loss of imprinting of insulin-like growth factor-II in wilms tumor. Genes Chromosomes Cancer. 2005;43:155–61.

    Article  PubMed  CAS  Google Scholar 

  56. Fisher JM, Harvey JF, Morton NE, Jacobs PA. Trisomy 18: studies of the parent and cell division of origin and effect of aberrant recombination on nondisjunction. Am J Hum Genet. 1996;56:669–75.

    Google Scholar 

  57. Kuliev A, Cieslak J, Illkewitch Y, Verlinsky Y. Chromosomal abnormalities in a series of 6733 human oocytes in preimplantation diagnosis of age-related aneuploidies. Reprod Biomed Online. 2003;6:54–9.

    Article  PubMed  Google Scholar 

  58. Kuliev A, Verlinsky Y. Meiotic and mitotic nondisjunctions: lessons from preimplantation genetic diagnosis. Hum Reprod. 2004;10:401–7.

    Article  Google Scholar 

  59. Kim NH, Chung HM, Cha KY, Chung KS. Microtubule and microfilament organization in maturing human oocytes. Hum Reprod. 1998;13:2217–22.

    Article  PubMed  CAS  Google Scholar 

  60. Barrit J, Brenner C, Cohen J, Matt D. Mitochondrial DNA rearrangement in human oocytes and embryos. Mol Hum Reprod. 1999;5:927–33.

    Article  Google Scholar 

  61. Perez G, Flaherty S, Barry M, Matthews C. Preliminary observations of polar body extrusion and pronuclear formation in human oocytes using timeplapse video cinematography. Hum Reprod. 1997;12:532–41.

    Article  Google Scholar 

  62. Kahraman S, Kumpete Y, Sertyel S, et al. Pronuclear scoring and chromosomal status of embryos in severe male infertility. Hum Reprod. 2002;17:3193–200.

    Article  PubMed  CAS  Google Scholar 

  63. Gianaroli L, Magli MC, Ferraretti AP, et al. Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selection. Fertil Steril. 2003;80:837–44.

    Article  Google Scholar 

  64. Munne S, Sandalinas M, Escudero T, et al. Some mosaic types increase with maternal age. Reprod Biomed Online. 2002;4:223–32.

    Article  PubMed  Google Scholar 

  65. Silber S, Sadowy S, Lehahan K, Kilani Z, Gianaroli L, Munne S. High rate of chromosome mosaicism but not aneuploidy in embryos from karyotypically normal men requiring TESE. Reprod Biomed Online. 2002;4 Suppl 2:20.

    Article  Google Scholar 

  66. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72:156–60.

    Article  PubMed  CAS  Google Scholar 

  67. Gicquel C, Gaston V, Maldenbaum J, et al. In vitro fertilization may increase the risk of Beckwith-Videmann syndrome related to the abnormal imprinting of the KCNQ1OT gene. Am J Hum Genet. 2003;72:1338–41.

    Article  PubMed  CAS  Google Scholar 

  68. Maher ER, Brueton LA, Bowdin SC, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40:62–4.

    Article  PubMed  CAS  Google Scholar 

  69. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74:599–609.

    Article  PubMed  CAS  Google Scholar 

  70. Halliday J, Oke K, Breheny S, Algar E, Amor JA. Beckwith-Wiedemann syndrome and IVF: a case–control study. Am J Hum Genet. 2004;75:526–8.

    Article  PubMed  CAS  Google Scholar 

  71. Lucifero D, Chaillet JR, Trasler M. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update. 2004;10:3–18.

    Article  PubMed  CAS  Google Scholar 

  72. Verlinsky Y, Tur-Kaspa I, Cieslak J, Bernal A, Morris R, Taranissi M, Kaplan B, Kuliev A. Preimpalntation diagnosis for chromosomal disorders improves reproductive outcome of poor-prognosis patients. Reprod Biomed Online. 2005;11:219–25.

    Article  PubMed  CAS  Google Scholar 

  73. Munne S, Morrison L, Fung J, et al. Spontaneous abortions are reduced after preconception diagnosis of translocations. J Assit Reprod Genet. 1998;15:290–6.

    Article  CAS  Google Scholar 

  74. Verlinsky Y, Kuliev A, editors. Preimplantation diagnosis of genetic disorders: a new technique for assisted reproduction. New York: Wiley Liss; 1993.

    Google Scholar 

  75. Munne S, Bahce M, Sadowy S, Cohen J. Case report: chromatid exchange and predivision of chromatids as other sources of abnormal oocytes detected by preimplantation genetic diagnosis of translocations. Prenat Diagn. 1998;18:1450–8.

    Article  PubMed  CAS  Google Scholar 

  76. Verlinsky Y, Kuliev A. Atlas of preimplantation genetic diagnosis. New York, London: Parthenon; 2000.

    Google Scholar 

  77. Verlinsky Y, Evsikov S. Karyotyping of human oocytes by chromosomal analysis of the second polar body. Mol Hum Reprod. 1999;5:89–95.

    Article  PubMed  CAS  Google Scholar 

  78. Verlinsky Y, Cieslak J, Evsikov S, Galat V, Kuliev A. Nuclear transfer for full karyotyping and preimplantation diagnosis of translocations. Reprod Biomed Online. 2002;5:302–7.

    Article  Google Scholar 

  79. Kuliev A, Cieslak-Jansen J, Zlatoposlsky Z, Kirilllova I, Illlevitch Y, Verlinsky Y. Conversion and non-conversion approach to preimplantation diagnosis for chromosomal rearrangements in 475 cycles. Reprod Biomed Online. 2010;21:93–9.

    Article  PubMed  Google Scholar 

  80. Verlinsky Y, Evsikov S. A simplified and efficient method for obtaining metaphase chromosomes from individual human blastomeres. Fertil Steril. 1999;72:1–6.

    Article  Google Scholar 

  81. Willadsen S, Levron J, Munne S, et al. Rapid visualization of metaphase chromosomes in single human blastomeres after fusion with in-vitro matured bovine eggs. Hum Reprod. 1999;14:470–4.

    Article  PubMed  CAS  Google Scholar 

  82. Shkumatov A, Kuznyetsov V, Cieslak J, Ilkevitch VY. Obtaining metaphase spreads from single blastomeres for PGD of choromosomal rearrangements. Reprod Biomed Online. 2007;14:498–503.

    Article  PubMed  Google Scholar 

  83. Tanaka A, Nagayoshi M, Awata Y, Mawatari Y, Tanaka I, Kusunoki H. Preimplantation diagnosis of repeated miscarriages due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4–6 cell stage embryo. Fertil Steril. 2004;81:30–4.

    Article  PubMed  Google Scholar 

  84. Cohen J, Wells D, Munné S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril. 2007;87:496–503.

    Article  PubMed  Google Scholar 

  85. Evsikov S, Cieslak J, Verlinsky Y. Survival of unbalanced translocations to blastocyst stage. Fertil Steril. 2000;74:672–6.

    Article  PubMed  CAS  Google Scholar 

  86. Munné S, Sandalinas M, Escudero T. Outcome of premplantation genetic diagnosis of translocations. Fertil Steril. 2000;73:1209–18.

    Article  PubMed  Google Scholar 

  87. Munne S, Cohen J, Sable D. Preimplantation genetic diagnosis for advanced maternal age and other indications. Fertil Steril. 2002;78:234–6.

    Article  PubMed  Google Scholar 

  88. Fisher J, Escudero T, Chen S, et al. Obstetric outcome of 100 cycles of PGD of translocations and other structural abnormalities. Reprod Biomed Online. 2002;4(Supplement 2):26.

    Article  Google Scholar 

  89. Cassel MJ, Munne S, Fung J, Weier HUG. Carrier-specific breakpoint-spanning DNA probes: an approach to preimplantation genetic diagnosis in interphase cells. Hum Reprod. 1997;12:2019–27.

    Article  PubMed  CAS  Google Scholar 

  90. Scriven PN, Handyside AH, Mackie Ogilvie C. Cromosome translocations: segregation modes and strategies for preimplantation genetic diagnosis. Prenat Diagn. 1998;18:1437–49.

    Article  PubMed  CAS  Google Scholar 

  91. Gianaroli L, Magli MC, Ferraretti AP, et al. Robertsonian and reciprocal translocations. Reprod Biomed Online. 2002;4 Suppl 2:26–7.

    Article  Google Scholar 

  92. Lim CK, Min JH, Song GJ, et al. Reliability of PGD with FISH analysis in reciprocal or Robertsonian translocation carriers. Reprod Biomed Online. 2002;4 Suppl 2:29.

    Article  Google Scholar 

  93. Van Assche E, Staessen C, Ogur G, et al. PGD for reciprocal and Robertsonian translocations in 41 treatment cycles. Reprod Biomed Online. 2002;4 Suppl 2:27.

    Article  Google Scholar 

  94. Traversa MV, Carey L, Leigh D. A molecular strategy for routine preimplantation genetic diagnosis in both reciprocal and Robertsonian translocation carriers. Hum Reprod. 2010;16:329–37.

    CAS  Google Scholar 

  95. Colls P, Escudero T, Fischer J, et al. Validation of array comparative genome hybridization for diagnosis of translocations in preimplantation human embryos. Reproductive BioMedicine Online, 2012;24:621–629.

    CAS  Google Scholar 

  96. Treff NR, Northrop LE, Kasabwala K, Su J, Levy B, Scott RT. Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril. 2011;95:1606–12.

    Article  PubMed  CAS  Google Scholar 

  97. Treff NR, Tao X, Schileings W, Bergh PA, Scott RT, Levy B. Use of single nucleotide polymorphism microarrays to distinguish between balanced and normal chromosomes in embryos from a translocation carrier. Fertil Steril. 2011;96:e58–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Kuliev, A. (2012). Preimplantation Diagnosis for Chromosomal Disorders. In: Practical Preimplantation Genetic Diagnosis. Springer, London. https://doi.org/10.1007/978-1-4471-4090-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4090-0_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4089-4

  • Online ISBN: 978-1-4471-4090-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics